1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/display/manager/touch_transform_controller.h"
#include <algorithm>
#include <utility>
#include <vector>
#include "base/logging.h"
#include "ui/display/display_layout.h"
#include "ui/display/manager/display_manager.h"
#include "ui/display/manager/managed_display_info.h"
#include "ui/display/manager/touch_device_manager.h"
#include "ui/display/manager/touch_transform_setter.h"
#include "ui/display/screen.h"
#include "ui/display/types/display_constants.h"
#include "ui/display/types/display_snapshot.h"
#include "ui/events/devices/device_data_manager.h"
#include "ui/events/devices/touch_device_transform.h"
#include "ui/gfx/geometry/transform.h"
namespace display {
namespace {
// Given an array of touch point and display point pairs, this function computes
// and returns the constants(defined below) using a least fit algorithm.
// If (xt, yt) is a touch point then its corresponding (xd, yd) would be defined
// by the following 2 equations:
// xd = xt * A + yt * B + C
// yd = xt * D + yt * E + F
// This function computes A, B, C, D, E and F and sets |ctm| with the calibrated
// transform matrix. In case the computation fails, the function will return
// false.
// See http://crbug.com/672293
bool GetCalibratedTransform(
std::array<std::pair<gfx::Point, gfx::Point>, 4> touch_point_pairs,
const gfx::Transform& pre_calibration_tm,
gfx::Transform* ctm) {
// Transform the display points before solving the equation.
// If the calibration was performed at a resolution that is 0.5 times the
// current resolution, then the display points (x, y) for a given touch point
// now represents a display point at (2 * x, 2 * y). This and other kinds of
// similar transforms can be applied using |pre_calibration_tm|.
for (int row = 0; row < 4; row++) {
touch_point_pairs[row].first =
pre_calibration_tm.MapPoint(touch_point_pairs[row].first);
}
// Vector of the X-coordinate of display points corresponding to each of the
// touch points.
float display_points_x[4] = {
static_cast<float>(touch_point_pairs[0].first.x()),
static_cast<float>(touch_point_pairs[1].first.x()),
static_cast<float>(touch_point_pairs[2].first.x()),
static_cast<float>(touch_point_pairs[3].first.x())};
// Vector of the Y-coordinate of display points corresponding to each of the
// touch points.
float display_points_y[4] = {
static_cast<float>(touch_point_pairs[0].first.y()),
static_cast<float>(touch_point_pairs[1].first.y()),
static_cast<float>(touch_point_pairs[2].first.y()),
static_cast<float>(touch_point_pairs[3].first.y())};
// Initialize |touch_point_matrix|
// If {(xt_1, yt_1), (xt_2, yt_2), (xt_3, yt_3)....} are a set of touch points
// received during calibration, then the |touch_point_matrix| would be defined
// as:
// |xt_1 yt_1 1 0|
// |xt_2 yt_2 1 0|
// |xt_3 yt_3 1 0|
// |xt_4 yt_4 1 0|
gfx::Transform touch_point_matrix;
for (int row = 0; row < 4; row++) {
touch_point_matrix.set_rc(row, 0, touch_point_pairs[row].second.x());
touch_point_matrix.set_rc(row, 1, touch_point_pairs[row].second.y());
touch_point_matrix.set_rc(row, 2, 1);
touch_point_matrix.set_rc(row, 3, 0);
}
gfx::Transform touch_point_matrix_transpose = touch_point_matrix;
touch_point_matrix_transpose.Transpose();
gfx::Transform product_matrix =
touch_point_matrix_transpose * touch_point_matrix;
// Set (3, 3) = 1 so that |determinant| of the matrix is != 0 and the inverse
// can be calculated.
product_matrix.set_rc(3, 3, 1);
gfx::Transform product_matrix_inverse;
// NOTE: If the determinant is zero then the inverse cannot be computed. The
// only solution is to restart touch calibration and get new points from user.
if (!product_matrix.GetInverse(&product_matrix_inverse)) {
NOTREACHED() << "Touch Calibration failed. Determinant is zero.";
}
product_matrix_inverse.set_rc(3, 3, 0);
product_matrix = product_matrix_inverse * touch_point_matrix_transpose;
// The result [A, B, C, 0] will be used to calibrate the x-coordinate of
// touch input:
// x_new = x_old * A + y_old * B + C;
product_matrix.TransformVector4(display_points_x);
// The result [D, E, F, 0] will be used to calibrate the y-coordinate of
// touch input:
// y_new = x_old * D + y_old * E + F;
product_matrix.TransformVector4(display_points_y);
// Create a transform matrix using the touch calibration data.
