File: edid_parser.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (937 lines) | stat: -rw-r--r-- 39,428 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.


#include "ui/display/util/edid_parser.h"

#include <stddef.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <utility>

#include "base/check.h"
#include "base/containers/span.h"
#include "base/hash/hash.h"
#include "base/hash/md5.h"
#include "base/logging.h"
#include "base/metrics/histogram_functions.h"
#include "base/numerics/byte_conversions.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "third_party/abseil-cpp/absl/strings/ascii.h"
#include "third_party/skia/include/core/SkColorSpace.h"
#include "ui/display/util/display_util.h"
#include "ui/gfx/geometry/size.h"

namespace display {
namespace {

constexpr char kParseEdidFailureMetric[] = "Display.ParseEdidFailure";
constexpr char kParseExternalDisplayEdidOptionalsMetric[] =
    "Display.External.ParseEdidOptionals";
constexpr char kBlockZeroSerialNumberTypeMetric[] =
    "Display.External.BlockZeroSerialNumberType";
constexpr char kNumOfSerialNumbersProvidedByExternalDisplay[] =
    "Display.External.NumOfSerialNumbersProvided";
constexpr uint8_t kMaxSerialNumberCount = 2;
constexpr uint8_t kDisplayIdExtensionTag = 0x70;

// These values are persisted to logs. Entries should not be renumbered and
// numeric values should never be reused.
enum class ParseEdidFailure {
  kNoError = 0,
  kManufacturerId = 1,
  kProductId = 2,
  kYearOfManufacture = 3,
  kBitsPerChannel = 4,
  kGamma = 5,
  kChromaticityCoordinates = 6,
  kDisplayName = 7,
  kExtensions = 8,
  kSerialNumber = 9,
  kWeekOfManufacture = 10,
  kPhysicalSize = 11,
  kMaxValue = kPhysicalSize,
};

// These values are persisted to logs. Entries should not be renumbered and
// numeric values should never be reused. This enum is used to track the
// availability (or lack thereof) of optional fields during EDID parsing.
enum class ParseEdidOptionals {
  kAllAvailable = 0,
  kBlockZeroSerialNumber = 1,
  kDescriptorBlockSerialNumber = 2,
  kWeekOfManufacture = 3,
  kPhysicalSize = 4,
  kMaxValue = kPhysicalSize,
};

// These values are persisted to logs. Entries should not be renumbered and
// numeric values should never be reused. This enum is used to track the
// serial number types that can be retrieved from an EDID's block zero.
enum class BlockZeroSerialNumberType {
  kNormal = 0,
  kRepeatingPattern = 1,
  kNoSerialNumber = 2,
  kMaxValue = kNoSerialNumber,
};

BlockZeroSerialNumberType GetSerialNumberType(
    base::span<const uint8_t, 4u> serial_number) {
  uint32_t sum = serial_number[0u];
  bool all_equal = true;
  for (size_t i = 1u; i < serial_number.size(); ++i) {
    sum += serial_number[i];
    if (serial_number[i - 1u] != serial_number[i]) {
      all_equal = false;
    }
  }

  if (sum == 0u) {
    return BlockZeroSerialNumberType::kNoSerialNumber;
  }

  if (all_equal) {
    return BlockZeroSerialNumberType::kRepeatingPattern;
  }

  return BlockZeroSerialNumberType::kNormal;
}
}  // namespace

EdidParser::EdidParser(std::vector<uint8_t> edid_blob, bool is_external)
    : edid_blob_(std::move(edid_blob)),
      is_external_display_(is_external),
      manufacturer_id_(0),
      product_id_(0),
      year_of_manufacture_(display::kInvalidYearOfManufacture),
      gamma_(0.0),
      bits_per_channel_(-1),
      primaries_({0}),
      audio_formats_(0) {
  ParseEdid(edid_blob_);
}

EdidParser::EdidParser(EdidParser&& other) = default;
EdidParser& EdidParser::operator=(EdidParser&& other) = default;
EdidParser::~EdidParser() = default;

uint32_t EdidParser::GetProductCode() const {
  return ((static_cast<uint32_t>(manufacturer_id_) << 16) |
          (static_cast<uint32_t>(product_id_)));
}

int64_t EdidParser::GetIndexBasedDisplayId(uint8_t output_index) const {
  // Generates product specific value from product_name instead of product code.
  // See https://crbug.com/240341
  const uint32_t product_code_hash =
      display_name_.empty() ? 0 : base::Hash(display_name_);
  // An ID based on display's index will be assigned later if this call fails.
  return GenerateDisplayID(manufacturer_id_, product_code_hash, output_index);
}

int64_t EdidParser::GetEdidBasedDisplayId() const {
  const std::string string_to_hash =
      base::NumberToString(manufacturer_id_) +
      base::NumberToString(product_id_) + display_name_ +
      base::NumberToString(week_of_manufacture()) +
      base::NumberToString(year_of_manufacture_) + max_image_size().ToString() +
      block_zero_serial_number_hash() + descriptor_block_serial_number_hash();
  return static_cast<int64_t>(base::PersistentHash(string_to_hash));
}

// static
void EdidParser::SplitProductCodeInManufacturerIdAndProductId(
    int64_t product_code,
    uint16_t* manufacturer_id,
    uint16_t* product_id) {
  DCHECK(manufacturer_id);
  DCHECK(product_id);
  // Undo GetProductCode() packing.
  *product_id = product_code & 0xFFFF;
  *manufacturer_id = (product_code >> 16) & 0xFFFF;
}

