1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/display/manager/util/display_manager_util.h"
#include <stddef.h>
#include <algorithm>
#include <array>
#include <cinttypes>
#include <cmath>
#include <set>
#include <sstream>
#include <vector>
#include "base/check_op.h"
#include "base/command_line.h"
#include "base/memory/raw_ptr.h"
#include "base/notreached.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "chromeos/ash/components/system/statistics_provider.h"
#include "ui/base/ui_base_switches.h"
#include "ui/display/display_switches.h"
#include "ui/display/manager/managed_display_info.h"
#include "ui/display/types/display_snapshot.h"
#include "ui/display/util/display_util.h"
#include "ui/gfx/geometry/size_conversions.h"
#include "ui/gfx/geometry/size_f.h"
namespace display {
std::string DisplayPowerStateToString(chromeos::DisplayPowerState state) {
switch (state) {
case chromeos::DISPLAY_POWER_ALL_ON:
return "ALL_ON";
case chromeos::DISPLAY_POWER_ALL_OFF:
return "ALL_OFF";
case chromeos::DISPLAY_POWER_INTERNAL_OFF_EXTERNAL_ON:
return "INTERNAL_OFF_EXTERNAL_ON";
case chromeos::DISPLAY_POWER_INTERNAL_ON_EXTERNAL_OFF:
return "INTERNAL_ON_EXTERNAL_OFF";
default:
return "unknown (" + base::NumberToString(state) + ")";
}
}
std::string VrrStateToString(const base::flat_set<int64_t>& state) {
std::vector<std::string> entries;
for (const int64_t id : state) {
entries.push_back(base::NumberToString(id));
}
return "{" + base::JoinString(entries, ", ") + "}";
}
std::string RefreshRateOverrideToString(
const std::unordered_map<int64_t, float>& refresh_rate_override) {
std::vector<std::string> entries;
for (const auto& [id, refresh_rate] : refresh_rate_override) {
entries.push_back(base::StringPrintf("%" PRId64 ": %f", id, refresh_rate));
}
return "{" + base::JoinString(entries, ", ") + "}";
}
int GetDisplayPower(
const std::vector<raw_ptr<DisplaySnapshot, VectorExperimental>>& displays,
chromeos::DisplayPowerState state,
std::vector<bool>* display_power) {
int num_on_displays = 0;
if (display_power) {
display_power->resize(displays.size());
}
for (size_t i = 0; i < displays.size(); ++i) {
bool internal = displays[i]->type() == DISPLAY_CONNECTION_TYPE_INTERNAL;
bool on =
state == chromeos::DISPLAY_POWER_ALL_ON ||
(state == chromeos::DISPLAY_POWER_INTERNAL_OFF_EXTERNAL_ON &&
!internal) ||
(state == chromeos::DISPLAY_POWER_INTERNAL_ON_EXTERNAL_OFF && internal);
if (display_power) {
(*display_power)[i] = on;
}
if (on) {
num_on_displays++;
}
}
return num_on_displays;
}
bool WithinEpsilon(float a, float b) {
return std::abs(a - b) < std::numeric_limits<float>::epsilon();
}
std::string MultipleDisplayStateToString(MultipleDisplayState state) {
switch (state) {
case MULTIPLE_DISPLAY_STATE_INVALID:
return "INVALID";
case MULTIPLE_DISPLAY_STATE_HEADLESS:
return "HEADLESS";
case MULTIPLE_DISPLAY_STATE_SINGLE:
return "SINGLE";
case MULTIPLE_DISPLAY_STATE_MULTI_MIRROR:
return "DUAL_MIRROR";
case MULTIPLE_DISPLAY_STATE_MULTI_EXTENDED:
return "MULTI_EXTENDED";
}
NOTREACHED() << "Unknown state " << state;
}
bool GetContentProtectionMethods(DisplayConnectionType type,
uint32_t* protection_mask) {
switch (type) {
case DISPLAY_CONNECTION_TYPE_NONE:
case DISPLAY_CONNECTION_TYPE_UNKNOWN:
return false;
case DISPLAY_CONNECTION_TYPE_INTERNAL:
case DISPLAY_CONNECTION_TYPE_VGA:
case DISPLAY_CONNECTION_TYPE_NETWORK:
*protection_mask = CONTENT_PROTECTION_METHOD_NONE;
return true;
case DISPLAY_CONNECTION_TYPE_DISPLAYPORT:
case DISPLAY_CONNECTION_TYPE_DVI:
case DISPLAY_CONNECTION_TYPE_HDMI:
*protection_mask = CONTENT_PROTECTION_METHOD_HDCP;
return true;
}
}
std::vector<float> GetDisplayZoomFactors(const ManagedDisplayMode& mode) {
// Internal displays have an internal device scale factor greater than 1
// associated with them. This means that if we use the usual logic, we would
// end up with a list of zoom levels that the user may not find very useful.
// Take for example the pixelbook with device scale factor of 2. Based on the
// usual approach, we would get a zoom range of 90% to 150%. This means:
// 1. Users will not be able to go to the native resolution which is
// achieved at 50% zoom level.
