1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/animation/keyframe/timing_function.h"
#include <algorithm>
#include <cmath>
#include <memory>
#include "base/check_op.h"
#include "base/memory/ptr_util.h"
#include "base/notreached.h"
namespace gfx {
TimingFunction::TimingFunction() = default;
TimingFunction::~TimingFunction() = default;
std::unique_ptr<CubicBezierTimingFunction>
CubicBezierTimingFunction::CreatePreset(EaseType ease_type) {
// These numbers come from
// http://www.w3.org/TR/css3-transitions/#transition-timing-function_tag.
switch (ease_type) {
case EaseType::EASE:
return base::WrapUnique(
new CubicBezierTimingFunction(ease_type, 0.25, 0.1, 0.25, 1.0));
case EaseType::EASE_IN:
return base::WrapUnique(
new CubicBezierTimingFunction(ease_type, 0.42, 0.0, 1.0, 1.0));
case EaseType::EASE_OUT:
return base::WrapUnique(
new CubicBezierTimingFunction(ease_type, 0.0, 0.0, 0.58, 1.0));
case EaseType::EASE_IN_OUT:
return base::WrapUnique(
new CubicBezierTimingFunction(ease_type, 0.42, 0.0, 0.58, 1));
default:
NOTREACHED();
}
}
std::unique_ptr<CubicBezierTimingFunction>
CubicBezierTimingFunction::Create(double x1, double y1, double x2, double y2) {
return base::WrapUnique(
new CubicBezierTimingFunction(EaseType::CUSTOM, x1, y1, x2, y2));
}
CubicBezierTimingFunction::CubicBezierTimingFunction(EaseType ease_type,
double x1,
double y1,
double x2,
double y2)
: bezier_(x1, y1, x2, y2), ease_type_(ease_type) {}
CubicBezierTimingFunction::~CubicBezierTimingFunction() = default;
TimingFunction::Type CubicBezierTimingFunction::GetType() const {
return Type::CUBIC_BEZIER;
}
double CubicBezierTimingFunction::GetValue(
double x,
TimingFunction::LimitDirection) const {
return bezier_.Solve(x);
}
double CubicBezierTimingFunction::Velocity(double x) const {
return bezier_.Slope(x);
}
std::unique_ptr<TimingFunction> CubicBezierTimingFunction::Clone() const {
return base::WrapUnique(new CubicBezierTimingFunction(*this));
}
std::unique_ptr<StepsTimingFunction> StepsTimingFunction::Create(
int steps,
StepPosition step_position) {
return base::WrapUnique(new StepsTimingFunction(steps, step_position));
}
StepsTimingFunction::StepsTimingFunction(int steps, StepPosition step_position)
: steps_(steps), step_position_(step_position) {}
StepsTimingFunction::~StepsTimingFunction() = default;
TimingFunction::Type StepsTimingFunction::GetType() const {
return Type::STEPS;
}
std::unique_ptr<TimingFunction> StepsTimingFunction::Clone() const {
return base::WrapUnique(new StepsTimingFunction(*this));
}
double StepsTimingFunction::Velocity(double x) const {
return 0;
}
double StepsTimingFunction::GetValue(double t, LimitDirection direction) const {
const double steps = static_cast<double>(steps_);
double current_step = std::floor((steps * t) + GetStepsStartOffset());
// Adjust step if using a left limit at a discontinuous step boundary.
if (direction == LimitDirection::LEFT &&
steps * t - std::floor(steps * t) == 0) {
current_step -= 1;
}
// Jumps may differ from steps based on the number of end-point
// discontinuities, which may be 0, 1 or 2.