// static
std::string EdidParser::ManufacturerIdToString(uint16_t manufacturer_id) {
  // Constants are taken from "VESA Enhanced EDID Standard" Release A, Revision
  // 2, Sep 2006, Sec 3.4.1 "ID Manufacturer Name: 2 Bytes". Essentially these
  // are 3 5-bit ASCII characters packed in 2 bytes, where 1 means 'A', etc.
  constexpr uint8_t kFiveBitAsciiMask = 0x1F;
  constexpr char kFiveBitToAsciiOffset = 'A' - 1;
  constexpr size_t kSecondLetterOffset = 5;
  constexpr size_t kFirstLetterOffset = 10;

  char out[4] = {};
  out[2] = (manufacturer_id & kFiveBitAsciiMask) + kFiveBitToAsciiOffset;
  out[1] = ((manufacturer_id >> kSecondLetterOffset) & kFiveBitAsciiMask) +
           kFiveBitToAsciiOffset;
  out[0] = ((manufacturer_id >> kFirstLetterOffset) & kFiveBitAsciiMask) +
           kFiveBitToAsciiOffset;
  return out;
}

// static
std::string EdidParser::ProductIdToString(uint16_t product_id) {
  // From "VESA Enhanced EDID Standard" Release A, Revision 2, Sep 2006, Sec
  // 3.4.2 "ID Product Code: 2 Bytes": "The ID product code field, [...]
  // contains a 2-byte manufacturer assigned product code. [...] The 2 byte
  // number is stored in hex with the least significant byte listed first."
  uint8_t lower_char = (product_id >> 8) & 0xFF;
  uint8_t upper_char = product_id & 0xFF;
  return base::StringPrintf("%02X%02X", upper_char, lower_char);
}

bool EdidParser::TileCanScaleToFit() const {
  return tile_can_scale_to_fit_;
}

void EdidParser::ParseEdid(const std::vector<uint8_t>& edid) {
  // See http://en.wikipedia.org/wiki/Extended_display_identification_data
  // for the details of EDID data format.  We use the following data:
  //   bytes 8-9: manufacturer EISA ID, in big-endian
  //   bytes 10-11: manufacturer product code, in little-endian
  constexpr size_t kManufacturerOffset = 8;
  constexpr size_t kManufacturerLength = 2;
  constexpr size_t kProductIdOffset = 10;
  constexpr size_t kProductIdLength = 2;

  if (edid.size() < kManufacturerOffset + kManufacturerLength) {
    base::UmaHistogramEnumeration(kParseEdidFailureMetric,
                                  ParseEdidFailure::kManufacturerId);
    return;  // Any other fields below are beyond this edid offset.
  }
  // ICC filename is generated based on these ids. We always read this as big
  // endian so that the file name matches bytes 8-11 as they appear in EDID.
  manufacturer_id_ = base::U16FromBigEndian(
      base::span(edid).subspan<kManufacturerOffset, kManufacturerLength>());

  if (edid.size() < kProductIdOffset + kProductIdLength) {
    base::UmaHistogramEnumeration(kParseEdidFailureMetric,
                                  ParseEdidFailure::kProductId);
    return;  // Any other fields below are beyond this edid offset.
  }
  // TODO: crbug.com/332745398 - The comment above says this data is in little
  // endian, however there was a mistake in the past which led to us parsing
  // this as big endian, and so we are now maintaining consistency with that. We
  // cannot fix this without disturbing display support, as the product ID is
  // used to produce display IDs and we need these to stay consistent. We'll
  // have to keep parsing it incorrectly until we migrate to EDID-based display
  // IDs. See also (googlers-only) http://b/193019614.
  product_id_ = base::U16FromBigEndian(
      base::span(edid).subspan<kProductIdOffset, kProductIdLength>());

  //   Bytes 12-15: display serial number, in little-endian (LSB). This field is
  //   optional and its absence is marked by having all bytes set to 0x00.
  //   Values do not represent ASCII characters.
  constexpr size_t kSerialNumberOffset = 12;
  constexpr size_t kSerialNumberLength = 4;

  if (edid.size() < kSerialNumberOffset + kSerialNumberLength) {
    base::UmaHistogramEnumeration(kParseEdidFailureMetric,
                                  ParseEdidFailure::kSerialNumber);
    return;  // Any other fields below are beyond this edid offset.
  }

  auto serial_number_bytes =
      base::span(edid).subspan<kSerialNumberOffset, kSerialNumberLength>();

  // Report the type of serial number encountered in block zero of external
  // displays: empty (==0), repeating pattern (e.g. 01010101 or 0F0F0F0F),
  // or normal.
  if (is_external_display_) {
    base::UmaHistogramEnumeration(kBlockZeroSerialNumberTypeMetric,
                                  GetSerialNumberType(serial_number_bytes));
  }

  const uint32_t serial_number = base::U32FromLittleEndian(serial_number_bytes);
  if (serial_number) {
    block_zero_serial_number_hash_ =
        base::MD5String(base::NumberToString(serial_number));
  }