// 2. Due to the device scale factor, the display already has a low DPI and
// users dont want to zoom in, they mostly want to zoom out and add more
// pixels to the screen. But we only provide a zoom list of 90% to 150%.
// This clearly shows we need a different logic to handle internal displays
// which have lower DPI due to the device scale factor associated with them.
//
// OTOH if we look at an external display with a device scale factor of 1 but
// the same resolution as the pixel book, the DPI would usually be very high
// and users mostly want to zoom in to reduce the number of pixels on the
// screen. So having a range of 90% to 130% makes sense.
// TODO(malaykeshav): Investigate if we can use DPI instead of resolution or
// device scale factor to decide the list of zoom levels.
if (mode.device_scale_factor() > 1.f) {
return GetDisplayZoomFactorForDsf(mode.device_scale_factor());
}
// There may be cases where the device scale factor is less than 1. This can
// happen during testing or local linux builds.
const int effective_width = std::round(
static_cast<float>(std::max(mode.size().width(), mode.size().height())) /
mode.device_scale_factor());
return GetDisplayZoomFactorsByDisplayWidth(effective_width);
}
std::vector<float> GetDisplayZoomFactorsByDisplayWidth(
const int display_width) {
std::size_t index = kZoomListBuckets.size() - 1;
while (index > 0 && display_width < kZoomListBuckets[index].first) {
index--;
}
DCHECK_GE(display_width, kZoomListBuckets[index].first);
const auto& zoom_array = kZoomListBuckets[index].second;
return std::vector<float>(zoom_array.begin(), zoom_array.end());
}
std::vector<float> GetDisplayZoomFactorForDsf(float dsf) {
DCHECK(!WithinEpsilon(dsf, 1.f));
DCHECK_GT(dsf, 1.f);
for (const auto& bucket : kZoomListBucketsForDsf) {
if (WithinEpsilon(bucket.first, dsf)) {
return std::vector<float>(bucket.second.begin(), bucket.second.end());
}
}
NOTREACHED() << "Received a DSF not on the list: " << dsf;
}
ManagedDisplayInfo::ManagedDisplayModeList CreateInternalManagedDisplayModeList(
const ManagedDisplayMode& native_mode) {
ManagedDisplayMode mode(native_mode.size(), native_mode.refresh_rate(),
native_mode.is_interlaced(), true,
native_mode.device_scale_factor());
return ManagedDisplayInfo::ManagedDisplayModeList{mode};
}
UnifiedDisplayModeParam::UnifiedDisplayModeParam(float dsf,
float scale,
bool is_default)
: device_scale_factor(dsf),
display_bounds_scale(scale),
is_default_mode(is_default) {}
ManagedDisplayInfo::ManagedDisplayModeList CreateUnifiedManagedDisplayModeList(
const ManagedDisplayMode& native_mode,
const std::vector<UnifiedDisplayModeParam>& modes_param_list) {
ManagedDisplayInfo::ManagedDisplayModeList display_mode_list;
display_mode_list.reserve(modes_param_list.size());
for (auto& param : modes_param_list) {
gfx::SizeF scaled_size(native_mode.size());
scaled_size.Scale(param.display_bounds_scale);
display_mode_list.emplace_back(
gfx::ToFlooredSize(scaled_size), native_mode.refresh_rate(),
native_mode.is_interlaced(),
param.is_default_mode ? true : false /* native */,
param.device_scale_factor);
}
// Sort the mode by the size in DIP.
std::sort(display_mode_list.begin(), display_mode_list.end(),
[](const ManagedDisplayMode& a, const ManagedDisplayMode& b) {
return a.GetSizeInDIP().GetArea() < b.GetSizeInDIP().GetArea();
});
return display_mode_list;
}
bool ForceFirstDisplayInternal() {
base::CommandLine* command_line = base::CommandLine::ForCurrentProcess();
// Touch view mode is only available to internal display. We force the
// display as internal for emulator to test touch view mode.
// However, display mode change is only available to external display. To run
// tests on a different display mode from default we will need to set the flag
// --drm-virtual-connector-is-external.
return command_line->HasSwitch(::switches::kUseFirstDisplayAsInternal) ||
(ash::system::StatisticsProvider::GetInstance()->IsRunningOnVm() &&
!command_line->HasSwitch(switches::kDRMVirtualConnectorIsExternal));
}
bool ComputeBoundary(const gfx::Rect& a_bounds,
const gfx::Rect& b_bounds,
gfx::Rect* a_edge,
gfx::Rect* b_edge) {
// Find touching side.
int rx = std::max(a_bounds.x(), b_bounds.x());
int ry = std::max(a_bounds.y(), b_bounds.y());
int rr = std::min(a_bounds.right(), b_bounds.right());
int rb = std::min(a_bounds.bottom(), b_bounds.bottom());
DisplayPlacement::Position position;
if (rb == ry) {
// top bottom
if (rr <= rx) {
// Top and bottom align, but no edges are shared.