// clang-format off
ctm->PostConcat(gfx::Transform::RowMajor(
display_points_x[0], display_points_x[1], 0, display_points_x[2],
display_points_y[0], display_points_y[1], 0, display_points_y[2],
0, 0, 1, 0,
0, 0, 0, 1));
// clang-format on
return true;
}
// Returns an uncalibrated touch transform.
gfx::Transform GetUncalibratedTransform(const gfx::Transform& tm,
const ManagedDisplayInfo& display,
const ManagedDisplayInfo& touch_display,
const gfx::SizeF& touch_area,
const gfx::SizeF& touch_native_size) {
gfx::SizeF current_size(display.bounds_in_native().size());
gfx::Transform ctm(tm);
// Take care of panel fitting only if supported. Panel fitting is emulated
// in software mirroring mode (display != touch_display).
// If panel fitting is enabled then the aspect ratio is preserved and the
// display is scaled accordingly. In this case blank regions would be present
// in order to center the displayed area.
if (display.is_aspect_preserving_scaling() ||
display.id() != touch_display.id()) {
float touch_calib_ar =
touch_native_size.width() / touch_native_size.height();
float current_ar = current_size.width() / current_size.height();
if (current_ar > touch_calib_ar) { // Letterboxing
ctm.Translate(
0, (1 - current_ar / touch_calib_ar) * 0.5 * current_size.height());
ctm.Scale(1, current_ar / touch_calib_ar);
} else if (touch_calib_ar > current_ar) { // Pillarboxing
ctm.Translate(
(1 - touch_calib_ar / current_ar) * 0.5 * current_size.width(), 0);
ctm.Scale(touch_calib_ar / current_ar, 1);
}
}
// Take care of scaling between touchscreen area and display resolution.
ctm.Scale(current_size.width() / touch_area.width(),
current_size.height() / touch_area.height());
return ctm;
}
DisplayIdList GetConnectedDisplayIdList(const DisplayManager* display_manager) {
DCHECK(display_manager->num_connected_displays());
if (display_manager->num_connected_displays() == 1)
return DisplayIdList{display_manager->first_display_id()};
return display_manager->GetConnectedDisplayIdList();
}
} // namespace
TouchTransformController::UpdateData::UpdateData() = default;
TouchTransformController::UpdateData::~UpdateData() = default;
// This is to compute the scale ratio for the TouchEvent's radius. The
// configured resolution of the display is not always the same as the touch
// screen's reporting resolution, e.g. the display could be set as
// 1920x1080 while the touchscreen is reporting touch position range at
// 32767x32767. Touch radius is reported in the units the same as touch position
// so we need to scale the touch radius to be compatible with the display's
// resolution. We compute the scale as
// sqrt of (display_area / touchscreen_area)
double TouchTransformController::GetTouchResolutionScale(
const ManagedDisplayInfo& touch_display,
const ui::TouchscreenDevice& touch_device) const {
if (touch_device.id == ui::InputDevice::kInvalidId ||
touch_device.size.IsEmpty() ||
touch_display.bounds_in_native().size().IsEmpty())
return 1.0;
double display_area = touch_display.bounds_in_native().size().Area64();
double touch_area = touch_device.size.Area64();
double ratio = std::sqrt(display_area / touch_area);
VLOG(2) << "Display size: "
<< touch_display.bounds_in_native().size().ToString()
<< ", Touchscreen size: " << touch_device.size.ToString()
<< ", Touch radius scale ratio: " << ratio;
return ratio;
}
gfx::Transform TouchTransformController::GetTouchTransform(
const ManagedDisplayInfo& display,
const ManagedDisplayInfo& touch_display,
const ui::TouchscreenDevice& touchscreen) const {
auto current_size = gfx::SizeF(display.bounds_in_native().size());
auto touch_native_size = gfx::SizeF(touch_display.GetNativeModeSize());
auto touch_area = gfx::SizeF(touchscreen.size);
gfx::Transform ctm;
if (current_size.IsEmpty() || touch_native_size.IsEmpty() ||
touch_area.IsEmpty() || touchscreen.id == ui::InputDevice::kInvalidId)
return ctm;
// Translate the touch so that it falls within the display bounds. This
// should not be performed if the displays are mirrored.
if (display.id() == touch_display.id()) {
ctm.Translate(display.bounds_in_native().x(),
display.bounds_in_native().y());
}
// If the device is currently under calibration, then do not return any
// transform as we want to use the raw native touch input data for calibration
if (is_calibrating_)
return ctm;
TouchCalibrationData calibration_data =
display_manager_->touch_device_manager()->GetCalibrationData(
touchscreen, touch_display.id());
// If touch calibration data is unavailable, use naive approach.
if (calibration_data.IsEmpty()) {
return GetUncalibratedTransform(ctm, display, touch_display, touch_area,
touch_native_size);
}
// The resolution at which the touch calibration was performed.
gfx::SizeF touch_calib_size(calibration_data.bounds);
// Any additional transformation that needs to be applied to the display
// points, before we solve for the final transform.
gfx::Transform pre_transform;
if (display.id() != touch_display.id() ||
display.is_aspect_preserving_scaling()) {
// Case of displays being mirrored or in panel fitting mode.