  // Constants are taken from "VESA Enhanced EDID Standard" Release A, Revision
  // 2, Sep 2006, Sec 3.4.4 "Week and Year of Manufacture or Model Year: 2
  // Bytes".
  constexpr size_t kWeekOfManufactureOffset = 16;
  constexpr uint32_t kValidWeekValueUpperBound = 0x36;
  constexpr uint32_t kModelYearMarker = 0xFF;

  if (edid.size() < kWeekOfManufactureOffset + 1) {
    base::UmaHistogramEnumeration(kParseEdidFailureMetric,
                                  ParseEdidFailure::kWeekOfManufacture);
    return;  // Any other fields below are beyond this edid offset.
  }
  {
    const uint8_t byte_data = edid[kWeekOfManufactureOffset];
    // Store the value if it's within the range of 1-54 or equals to 0xFF.
    if ((byte_data > 0x00 && byte_data <= kValidWeekValueUpperBound) ||
        byte_data == kModelYearMarker) {
      week_of_manufacture_ = byte_data;
    }
  }

  constexpr size_t kYearOfManufactureOffset = 17;
  constexpr uint32_t kValidYearValueLowerBound = 0x10;
  constexpr int32_t kYearOffset = 1990;

  if (edid.size() < kYearOfManufactureOffset + 1) {
    base::UmaHistogramEnumeration(kParseEdidFailureMetric,
                                  ParseEdidFailure::kYearOfManufacture);
    return;  // Any other fields below are beyond this edid offset.
  }
  {
    const uint8_t byte_data = edid[kYearOfManufactureOffset];
    if (byte_data >= kValidYearValueLowerBound) {
      year_of_manufacture_ = byte_data + kYearOffset;
    }
  }

  // Constants are taken from "VESA Enhanced EDID Standard" Release A, Revision
  // 1, Feb 2000, Sec 3.6 "Basic Display Parameters and Features: 5 bytes"
  constexpr static auto kBitsPerChannelTable =
      std::to_array<int>({0, 6, 8, 10, 12, 14, 16, 0});

  constexpr size_t kEDIDRevisionNumberOffset = 19;
  constexpr uint8_t kEDIDRevision4Value = 4;

  constexpr size_t kVideoInputDefinitionOffset = 20;
  constexpr uint8_t kDigitalInfoMask = 0x80;
  constexpr uint8_t kColorBitDepthMask = 0x70;
  constexpr uint8_t kColorBitDepthOffset = 4;

  if (edid.size() < kVideoInputDefinitionOffset + 1) {
    base::UmaHistogramEnumeration(kParseEdidFailureMetric,
                                  ParseEdidFailure::kBitsPerChannel);
    return;  // Any other fields below are beyond this edid offset.
  }
  if (edid[kEDIDRevisionNumberOffset] >= kEDIDRevision4Value &&
      (edid[kVideoInputDefinitionOffset] & kDigitalInfoMask)) {
    // EDID needs to be revision 4 at least, and kDigitalInfoMask be set for
    // the Video Input Definition entry to describe a digital interface.
    bits_per_channel_ = kBitsPerChannelTable[(
        (edid[kVideoInputDefinitionOffset] & kColorBitDepthMask) >>
        kColorBitDepthOffset)];
  }

  constexpr size_t kEDIDMaxHorizontalImageSizeOffset = 21;
  constexpr size_t kEDIDMaxVerticalImageSizeOffset = 22;

  if (edid.size() < kEDIDMaxVerticalImageSizeOffset + 1) {
    base::UmaHistogramEnumeration(kParseEdidFailureMetric,
                                  ParseEdidFailure::kPhysicalSize);
    return;  // Any other fields below are beyond this edid offset.
  }
  const gfx::Size max_image_size(edid[kEDIDMaxHorizontalImageSizeOffset],
                                 edid[kEDIDMaxVerticalImageSizeOffset]);
  if (!max_image_size.IsEmpty()) {
    max_image_size_ = max_image_size;
  }

  // Constants are taken from "VESA Enhanced EDID Standard" Release A, Revision
  // 2, Sep 2006, Sec. 3.6.3 "Display Transfer Characteristics (GAMMA ): 1 Byte"
  constexpr size_t kGammaOffset = 23;
  constexpr double kGammaMultiplier = 100.0;
  constexpr double kGammaBias = 100.0;

  if (edid.size() < kGammaOffset + 1) {
    base::UmaHistogramEnumeration(kParseEdidFailureMetric,
                                  ParseEdidFailure::kGamma);
    return;  // Any other fields below are beyond this edid offset.
  }
  if (edid[kGammaOffset] != 0xFF) {
    // Otherwise the byte at kGammaOffset is 0xFF, gamma is stored elsewhere.
    gamma_ = (edid[kGammaOffset] + kGammaBias) / kGammaMultiplier;
  }

  // Offsets, lengths, positions and masks are taken from [1] (or [2]).
  // [1] http://en.wikipedia.org/wiki/Extended_display_identification_data
  // [2] "VESA Enhanced EDID Standard " Release A, Revision 1, Feb 2000, Sec 3.7
  //  "Phosphor or Filter Chromaticity: 10 bytes"
  constexpr size_t kChromaticityOffset = 25;
  constexpr unsigned int kChromaticityLength = 10;

  constexpr size_t kRedGreenLsbOffset = 25;
  constexpr uint8_t kRedxLsbPosition = 6;
  constexpr uint8_t kRedyLsbPosition = 4;
  constexpr uint8_t kGreenxLsbPosition = 2;
  constexpr uint8_t kGreenyLsbPosition = 0;

  constexpr size_t kBlueWhiteLsbOffset = 26;
  constexpr uint8_t kBluexLsbPosition = 6;
  constexpr uint8_t kBlueyLsbPosition = 4;
  constexpr uint8_t kWhitexLsbPosition = 2;
  constexpr uint8_t kWhiteyLsbPosition = 0;