int jumps = NumberOfJumps();
if (t >= 0 && current_step < 0)
current_step = 0;
if (t <= 1 && current_step > jumps)
current_step = jumps;
return current_step / jumps;
}
int StepsTimingFunction::NumberOfJumps() const {
switch (step_position_) {
case StepPosition::END:
case StepPosition::START:
case StepPosition::JUMP_END:
case StepPosition::JUMP_START:
return steps_;
case StepPosition::JUMP_BOTH:
return steps_ < std::numeric_limits<int>::max() ? steps_ + 1 : steps_;
case StepPosition::JUMP_NONE:
DCHECK_GT(steps_, 1);
return steps_ - 1;
default:
NOTREACHED();
}
}
float StepsTimingFunction::GetStepsStartOffset() const {
switch (step_position_) {
case StepPosition::JUMP_BOTH:
case StepPosition::JUMP_START:
case StepPosition::START:
return 1;
case StepPosition::JUMP_END:
case StepPosition::JUMP_NONE:
case StepPosition::END:
return 0;
default:
NOTREACHED();
}
}
LinearTimingFunction::LinearTimingFunction() = default;
LinearTimingFunction::LinearTimingFunction(
std::vector<LinearEasingPoint> points)
: points_(std::move(points)) {}
LinearTimingFunction::~LinearTimingFunction() = default;
LinearTimingFunction::LinearTimingFunction(const LinearTimingFunction& other) {
points_ = other.points_;
}
std::unique_ptr<LinearTimingFunction> LinearTimingFunction::Create() {
return base::WrapUnique(new LinearTimingFunction());
}
std::unique_ptr<LinearTimingFunction> LinearTimingFunction::Create(
std::vector<LinearEasingPoint> points) {
DCHECK(points.size() >= 2);
return base::WrapUnique(new LinearTimingFunction(std::move(points)));
}
TimingFunction::Type LinearTimingFunction::GetType() const {
return Type::LINEAR;
}
std::unique_ptr<TimingFunction> LinearTimingFunction::Clone() const {
return base::WrapUnique(new LinearTimingFunction(*this));
}
double LinearTimingFunction::Velocity(double x) const {
return 0;
}
double LinearTimingFunction::GetValue(double input_progress,
LimitDirection limit_direction) const {
if (IsTrivial()) {
return input_progress;
}
// https://w3c.github.io/csswg-drafts/css-easing/#linear-easing-function-output
// 1. Let points be linearEasingFunction’s points.
// 2. Let pointAIndex be index of the last item in points with an input
// less than or equal to inputProgress, or 0 if there is no match.
auto it = std::upper_bound(points_.cbegin(), points_.cend(), input_progress,
[](double progress, const auto& point) {
return 100 * progress < point.input;
});
it = it == points_.cend() ? std::prev(it) : it;
auto point_a = it == points_.cbegin() ? it : std::prev(it);
// 3. If pointAIndex is equal to points size minus 1, decrement pointAIndex
// by 1.
point_a = std::next(point_a) == points_.cend() ? std::prev(point_a) : point_a;
// 4. Let pointA be points[pointAIndex].
// 5. Let pointB be points[pointAIndex + 1].
const auto& point_b = std::next(point_a);
// 6. If pointA’s input is equal to pointB’s input, return pointB’s output.
if (point_a->input == point_b->input) {
return point_b->output;
}
// 7. Let progressFromPointA be inputProgress minus pointA’s input.
const double progress_from_point_a = input_progress - point_a->input / 100;
// 8. Let pointInputRange be pointB’s input minus pointA’s input.
const double point_input_range = (point_b->input - point_a->input) / 100;
// 9. Let progressBetweenPoints be progressFromPointA divided by
// pointInputRange.
const double progress_between_points =
progress_from_point_a / point_input_range;
// 10. Let pointOutputRange be pointB’s output minus pointA’s output.
const double point_output_range = point_b->output - point_a->output;
// 11. Let outputFromLastPoint be progressBetweenPoints multiplied by
// pointOutputRange.
const double output_from_last_point =
progress_between_points * point_output_range;
// 12. Return pointA’s output plus outputFromLastPoint.
return point_a->output + output_from_last_point;
}
} // namespace gfx
|