File: keyframe_model.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (274 lines) | stat: -rw-r--r-- 10,128 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ui/gfx/animation/keyframe/keyframe_model.h"

#include "base/memory/ptr_util.h"
#include "base/notreached.h"
#include "base/time/time.h"

namespace gfx {
namespace {

// This should match the RunState enum.
static constexpr auto s_runStateNames = std::to_array<const char*>(
    {"WAITING_FOR_TARGET_AVAILABILITY", "WAITING_FOR_DELETION", "STARTING",
     "RUNNING", "PAUSED", "FINISHED", "ABORTED",
     "ABORTED_BUT_NEEDS_COMPLETION"});

static_assert(static_cast<int>(KeyframeModel::LAST_RUN_STATE) + 1 ==
                  std::size(s_runStateNames),
              "RunStateEnumSize should equal the number of elements in "
              "s_runStateNames");

}  // namespace

std::string KeyframeModel::ToString(RunState state) {
  return s_runStateNames[state];
}

std::unique_ptr<KeyframeModel> KeyframeModel::Create(
    std::unique_ptr<AnimationCurve> curve,
    int keyframe_model_id,
    int target_property_id) {
  return base::WrapUnique(new KeyframeModel(std::move(curve), keyframe_model_id,
                                            target_property_id));
}

KeyframeModel::KeyframeModel(std::unique_ptr<AnimationCurve> curve,
                             int keyframe_model_id,
                             int target_property_id)
    : curve_(std::move(curve)),
      id_(keyframe_model_id),
      target_property_(target_property_id),
      run_state_(WAITING_FOR_TARGET_AVAILABILITY),
      iterations_(1),
      iteration_start_(0),
      direction_(Direction::NORMAL),
      playback_rate_(1),
      fill_mode_(FillMode::BOTH) {}

KeyframeModel::~KeyframeModel() {
  if (run_state() == RUNNING || run_state() == PAUSED)
    SetRunState(ABORTED, base::TimeTicks());
}

int KeyframeModel::TargetProperty() const {
  return target_property_;
}

void KeyframeModel::SetRunState(RunState run_state,
                                base::TimeTicks monotonic_time) {
  if (run_state == RUNNING && run_state_ == PAUSED)
    total_paused_duration_ += (monotonic_time - pause_time_);
  else if (run_state == PAUSED)
    pause_time_ = monotonic_time;
  run_state_ = run_state;
}

void KeyframeModel::Pause(base::TimeDelta pause_offset) {
  // Convert pause offset which is in local time to monotonic time.
  // TODO(crbug.com/41430321): This should be scaled by playbackrate.
  base::TimeTicks monotonic_time = pause_offset +
                                   start_time_.value_or(base::TimeTicks()) +
                                   total_paused_duration_;
  SetRunState(PAUSED, monotonic_time);
}

KeyframeModel::Phase KeyframeModel::CalculatePhaseForTesting(
    base::TimeDelta local_time) const {
  return CalculatePhase(local_time);
}

KeyframeModel::Phase KeyframeModel::CalculatePhase(
    base::TimeDelta local_time) const {
  base::TimeDelta opposite_time_offset = time_offset_ == base::TimeDelta::Min()
                                             ? base::TimeDelta::Max()
                                             : -time_offset_;
  base::TimeDelta before_active_boundary_time =
      std::max(opposite_time_offset, base::TimeDelta());
  if ((local_time < before_active_boundary_time) ||
      (local_time == before_active_boundary_time && playback_rate_ < 0)) {
    return KeyframeModel::Phase::BEFORE;
  }
  // TODO(crbug.com/41428771): By spec end time = max(start delay + duration +
  // end delay, 0). The logic should be updated once "end delay" is supported.
  base::TimeDelta active_after_boundary_time = base::TimeDelta::Max();
  if (std::isfinite(iterations_)) {
    // Scaling the duration is against spec but needed to comply with the cc
    // implementation. By spec (in blink) the playback rate is an Animation
    // level concept but in cc it's per KeyframeModel. We grab the active time
    // calculated here and later scale it with the playback rate in order to get
    // a proper progress. Therefore we need to un-scale it here. This can be
    // fixed once we scale the local time by playback rate. See
    // https://crbug.com/912407.
    base::TimeDelta active_duration =
        curve_->Duration() * iterations_ / std::abs(playback_rate_);
    active_after_boundary_time =
        std::max(opposite_time_offset + active_duration, base::TimeDelta());
  }
  if ((local_time > active_after_boundary_time) ||
      (local_time == active_after_boundary_time && playback_rate_ > 0)) {
    return KeyframeModel::Phase::AFTER;
  }
  return KeyframeModel::Phase::ACTIVE;
}

std::optional<base::TimeDelta> KeyframeModel::CalculateActiveTime(
    base::TimeTicks monotonic_time) const {
  base::TimeDelta local_time = ConvertMonotonicTimeToLocalTime(monotonic_time);
  KeyframeModel::Phase phase = CalculatePhase(local_time);
  return CalculateActiveTime(local_time, phase);
}