  // All LSBits parts are 2 bits wide.
  constexpr uint8_t kLsbMask = 0x3;

  constexpr size_t kRedxMsbOffset = 27;
  constexpr size_t kRedyMsbOffset = 28;
  constexpr size_t kGreenxMsbOffset = 29;
  constexpr size_t kGreenyMsbOffset = 30;
  constexpr size_t kBluexMsbOffset = 31;
  constexpr size_t kBlueyMsbOffset = 32;
  constexpr size_t kWhitexMsbOffset = 33;
  constexpr size_t kWhiteyMsbOffset = 34;

  static_assert(
      kChromaticityOffset + kChromaticityLength == kWhiteyMsbOffset + 1,
      "EDID Parameter section length error");

  if (edid.size() < kChromaticityOffset + kChromaticityLength) {
    base::UmaHistogramEnumeration(kParseEdidFailureMetric,
                                  ParseEdidFailure::kChromaticityCoordinates);
    return;  // Any other fields below are beyond this edid offset.
  }

  const uint8_t red_green_lsbs = edid[kRedGreenLsbOffset];
  const uint8_t blue_white_lsbs = edid[kBlueWhiteLsbOffset];

  // Recompose the 10b values by appropriately mixing the 8 MSBs and the 2 LSBs,
  // then rescale to 1024;
  primaries_.fRX = ((edid[kRedxMsbOffset] << 2) +
                    ((red_green_lsbs >> kRedxLsbPosition) & kLsbMask)) /
                   1024.0f;
  primaries_.fRY = ((edid[kRedyMsbOffset] << 2) +
                    ((red_green_lsbs >> kRedyLsbPosition) & kLsbMask)) /
                   1024.0f;
  primaries_.fGX = ((edid[kGreenxMsbOffset] << 2) +
                    ((red_green_lsbs >> kGreenxLsbPosition) & kLsbMask)) /
                   1024.0f;
  primaries_.fGY = ((edid[kGreenyMsbOffset] << 2) +
                    ((red_green_lsbs >> kGreenyLsbPosition) & kLsbMask)) /
                   1024.0f;
  primaries_.fBX = ((edid[kBluexMsbOffset] << 2) +
                    ((blue_white_lsbs >> kBluexLsbPosition) & kLsbMask)) /
                   1024.0f;
  primaries_.fBY = ((edid[kBlueyMsbOffset] << 2) +
                    ((blue_white_lsbs >> kBlueyLsbPosition) & kLsbMask)) /
                   1024.0f;
  primaries_.fWX = ((edid[kWhitexMsbOffset] << 2) +
                    ((blue_white_lsbs >> kWhitexLsbPosition) & kLsbMask)) /
                   1024.0f;
  primaries_.fWY = ((edid[kWhiteyMsbOffset] << 2) +
                    ((blue_white_lsbs >> kWhiteyLsbPosition) & kLsbMask)) /
                   1024.0f;
  // TODO(mcasas): Up to two additional White Point coordinates can be provided
  // in a Display Descriptor. Read them if we are not satisfied with |fWX| or
  // |fWy|. https://crbug.com/771345.

  // See http://en.wikipedia.org/wiki/Extended_display_identification_data
  // for the details of EDID data format.  We use the following data:
  //   bytes 54-125: four descriptors (18-bytes each) which may contain
  //     the display name.
  constexpr size_t kDescriptorOffset = 54;
  constexpr size_t kNumDescriptors = 4;
  constexpr size_t kDescriptorLength = 18;
  // The specifier types.
  constexpr uint8_t kMonitorNameDescriptor = 0xfc;
  constexpr uint8_t kDisplayRangeLimitsDescriptor = 0xfd;
  constexpr uint8_t kMonitorSerialNumberDescriptor = 0xff;

  display_name_.clear();
  for (size_t i = 0; i < kNumDescriptors; ++i) {
    if (edid.size() < kDescriptorOffset + (i + 1) * kDescriptorLength) {
      break;
    }

    size_t offset = kDescriptorOffset + i * kDescriptorLength;

    // Detailed Timing Descriptor:
    if (edid[offset] != 0 && edid[offset + 1] != 0) {
      constexpr int kMaxResolution = 10080;  // 8k display.

      // EDID may contain multiple DTD. Use the first one, that contains the
      // highest resolution.
      if (active_pixel_size_.IsEmpty()) {
        constexpr size_t kHorizontalPixelLsbOffset = 2;
        constexpr size_t kHorizontalPixelMsbOffset = 4;
        constexpr size_t kVerticalPixelLsbOffset = 5;
        constexpr size_t kVerticalPixelMsbOffset = 7;

        const uint8_t h_lsb = edid[offset + kHorizontalPixelLsbOffset];
        const uint8_t h_msb = edid[offset + kHorizontalPixelMsbOffset];
        int h_pixel = std::min(h_lsb + ((h_msb & 0xF0) << 4), kMaxResolution);

        const uint8_t v_lsb = edid[offset + kVerticalPixelLsbOffset];
        const uint8_t v_msb = edid[offset + kVerticalPixelMsbOffset];
        int v_pixel = std::min(v_lsb + ((v_msb & 0xF0) << 4), kMaxResolution);

        active_pixel_size_.SetSize(h_pixel, v_pixel);
      }
      continue;
    }

    // EDID Other Monitor Descriptors:
    // If the descriptor contains the display name, it has the following
    // structure:
    //   bytes 0-2, 4: \0
    //   byte 3: 0xfc
    //   bytes 5-17: text data, ending with \r, padding with spaces
    // we should check bytes 0-2 and 4, since it may have other values in
    // case that the descriptor contains other type of data.
    if (edid[offset] == 0 && edid[offset + 1] == 0 && edid[offset + 2] == 0 &&
        edid[offset + 3] == kMonitorNameDescriptor && edid[offset + 4] == 0) {
      std::string name(reinterpret_cast<const char*>(&edid[offset + 5]),
                       kDescriptorLength - 5);
      base::TrimWhitespaceASCII(name, base::TRIM_TRAILING, &display_name_);
      continue;
    }

