File: timing_function.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (230 lines) | stat: -rw-r--r-- 7,813 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ui/gfx/animation/keyframe/timing_function.h"

#include <algorithm>
#include <cmath>
#include <memory>

#include "base/check_op.h"
#include "base/memory/ptr_util.h"
#include "base/notreached.h"

namespace gfx {

TimingFunction::TimingFunction() = default;

TimingFunction::~TimingFunction() = default;

std::unique_ptr<CubicBezierTimingFunction>
CubicBezierTimingFunction::CreatePreset(EaseType ease_type) {
  // These numbers come from
  // http://www.w3.org/TR/css3-transitions/#transition-timing-function_tag.
  switch (ease_type) {
    case EaseType::EASE:
      return base::WrapUnique(
          new CubicBezierTimingFunction(ease_type, 0.25, 0.1, 0.25, 1.0));
    case EaseType::EASE_IN:
      return base::WrapUnique(
          new CubicBezierTimingFunction(ease_type, 0.42, 0.0, 1.0, 1.0));
    case EaseType::EASE_OUT:
      return base::WrapUnique(
          new CubicBezierTimingFunction(ease_type, 0.0, 0.0, 0.58, 1.0));
    case EaseType::EASE_IN_OUT:
      return base::WrapUnique(
          new CubicBezierTimingFunction(ease_type, 0.42, 0.0, 0.58, 1));
    default:
      NOTREACHED();
  }
}
std::unique_ptr<CubicBezierTimingFunction>
CubicBezierTimingFunction::Create(double x1, double y1, double x2, double y2) {
  return base::WrapUnique(
      new CubicBezierTimingFunction(EaseType::CUSTOM, x1, y1, x2, y2));
}

CubicBezierTimingFunction::CubicBezierTimingFunction(EaseType ease_type,
                                                     double x1,
                                                     double y1,
                                                     double x2,
                                                     double y2)
    : bezier_(x1, y1, x2, y2), ease_type_(ease_type) {}

CubicBezierTimingFunction::~CubicBezierTimingFunction() = default;

TimingFunction::Type CubicBezierTimingFunction::GetType() const {
  return Type::CUBIC_BEZIER;
}

double CubicBezierTimingFunction::GetValue(
    double x,
    TimingFunction::LimitDirection) const {
  return bezier_.Solve(x);
}

double CubicBezierTimingFunction::Velocity(double x) const {
  return bezier_.Slope(x);
}

std::unique_ptr<TimingFunction> CubicBezierTimingFunction::Clone() const {
  return base::WrapUnique(new CubicBezierTimingFunction(*this));
}

std::unique_ptr<StepsTimingFunction> StepsTimingFunction::Create(
    int steps,
    StepPosition step_position) {
  return base::WrapUnique(new StepsTimingFunction(steps, step_position));
}

StepsTimingFunction::StepsTimingFunction(int steps, StepPosition step_position)
    : steps_(steps), step_position_(step_position) {}

StepsTimingFunction::~StepsTimingFunction() = default;

TimingFunction::Type StepsTimingFunction::GetType() const {
  return Type::STEPS;
}

std::unique_ptr<TimingFunction> StepsTimingFunction::Clone() const {
  return base::WrapUnique(new StepsTimingFunction(*this));
}

double StepsTimingFunction::Velocity(double x) const {
  return 0;
}

double StepsTimingFunction::GetValue(double t, LimitDirection direction) const {
  const double steps = static_cast<double>(steps_);
  double current_step = std::floor((steps * t) + GetStepsStartOffset());
  // Adjust step if using a left limit at a discontinuous step boundary.
  if (direction == LimitDirection::LEFT &&
      steps * t - std::floor(steps * t) == 0) {
    current_step -= 1;
  }
  // Jumps may differ from steps based on the number of end-point
  // discontinuities, which may be 0, 1 or 2.
  int jumps = NumberOfJumps();
  if (t >= 0 && current_step < 0)
    current_step = 0;
  if (t <= 1 && current_step > jumps)
    current_step = jumps;
  return current_step / jumps;
}