return false;
}
if (a_bounds.bottom() == b_bounds.y()) {
position = DisplayPlacement::BOTTOM;
} else if (a_bounds.y() == b_bounds.bottom()) {
position = DisplayPlacement::TOP;
} else {
return false;
}
} else if (rr == rx) {
// left right
if (rb <= ry) {
// Left and right align, but no edges are shared.
return false;
}
if (a_bounds.right() == b_bounds.x()) {
position = DisplayPlacement::RIGHT;
} else if (a_bounds.x() == b_bounds.right()) {
position = DisplayPlacement::LEFT;
} else {
return false;
}
} else {
return false;
}
switch (position) {
case DisplayPlacement::TOP:
case DisplayPlacement::BOTTOM: {
int left = std::max(a_bounds.x(), b_bounds.x());
int right = std::min(a_bounds.right(), b_bounds.right());
if (position == DisplayPlacement::TOP) {
a_edge->SetRect(left, a_bounds.y(), right - left, 1);
b_edge->SetRect(left, b_bounds.bottom() - 1, right - left, 1);
} else {
a_edge->SetRect(left, a_bounds.bottom() - 1, right - left, 1);
b_edge->SetRect(left, b_bounds.y(), right - left, 1);
}
break;
}
case DisplayPlacement::LEFT:
case DisplayPlacement::RIGHT: {
int top = std::max(a_bounds.y(), b_bounds.y());
int bottom = std::min(a_bounds.bottom(), b_bounds.bottom());
if (position == DisplayPlacement::LEFT) {
a_edge->SetRect(a_bounds.x(), top, 1, bottom - top);
b_edge->SetRect(b_bounds.right() - 1, top, 1, bottom - top);
} else {
a_edge->SetRect(a_bounds.right() - 1, top, 1, bottom - top);
b_edge->SetRect(b_bounds.x(), top, 1, bottom - top);
}
break;
}
}
return true;
}
bool ComputeBoundary(const Display& display_a,
const Display& display_b,
gfx::Rect* a_edge_in_screen,
gfx::Rect* b_edge_in_screen) {
return ComputeBoundary(display_a.bounds(), display_b.bounds(),
a_edge_in_screen, b_edge_in_screen);
}
DisplayIdList CreateDisplayIdList(const Displays& list) {
return GenerateDisplayIdList(list, &Display::id);
}
DisplayIdList CreateDisplayIdList(const DisplayInfoList& updated_displays) {
return GenerateDisplayIdList(updated_displays,
&display::ManagedDisplayInfo::id);
}
void SortDisplayIdList(DisplayIdList* ids) {
std::sort(ids->begin(), ids->end(),
[](int64_t a, int64_t b) { return CompareDisplayIds(a, b); });
}
bool IsDisplayIdListSorted(const DisplayIdList& list) {
return std::is_sorted(list.begin(), list.end(), [](int64_t a, int64_t b) {
return CompareDisplayIds(a, b);
});
}
std::string DisplayIdListToString(const DisplayIdList& list) {
std::stringstream s;
const char* sep = "";
for (int64_t id : list) {
s << sep << id;
sep = ",";
}
return s.str();
}
int64_t GetDisplayIdWithoutOutputIndex(int64_t id) {
constexpr uint64_t kMask = ~static_cast<uint64_t>(0xFF);
return static_cast<int64_t>(kMask & id);
}
MixedMirrorModeParams::MixedMirrorModeParams(int64_t src_id,
const DisplayIdList& dst_ids)
: source_id(src_id), destination_ids(dst_ids) {}
MixedMirrorModeParams::MixedMirrorModeParams(
const MixedMirrorModeParams& mixed_params) = default;
MixedMirrorModeParams::~MixedMirrorModeParams() = default;
MixedMirrorModeParamsErrors ValidateParamsForMixedMirrorMode(
const DisplayIdList& connected_display_ids,
const MixedMirrorModeParams& mixed_params) {
if (connected_display_ids.size() <= 1) {
return MixedMirrorModeParamsErrors::kErrorSingleDisplay;
}
std::set<int64_t> all_display_ids;
for (auto& id : connected_display_ids) {
all_display_ids.insert(id);
}
if (!all_display_ids.count(mixed_params.source_id)) {
return MixedMirrorModeParamsErrors::kErrorSourceIdNotFound;
}
// This set is used to check duplicate id.
std::set<int64_t> specified_display_ids;
specified_display_ids.insert(mixed_params.source_id);
if (mixed_params.destination_ids.empty()) {
return MixedMirrorModeParamsErrors::kErrorDestinationIdsEmpty;
}
for (auto& id : mixed_params.destination_ids) {
if (!all_display_ids.count(id)) {
return MixedMirrorModeParamsErrors::kErrorDestinationIdNotFound;
}
if (!specified_display_ids.insert(id).second) {
return MixedMirrorModeParamsErrors::kErrorDuplicateId;
}
}
return MixedMirrorModeParamsErrors::kSuccess;
}
} // namespace display
|