    // If the descriptor contains the display's range limits, it has the
    // following structure:
    //   bytes 0-2: \0
    //   byte 3: 0xfd
    //   byte 4: Offsets for display range limits
    //   bytes 5-17: Display range limits and timing information
    if (edid[offset] == 0 && edid[offset + 1] == 0 && edid[offset + 2] == 0 &&
        edid[offset + 3] == kDisplayRangeLimitsDescriptor) {
      // byte 4: Offsets for display range limits
      const uint8_t rateOffset = edid[offset + 4];
      // bits 7-4: Reserved \0
      if (rateOffset & 0xf0) {
        continue;
      }
      // bit 3: Horizontal max rate offset (not used)
      // bit 2: Horizontal min rate offset (not used)
      // bit 1: Vertical max rate offset (not used)
      // bit 0: Vertical min rate offset
      const uint8_t verticalMinRateOffset = rateOffset & (1 << 0) ? 255 : 0;

      // bytes 5-8: Rate limits
      // Each byte must be within [1, 255].
      if (edid[offset + 5] == 0 || edid[offset + 6] == 0 ||
          edid[offset + 7] == 0 || edid[offset + 8] == 0) {
        continue;
      }
      // byte 5: Min vertical rate in Hz
      vsync_rate_min_ = edid[offset + 5] + verticalMinRateOffset;
      // byte 6: Max vertical rate in Hz (not used)
      // byte 7: Min horizontal rate in kHz (not used)
      // byte 8: Max horizontal rate in kHz (not used)

      // byte 9: Maximum pixel clock rate (not used)
      // byte 10: Extended timing information type (not used)
      // bytes 11-17: Video timing parameters (not used)

      continue;
    }

    // If the descriptor contains the display's product serial number, it has
    // the following structure:
    //   bytes 0-2, 4: \0
    //   byte 3: 0xff
    //   bytes 5-17: text data, ending with \r, padding with spaces
    // we should check bytes 0-2 and 4, since it may have other values in
    // case that the descriptor contains other type of data.
    if (edid[offset] == 0 && edid[offset + 1] == 0 && edid[offset + 2] == 0 &&
        edid[offset + 3] == kMonitorSerialNumberDescriptor &&
        edid[offset + 4] == 0) {
      std::string serial_number_str(
          reinterpret_cast<const char*>(&edid[offset + 5]),
          kDescriptorLength - 5);
      base::TrimWhitespaceASCII(serial_number_str, base::TRIM_TRAILING,
                                &serial_number_str);
      if (!serial_number_str.empty()) {
        descriptor_block_serial_number_hash_ =
            base::MD5String(serial_number_str);
      }
      continue;
    }
  }

  // Verify if the |display_name_| consists of printable characters only.
  // Replace unprintable chars with white space.
  std::replace_if(
      display_name_.begin(), display_name_.end(),
      [](unsigned char c) {
        return !absl::ascii_isascii(c) || !absl::ascii_isprint(c);
      },
      ' ');