std::optional<base::TimeDelta> KeyframeModel::CalculateActiveTime(
    base::TimeDelta local_time,
    KeyframeModel::Phase phase) const {
  DCHECK(playback_rate_);
  switch (phase) {
    case KeyframeModel::Phase::BEFORE:
      if (fill_mode_ == FillMode::BACKWARDS || fill_mode_ == FillMode::BOTH)
        return std::max(local_time + time_offset_, base::TimeDelta());
      return std::nullopt;
    case KeyframeModel::Phase::ACTIVE:
      return local_time + time_offset_;
    case KeyframeModel::Phase::AFTER:
      if (fill_mode_ == FillMode::FORWARDS || fill_mode_ == FillMode::BOTH) {
        DCHECK_NE(iterations_, std::numeric_limits<double>::infinity());
        base::TimeDelta active_duration =
            curve_->Duration() * iterations_ / std::abs(playback_rate_);
        return std::max(std::min(local_time + time_offset_, active_duration),
                        base::TimeDelta());
      }
      return std::nullopt;
    default:
      NOTREACHED();
  }
}

bool KeyframeModel::IsFinishedAt(base::TimeTicks monotonic_time) const {
  if (is_finished())
    return true;

  if (StartShouldBeDeferred())
    return false;

  if (playback_rate_ == 0)
    return false;

  return run_state_ == RUNNING && std::isfinite(iterations_) &&
         (curve_->Duration() * (iterations_ / std::abs(playback_rate_))) <=
             (ConvertMonotonicTimeToLocalTime(monotonic_time) + time_offset_);
}

bool KeyframeModel::HasActiveTime(base::TimeTicks monotonic_time) const {
  return CalculateActiveTime(monotonic_time).has_value();
}

bool KeyframeModel::StartShouldBeDeferred() const {
  return false;
}

base::TimeDelta KeyframeModel::TrimTimeToCurrentIteration(
    base::TimeTicks monotonic_time,
    TimingFunction::LimitDirection* limit_direction) const {
  DCHECK(playback_rate_);
  DCHECK_GE(iteration_start_, 0);

  DCHECK(HasActiveTime(monotonic_time));

  base::TimeDelta local_time = ConvertMonotonicTimeToLocalTime(monotonic_time);
  KeyframeModel::Phase phase = CalculatePhase(local_time);
  base::TimeDelta active_time = CalculateActiveTime(local_time, phase).value();
  base::TimeDelta start_offset = curve_->Duration() * iteration_start_;

  if (limit_direction) {
    if (phase == KeyframeModel::Phase::BEFORE) {
      *limit_direction = TimingFunction::LimitDirection::LEFT;
    } else {
      *limit_direction = TimingFunction::LimitDirection::RIGHT;
    }
  }

  DCHECK(!active_time.is_negative());

  // Always return zero if we have no iterations.
  if (!iterations_) {
    return base::TimeDelta();
  }

  // Don't attempt to trim if we have no duration.
  if (curve_->Duration() <= base::TimeDelta()) {
    return base::TimeDelta();
  }

  base::TimeDelta repeated_duration = std::isfinite(iterations_)
                                          ? (curve_->Duration() * iterations_)
                                          : base::TimeDelta::Max();

  // Calculate the scaled active time
  base::TimeDelta scaled_active_time;
  if (playback_rate_ < 0) {
    DCHECK(std::isfinite(iterations_));
    base::TimeDelta active_duration =
        repeated_duration / std::abs(playback_rate_);
    scaled_active_time =
        ((active_time - active_duration) * playback_rate_) + start_offset;
  } else {
    scaled_active_time = (active_time * playback_rate_) + start_offset;
  }

  // Calculate the iteration time
  base::TimeDelta iteration_time;
  bool has_defined_time_delta =
      (start_offset != scaled_active_time) ||
      !(start_offset.is_max() || start_offset.is_min());
  if (has_defined_time_delta &&
      scaled_active_time - start_offset == repeated_duration &&
      fmod(iterations_ + iteration_start_, 1) == 0)
    iteration_time = curve_->Duration();
  else
    iteration_time = scaled_active_time % curve_->Duration();

  // Calculate the current iteration
  int iteration;
  if (scaled_active_time <= base::TimeDelta())
    iteration = 0;
  else if (iteration_time == curve_->Duration())
    iteration = ceil(iteration_start_ + iterations_ - 1);
  else
    iteration = base::ClampFloor(scaled_active_time / curve_->Duration());

  // Check if we are running the keyframe model in reverse direction for the
  // current iteration
  bool reverse =
      (direction_ == Direction::REVERSE) ||
      (direction_ == Direction::ALTERNATE_NORMAL && iteration % 2 == 1) ||
      (direction_ == Direction::ALTERNATE_REVERSE && iteration % 2 == 0);

  // If we are running the keyframe model in reverse direction, reverse the
  // result
  if (reverse)
    iteration_time = curve_->Duration() - iteration_time;

  return iteration_time;
}

// TODO(crbug.com/41430321): Local time should be scaled by playback rate by
// spec.
base::TimeDelta KeyframeModel::ConvertMonotonicTimeToLocalTime(
    base::TimeTicks monotonic_time) const {
  // When waiting on receiving a start time, then our global clock is 'stuck' at
  // the initial state.
  if ((run_state_ == STARTING && !has_set_start_time()) ||
      StartShouldBeDeferred())
    return base::TimeDelta();

  // If we're paused, time is 'stuck' at the pause time.
  base::TimeTicks time = (run_state_ == PAUSED) ? pause_time_ : monotonic_time;
  return time - start_time_.value_or(base::TimeTicks()) -
         total_paused_duration_;
}

}  // namespace gfx