int StepsTimingFunction::NumberOfJumps() const {
  switch (step_position_) {
    case StepPosition::END:
    case StepPosition::START:
    case StepPosition::JUMP_END:
    case StepPosition::JUMP_START:
      return steps_;

    case StepPosition::JUMP_BOTH:
      return steps_ < std::numeric_limits<int>::max() ? steps_ + 1 : steps_;

    case StepPosition::JUMP_NONE:
      DCHECK_GT(steps_, 1);
      return steps_ - 1;

    default:
      NOTREACHED();
  }
}

float StepsTimingFunction::GetStepsStartOffset() const {
  switch (step_position_) {
    case StepPosition::JUMP_BOTH:
    case StepPosition::JUMP_START:
    case StepPosition::START:
      return 1;

    case StepPosition::JUMP_END:
    case StepPosition::JUMP_NONE:
    case StepPosition::END:
      return 0;

    default:
      NOTREACHED();
  }
}

LinearTimingFunction::LinearTimingFunction() = default;

LinearTimingFunction::LinearTimingFunction(
    std::vector<LinearEasingPoint> points)
    : points_(std::move(points)) {}

LinearTimingFunction::~LinearTimingFunction() = default;

LinearTimingFunction::LinearTimingFunction(const LinearTimingFunction& other) {
  points_ = other.points_;
}

std::unique_ptr<LinearTimingFunction> LinearTimingFunction::Create() {
  return base::WrapUnique(new LinearTimingFunction());
}

std::unique_ptr<LinearTimingFunction> LinearTimingFunction::Create(
    std::vector<LinearEasingPoint> points) {
  DCHECK(points.size() >= 2);
  return base::WrapUnique(new LinearTimingFunction(std::move(points)));
}

TimingFunction::Type LinearTimingFunction::GetType() const {
  return Type::LINEAR;
}

std::unique_ptr<TimingFunction> LinearTimingFunction::Clone() const {
  return base::WrapUnique(new LinearTimingFunction(*this));
}

double LinearTimingFunction::Velocity(double x) const {
  return 0;
}

double LinearTimingFunction::GetValue(double input_progress,
                                      LimitDirection limit_direction) const {
  if (IsTrivial()) {
    return input_progress;
  }
  // https://w3c.github.io/csswg-drafts/css-easing/#linear-easing-function-output
  // 1. Let points be linearEasingFunction’s points.
  // 2. Let pointAIndex be index of the last item in points with an input
  // less than or equal to inputProgress, or 0 if there is no match.
  auto it = std::upper_bound(points_.cbegin(), points_.cend(), input_progress,
                             [](double progress, const auto& point) {
                               return 100 * progress < point.input;
                             });
  it = it == points_.cend() ? std::prev(it) : it;
  auto point_a = it == points_.cbegin() ? it : std::prev(it);
  // 3. If pointAIndex is equal to points size minus 1, decrement pointAIndex
  // by 1.
  point_a = std::next(point_a) == points_.cend() ? std::prev(point_a) : point_a;
  // 4. Let pointA be points[pointAIndex].
  // 5. Let pointB be points[pointAIndex + 1].
  const auto& point_b = std::next(point_a);
  // 6. If pointA’s input is equal to pointB’s input, return pointB’s output.
  if (point_a->input == point_b->input) {
    return point_b->output;
  }
  // 7. Let progressFromPointA be inputProgress minus pointA’s input.
  const double progress_from_point_a = input_progress - point_a->input / 100;
  // 8. Let pointInputRange be pointB’s input minus pointA’s input.
  const double point_input_range = (point_b->input - point_a->input) / 100;
  // 9. Let progressBetweenPoints be progressFromPointA divided by
  // pointInputRange.
  const double progress_between_points =
      progress_from_point_a / point_input_range;
  // 10. Let pointOutputRange be pointB’s output minus pointA’s output.
  const double point_output_range = point_b->output - point_a->output;
  // 11. Let outputFromLastPoint be progressBetweenPoints multiplied by
  // pointOutputRange.
  const double output_from_last_point =
      progress_between_points * point_output_range;
  // 12. Return pointA’s output plus outputFromLastPoint.
  return point_a->output + output_from_last_point;
}

}  // namespace gfx