  // See http://en.wikipedia.org/wiki/Extended_display_identification_data
  // for the extension format of EDID.  Also see EIA/CEA-861 spec for
  // the format of the extensions and how video capability is encoded.
  //  - byte 0: tag.  should be 02h.
  //  - byte 1: revision.  only cares revision 3 (03h).
  //  - byte 4-: data block.
  constexpr size_t kExtensionBaseOffset = 128;
  constexpr size_t kExtensionSize = 128;
  constexpr size_t kNumExtensionsOffset = 126;
  constexpr size_t kDataBlockOffset = 4;
  constexpr uint8_t kCEAExtensionTag = '\x02';
  constexpr uint8_t kExpectedExtensionRevision = '\x03';
  constexpr uint8_t kAudioTag = 1;
  constexpr uint8_t kExtendedTag = 7;
  constexpr uint8_t kExtendedVideoCapabilityTag = 0;
  constexpr uint8_t kPTOverscanFlagPosition = 4;
  constexpr uint8_t kITOverscanFlagPosition = 2;
  constexpr uint8_t kCEOverscanFlagPosition = 0;
  // See CTA-861-F, particularly Table 56 "Colorimetry Data Block".
  constexpr uint8_t kColorimetryDataBlockCapabilityTag = 0x05;
  constexpr auto kPrimaryMatrixIDMap = std::to_array<
      std::pair<gfx::ColorSpace::PrimaryID, gfx::ColorSpace::MatrixID>>({
      // xvYCC601. Standard Definition Colorimetry based on IEC 61966-2-4.
      {gfx::ColorSpace::PrimaryID::SMPTE170M,
       gfx::ColorSpace::MatrixID::SMPTE170M},
      // xvYCC709. High Definition Colorimetry based on IEC 61966-2-4.
      {gfx::ColorSpace::PrimaryID::BT709, gfx::ColorSpace::MatrixID::BT709},
      // sYCC601. Colorimetry based on IEC 61966-2-1/Amendment 1.
      {gfx::ColorSpace::PrimaryID::SMPTE170M,
       gfx::ColorSpace::MatrixID::SMPTE170M},
      // opYCC601. Colorimetry based on IEC 61966-2-5, Annex A.
      {gfx::ColorSpace::PrimaryID::SMPTE170M,
       gfx::ColorSpace::MatrixID::SMPTE170M},
      // opRGB, Colorimetry based on IEC 61966-2-5.
      {gfx::ColorSpace::PrimaryID::SMPTE170M, gfx::ColorSpace::MatrixID::RGB},
      // BT2020YCC. Colorimetry based on ITU-R BT.2020 Y’C’BC’R.
      {gfx::ColorSpace::PrimaryID::INVALID, gfx::ColorSpace::MatrixID::INVALID},
      // BT2020YCC. Colorimetry based on ITU-R BT.2020 Y’C’BC’R.
      {gfx::ColorSpace::PrimaryID::BT2020,
       gfx::ColorSpace::MatrixID::BT2020_NCL},
      // BT2020RGB. Colorimetry based on ITU-R BT.2020 R’G’B’.
      {gfx::ColorSpace::PrimaryID::BT2020, gfx::ColorSpace::MatrixID::RGB},
      // MD0. Metadata bit.
      {gfx::ColorSpace::PrimaryID::INVALID, gfx::ColorSpace::MatrixID::INVALID},
      // MD1. Metadata bit.
      {gfx::ColorSpace::PrimaryID::INVALID, gfx::ColorSpace::MatrixID::INVALID},
      // MD2. Metadata bit.
      {gfx::ColorSpace::PrimaryID::INVALID, gfx::ColorSpace::MatrixID::INVALID},
      // MD3. Metadata bit.
      {gfx::ColorSpace::PrimaryID::INVALID, gfx::ColorSpace::MatrixID::INVALID},
      // F44=0.
      {gfx::ColorSpace::PrimaryID::INVALID, gfx::ColorSpace::MatrixID::INVALID},
      // F45=0.
      {gfx::ColorSpace::PrimaryID::INVALID, gfx::ColorSpace::MatrixID::INVALID},
      // F46=0.
      {gfx::ColorSpace::PrimaryID::INVALID, gfx::ColorSpace::MatrixID::INVALID},
      // DCI-P3. Colorimetry based on DCI-P3.
      {gfx::ColorSpace::PrimaryID::P3, gfx::ColorSpace::MatrixID::RGB},
  });
  // See CEA 861.G-2018, Sec.7.5.13, "HDR Static Metadata Data Block" for these.
  constexpr uint8_t kHDRStaticMetadataCapabilityTag = 0x6;
  constexpr auto kTransferIDMap = std::to_array<gfx::ColorSpace::TransferID>({
      gfx::ColorSpace::TransferID::BT709,
      gfx::ColorSpace::TransferID::GAMMA24,
      gfx::ColorSpace::TransferID::PQ,
      // STD B67 is also known as Hybrid-log Gamma (HLG).
      gfx::ColorSpace::TransferID::HLG,
  });
  constexpr uint8_t kHDRStaticMetadataDataBlockLengthMask = 0x1F;

  if (edid.size() < kNumExtensionsOffset + 1) {
    base::UmaHistogramEnumeration(kParseEdidFailureMetric,
                                  ParseEdidFailure::kExtensions);
    return;  // Any other fields below are beyond this edid offset.
  }
  const uint8_t num_extensions = edid[kNumExtensionsOffset];

  for (size_t i = 0; i < num_extensions; ++i) {
    // Skip parsing the whole extension if size is not enough.
    if (edid.size() < kExtensionBaseOffset + (i + 1) * kExtensionSize) {
      break;
    }

    const size_t extension_offset = kExtensionBaseOffset + i * kExtensionSize;
    const uint8_t extention_tag = edid[extension_offset];
    const uint8_t revision = edid[extension_offset + 1];

    if (extention_tag == kDisplayIdExtensionTag) {
      ParseDisplayIdExtension(edid, extension_offset);
      continue;
    }
    if (extention_tag != kCEAExtensionTag ||
        revision != kExpectedExtensionRevision) {
      continue;
    }

    const uint8_t timing_descriptors_start = std::min(
        edid[extension_offset + 2], static_cast<unsigned char>(kExtensionSize));

    for (size_t data_offset = extension_offset + kDataBlockOffset;
         data_offset < extension_offset + timing_descriptors_start;) {
      // A data block is encoded as:
      // - byte 1 high 3 bits: tag: '1' for audio, '7' for extended tags.
      // - byte 1 remaining bits: the length of data block after header.
      // - byte 2: the extended tag. E.g. '0' for video capability. Values are
      //   defined by the k...CapabilityTag constants.
      // - byte 3: the capability.
      const uint8_t tag = edid[data_offset] >> 5;
      const uint8_t payload_length = edid[data_offset] & 0x1f;
      if (data_offset + payload_length + 1 > edid.size()) {
        break;
      }