// Aspect ratio of the touch display's resolution during calibration.
float calib_ar = touch_calib_size.width() / touch_calib_size.height();
// Aspect ratio of the display that is being mirrored.
float current_ar = current_size.width() / current_size.height();
if (current_ar < calib_ar) {
pre_transform.Scale(current_size.height() / touch_calib_size.height(),
current_size.height() / touch_calib_size.height());
pre_transform.Translate(
(current_ar / calib_ar - 1.f) * touch_calib_size.width() * 0.5f, 0);
} else {
pre_transform.Scale(current_size.width() / touch_calib_size.width(),
current_size.width() / touch_calib_size.width());
pre_transform.Translate(
0, (calib_ar / current_ar - 1.f) * touch_calib_size.height() * 0.5f);
}
} else {
// Case of current resolution being different from the resolution when the
// touch calibration was performed.
pre_transform.Scale(current_size.width() / touch_calib_size.width(),
current_size.height() / touch_calib_size.height());
}
// Solve for coefficients and compute transform matrix.
gfx::Transform stored_ctm;
if (!GetCalibratedTransform(calibration_data.point_pairs, pre_transform,
&stored_ctm)) {
// TODO(malaykeshav): This can be checked at the calibration step before
// storing the calibration associated data. This will allow us to explicitly
// inform the user with proper UX.
// Return uncalibrated transform.
return GetUncalibratedTransform(ctm, display, touch_display, touch_area,
touch_native_size);
}
stored_ctm.PostConcat(ctm);
return stored_ctm;
}
TouchTransformController::TouchTransformController(
DisplayManager* display_manager,
std::unique_ptr<TouchTransformSetter> setter)
: display_manager_(display_manager),
touch_transform_setter_(std::move(setter)) {}
TouchTransformController::~TouchTransformController() {}
void TouchTransformController::UpdateTouchTransforms() const {
UpdateData update_data;
UpdateTouchTransforms(&update_data);
touch_transform_setter_->ConfigureTouchDevices(
update_data.touch_device_transforms);
}
void TouchTransformController::UpdateTouchRadius(
const ManagedDisplayInfo& display,
UpdateData* update_data) const {
for (const auto& device :
display_manager_->touch_device_manager()
->GetAssociatedTouchDevicesForDisplay(display.id())) {
DCHECK_EQ(0u, update_data->device_to_scale.count(device.id));
update_data->device_to_scale.emplace(
device.id, GetTouchResolutionScale(display, device));
}
}
void TouchTransformController::UpdateTouchTransform(
int64_t target_display_id,
const ManagedDisplayInfo& touch_display,
const ManagedDisplayInfo& target_display,
UpdateData* update_data) const {
ui::TouchDeviceTransform touch_device_transform;
touch_device_transform.display_id = target_display_id;
for (const auto& device :
display_manager_->touch_device_manager()
->GetAssociatedTouchDevicesForDisplay(touch_display.id())) {
touch_device_transform.device_id = device.id;
touch_device_transform.transform =
GetTouchTransform(target_display, touch_display, device);
auto device_to_scale_iter = update_data->device_to_scale.find(device.id);
if (device_to_scale_iter != update_data->device_to_scale.end())
touch_device_transform.radius_scale = device_to_scale_iter->second;
update_data->touch_device_transforms.push_back(touch_device_transform);
}
}
void TouchTransformController::UpdateTouchTransforms(
UpdateData* update_data) const {
if (display_manager_->num_connected_displays() == 0)
return;
DisplayIdList display_id_list = GetConnectedDisplayIdList(display_manager_);
DCHECK(display_id_list.size());
DisplayInfoList display_info_list;
for (int64_t display_id : display_id_list) {
DCHECK(display_id != kInvalidDisplayId);
display_info_list.push_back(display_manager_->GetDisplayInfo(display_id));
UpdateTouchRadius(display_info_list.back(), update_data);
}
if (display_manager_->IsInMirrorMode()) {
std::size_t primary_display_id_index = std::distance(
display_id_list.begin(),
std::ranges::find(display_id_list,
Screen::GetScreen()->GetPrimaryDisplay().id()));
for (std::size_t index = 0; index < display_id_list.size(); index++) {
// In extended but software mirroring mode, there is a WindowTreeHost
// for each display, but all touches are forwarded to the primary root
// window's WindowTreeHost.
// In mirror mode, there is just one WindowTreeHost and two displays.
// Make the WindowTreeHost accept touch events from both displays.
std::size_t touch_display_index =
display_manager_->SoftwareMirroringEnabled()
? primary_display_id_index
: index;
UpdateTouchTransform(display_id_list[primary_display_id_index],
display_info_list[index],
display_info_list[touch_display_index], update_data);
}
return;
}
for (std::size_t index = 0; index < display_id_list.size(); index++) {
UpdateTouchTransform(display_id_list[index], display_info_list[index],
display_info_list[index], update_data);
}
}
void TouchTransformController::SetForCalibration(bool is_calibrating) {
is_calibrating_ = is_calibrating;
UpdateTouchTransforms();
}
} // namespace display
|