      // Short Audio Descriptors contain passthrough audio support information.
      // Note: Short Audio Descriptors also contain channel count and sampling
      // frequency information as described in:
      // CTA-861-G (2017) section 7.5.2 Audio Data Block.
      if (tag == kAudioTag) {
        constexpr uint8_t kCEAShortAudioDescriptorLength = 3;
        constexpr uint8_t kFormatBitsLPCM = 1;
        constexpr uint8_t kFormatBitsDTS = 7;
        constexpr uint8_t kFormatBitsDTSHD = 11;

        for (int sad_index = 0;
             sad_index + kCEAShortAudioDescriptorLength <= payload_length;
             sad_index += kCEAShortAudioDescriptorLength) {
          switch ((edid[data_offset + 1 + sad_index] >> 3) & 0x1F) {
            case kFormatBitsLPCM:
              audio_formats_ |= kAudioBitstreamPcmLinear;
              break;
            case kFormatBitsDTS:
              audio_formats_ |= kAudioBitstreamDts;
              break;
            case kFormatBitsDTSHD:
              audio_formats_ |= kAudioBitstreamDtsHd;
              break;
          }
        }
        data_offset += payload_length + 1;
        continue;
      }

      if (tag != kExtendedTag || payload_length < 2) {
        data_offset += payload_length + 1;
        continue;
      }

      switch (edid[data_offset + 1]) {
        case kExtendedVideoCapabilityTag:
          // The difference between preferred, IT, and CE video formats doesn't
          // matter. Set the flag to true if any of these flags are true.
          overscan_flag_ =
              (edid[data_offset + 2] & (1 << kPTOverscanFlagPosition)) ||
              (edid[data_offset + 2] & (1 << kITOverscanFlagPosition)) ||
              (edid[data_offset + 2] & (1 << kCEOverscanFlagPosition));
          break;

        case kColorimetryDataBlockCapabilityTag: {
          constexpr size_t kMaxNumColorimetryEntries = 16;
          // The Colorimetry Data Block bitfield is 2 bytes long, the second
          // byte containing the most significant bit (MSB), so it needs to be
          // shifted to the left to create a 16 bit long value that can be
          // passed to the bitset constructor.
          long cdb_bits = edid[data_offset + 2];
          if (edid.size() > data_offset + 3) {
            cdb_bits += edid[data_offset + 3] << 8;
          }
          const std::bitset<kMaxNumColorimetryEntries>
              supported_primaries_bitfield(cdb_bits);
          static_assert(
              kMaxNumColorimetryEntries == std::size(kPrimaryMatrixIDMap),
              "kPrimaryIDMap should describe all possible colorimetry entries");
          for (size_t entry = 0; entry < kMaxNumColorimetryEntries; ++entry) {
            if (supported_primaries_bitfield[entry] &&
                std::get<0>(kPrimaryMatrixIDMap[entry]) !=
                    gfx::ColorSpace::PrimaryID::INVALID &&
                std::get<1>(kPrimaryMatrixIDMap[entry]) !=
                    gfx::ColorSpace::MatrixID::INVALID) {
              supported_color_primary_matrix_ids_.insert(
                  kPrimaryMatrixIDMap[entry]);
            }
          }
          break;
        }

        case kHDRStaticMetadataCapabilityTag: {
          constexpr size_t kMaxNumHDRStaticMetadataEntries = 4;
          const std::bitset<kMaxNumHDRStaticMetadataEntries>
              supported_eotfs_bitfield(edid[data_offset + 2]);
          static_assert(
              kMaxNumHDRStaticMetadataEntries == std::size(kTransferIDMap),
              "kTransferIDMap should describe all possible transfer entries");
          for (size_t entry = 0; entry < kMaxNumHDRStaticMetadataEntries;
               ++entry) {
            if (supported_eotfs_bitfield[entry]) {
              supported_color_transfer_ids_.insert(kTransferIDMap[entry]);
            }
          }
          hdr_static_metadata_ = std::make_optional<gfx::HDRStaticMetadata>({});
          hdr_static_metadata_->supported_eotf_mask =
              base::checked_cast<uint8_t>(supported_eotfs_bitfield.to_ulong());

          // See CEA 861.3-2015, Sec.7.5.13, "HDR Static Metadata Data Block"
          // for details on the following calculations.
          const uint8_t length_of_data_block =
              edid[data_offset] & kHDRStaticMetadataDataBlockLengthMask;
          if (length_of_data_block <= 3) {
            break;
          }
          const uint8_t desired_content_max_luminance = edid[data_offset + 4];
          hdr_static_metadata_->max =
              50.0 * pow(2, desired_content_max_luminance / 32.0);

          if (length_of_data_block <= 4) {
            break;
          }
          const uint8_t desired_content_max_frame_average_luminance =
              edid[data_offset + 5];
          hdr_static_metadata_->max_avg =
              50.0 * pow(2, desired_content_max_frame_average_luminance / 32.0);

          if (length_of_data_block <= 5) {
            break;
          }
          const uint8_t desired_content_min_luminance = edid[data_offset + 6];
          hdr_static_metadata_->min =
              hdr_static_metadata_->max *
              pow(desired_content_min_luminance / 255.0, 2) / 100.0;
          break;
        }
        default:
          break;
      }

      data_offset += payload_length + 1;
    }
  }
  base::UmaHistogramEnumeration(kParseEdidFailureMetric,
                                ParseEdidFailure::kNoError);
  ReportEdidOptionalsForExternalDisplay();
}

// TODO(b/316356595): Move DisplayID parsing into its own class.
// NOTE: Refer to figure Figure 2-1 of VESA DisplayID Standard Version 2.1 for
// how DisplayID Structure v2.0 is laid out as an EDID extension.
void EdidParser::ParseDisplayIdExtension(const std::vector<uint8_t>& edid,
                                         size_t extension_offset) {
  const uint8_t extension_tag = edid[extension_offset];
  if (extension_tag != kDisplayIdExtensionTag) {
    LOG(ERROR) << "Unable to proceed with parsing DisplayID extension as "
                  "extension tag is not for DisplayID (0x70). Actual tag: "
               << extension_tag;
    return;
  }

  // There are two data blocks that describe tiled displays:
  // * DisplayID v1.3 with tag 0x12
  // * DisplayID v2.0 with tag 0x28
  // The v1.3 block is superscede by v2.0. Both of the blocks are laregely
  // identical.
  constexpr uint8_t kTiledDisplayDataBlockTag2_0 = 0x28;
  constexpr uint8_t kTiledDisplayDataBlockTag1_3 = 0x12;

  // Section data block is divided into (block tag, revision #, number of
  // payload bytes, payload), where everything except for the payload is one
  // byte long.
  constexpr size_t kDataBlockNumPayloadBytesOffset = 2;
  constexpr size_t kDataBlockNonPayloadBytes = 3;

  // The EDID-extension section block tag is the first byte
  // (|extension_offset|), followed by 4 bytes of DisplayID extension section
  // header, then the data blocks.
  const size_t displayid_extension_offset = extension_offset + 1;
  const size_t displayid_data_block_base = displayid_extension_offset + 4;
  size_t current_data_block_offset = displayid_data_block_base;

  // The second byte in the extension section header indicates the total number
  // of bytes in the section data block(s). This should always be 121.
  const uint8_t num_bytes_in_section_data_blocks =
      edid[displayid_extension_offset + 1];
  if (num_bytes_in_section_data_blocks != 121) {
    LOG(WARNING) << "Number of bytes in section data block should be 121 "
                    "according to the "
                    "DisplayID spec. Actual # of bytes: "
                 << num_bytes_in_section_data_blocks;
    return;
  }

  const size_t max_offset =
      std::min(edid.size(),
               displayid_data_block_base + num_bytes_in_section_data_blocks);
  while (current_data_block_offset + kDataBlockNumPayloadBytesOffset <
             max_offset
         // If there are no remaining data blocks before the fixed 121 bytes of
         // section data block space runs out, the remaining space is padded
         // with 0. Since there are no data block tag with ID 0, if a data block
         // tag is 0 then the rest of the section is just padding.
         && edid[current_data_block_offset] != 0) {
    const uint8_t current_data_block_tag = edid[current_data_block_offset];
    switch (current_data_block_tag) {
      case kTiledDisplayDataBlockTag1_3:
      case kTiledDisplayDataBlockTag2_0:
        ParseTiledDisplayBlock(edid, current_data_block_offset);
        break;
    }
    // NOTE: Parse other DisplayID blocks here.

    // Increment |current_data_block_offset| to point to the next data block's
    // tag (1st byte of the section data block).
    current_data_block_offset +=
        edid[current_data_block_offset + kDataBlockNumPayloadBytesOffset] +
        kDataBlockNonPayloadBytes;
  }
}

// DisplayID 1.3 and 2.0 tiled display data blocks look identical, at
// least for the current set of fields. Consult both of the specs before
// parsing more fields.
void EdidParser::ParseTiledDisplayBlock(const std::vector<uint8_t>& edid,
                                        size_t block_offset) {
  // See:
  // https://en.wikipedia.org/wiki/DisplayID#0x28_Tiled_display_topology
  // "Tile capabilities" is described in the 4th byte (offset + 3).
  // Bits 2:0 describe "Tile Behavior when It Is the Only Tile Receiving an
  // Image from the Source". With value of 2 indicating that the tile will
  // "Scale to fit the display" when it is the only tile receiving an image from
  // the source.
  constexpr size_t kTileCapabilitiesOffset = 3;
  constexpr uint8_t kSingleTileBehaviorBitmask = 0b111;
  constexpr uint8_t kSingleTileStretchToFit = 0x02;

  if (edid.size() <= block_offset + kTileCapabilitiesOffset) {
    return;
  }

  tile_can_scale_to_fit_ =
      (edid[block_offset + kTileCapabilitiesOffset] &
       kSingleTileBehaviorBitmask) == kSingleTileStretchToFit;
}

void EdidParser::ReportEdidOptionalsForExternalDisplay() const {
  if (!is_external_display_) {
    return;
  }

  bool all_optionals_available = true;

  if (!week_of_manufacture_.has_value()) {
    all_optionals_available = false;
    base::UmaHistogramEnumeration(kParseExternalDisplayEdidOptionalsMetric,
                                  ParseEdidOptionals::kWeekOfManufacture);
  }
  if (!max_image_size_.has_value()) {
    all_optionals_available = false;
    base::UmaHistogramEnumeration(kParseExternalDisplayEdidOptionalsMetric,
                                  ParseEdidOptionals::kPhysicalSize);
  }
  uint8_t serial_number_count = kMaxSerialNumberCount;
  if (!block_zero_serial_number_hash_.has_value()) {
    all_optionals_available = false;
    serial_number_count--;
    base::UmaHistogramEnumeration(kParseExternalDisplayEdidOptionalsMetric,
                                  ParseEdidOptionals::kBlockZeroSerialNumber);
  }
  if (!descriptor_block_serial_number_hash_.has_value()) {
    all_optionals_available = false;
    serial_number_count--;
    base::UmaHistogramEnumeration(
        kParseExternalDisplayEdidOptionalsMetric,
        ParseEdidOptionals::kDescriptorBlockSerialNumber);
  }
  base::UmaHistogramExactLinear(kNumOfSerialNumbersProvidedByExternalDisplay,
                                serial_number_count, kMaxSerialNumberCount);

  if (all_optionals_available) {
    base::UmaHistogramEnumeration(kParseExternalDisplayEdidOptionalsMetric,
                                  ParseEdidOptionals::kAllAvailable);
  }
}

}  // namespace display