1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/animation/tween.h"
#include <math.h>
#include <stdint.h>
#include <algorithm>
#include "base/check_op.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "ui/gfx/geometry/cubic_bezier.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/rect_f.h"
#include "ui/gfx/geometry/size_f.h"
#include "ui/gfx/geometry/three_point_cubic_bezier.h"
#include "ui/gfx/geometry/transform.h"
#include "ui/gfx/geometry/transform_operations.h"
#if BUILDFLAG(IS_WIN)
#include <float.h>
#endif
namespace gfx {
// static
double Tween::CalculateValue(Tween::Type type, double state) {
DCHECK_GE(state, 0);
DCHECK_LE(state, 1);
switch (type) {
case EASE_IN:
return pow(state, 2);
case EASE_IN_2:
return pow(state, 4);
case EASE_IN_OUT:
if (state < 0.5)
return pow(state * 2, 2) / 2.0;
return 1.0 - (pow((state - 1.0) * 2, 2) / 2.0);
case EASE_IN_OUT_EMPHASIZED:
return gfx::ThreePointCubicBezier(0.05, 0, 0.133333, 0.06, 0.166666, 0.4,
0.208333, 0.82, 0.25, 1)
.Solve(state);
case EASE_IN_OUT_2:
return gfx::CubicBezier(0.33, 0, 0.67, 1).Solve(state);
case EASE_OUT_3:
return gfx::CubicBezier(0.6, 0, 0, 1).Solve(state);
case EASE_OUT_4:
return gfx::CubicBezier(1, 0, 0.8, 1).Solve(state);
case LINEAR:
return state;
case EASE_OUT:
return 1.0 - pow(1.0 - state, 2);
case EASE_OUT_2:
return gfx::CubicBezier(0.4, 0, 0, 1).Solve(state);
case SMOOTH_IN_OUT:
return sin(state);
case FAST_OUT_SLOW_IN:
return gfx::CubicBezier(0.4, 0, 0.2, 1).Solve(state);
case FAST_OUT_SLOW_IN_2:
return gfx::CubicBezier(0.2, 0, 0.2, 1).Solve(state);
case FAST_OUT_SLOW_IN_3:
return gfx::CubicBezier(0.2, 0, 0, 1).Solve(state);
case LINEAR_OUT_SLOW_IN:
return gfx::CubicBezier(0, 0, .2, 1).Solve(state);
case SLOW_OUT_LINEAR_IN:
return gfx::CubicBezier(0, 0, 1, .2).Solve(state);
case FAST_OUT_LINEAR_IN:
return gfx::CubicBezier(0.4, 0, 1, 1).Solve(state);
case ZERO:
return 0;
case ACCEL_LIN_DECEL_60:
return gfx::CubicBezier(0, 0, 0.4, 1).Solve(state);
case ACCEL_LIN_DECEL_100:
return gfx::CubicBezier(0, 0, 0, 1).Solve(state);
case ACCEL_LIN_DECEL_100_3:
return gfx::CubicBezier(0, 0, 0, 0.97).Solve(state);
case ACCEL_20_DECEL_60:
return gfx::CubicBezier(0.2, 0, 0.4, 1).Solve(state);
case ACCEL_20_DECEL_100:
return gfx::CubicBezier(0.2, 0, 0, 1).Solve(state);
case ACCEL_30_DECEL_20_85:
return gfx::CubicBezier(0.3, 0, 0.8, 0.15).Solve(state);
case ACCEL_40_DECEL_20:
return gfx::CubicBezier(0.4, 0, 0.8, 1).Solve(state);
case ACCEL_80_DECEL_20:
return gfx::CubicBezier(0.8, 0, 0.8, 1).Solve(state);
case ACCEL_0_40_DECEL_100:
return gfx::CubicBezier(0, 0.4, 0, 1).Solve(state);
case ACCEL_40_DECEL_100_3:
return gfx::CubicBezier(0.40, 0, 0, 0.97).Solve(state);
case ACCEL_0_80_DECEL_80:
return gfx::CubicBezier(0, 0.8, 0.2, 1).Solve(state);
case ACCEL_0_100_DECEL_80:
return gfx::CubicBezier(0, 1, 0.2, 1).Solve(state);
case ACCEL_5_70_DECEL_90:
return gfx::CubicBezier(0.05, 0.7, 0.1, 1).Solve(state);
}
NOTREACHED();
}
namespace {
uint8_t FloatToColorByte(float f) {
return base::ClampRound<uint8_t>(f * 255.0f);
}
uint8_t BlendColorComponents(uint8_t start,
uint8_t target,
float start_alpha,
float target_alpha,
float blended_alpha,
double progress) {
// Since progress can be outside [0, 1], blending can produce a value outside
// [0, 255].
float blended_premultiplied = Tween::FloatValueBetween(
progress, start / 255.f * start_alpha, target / 255.f * target_alpha);
return FloatToColorByte(blended_premultiplied / blended_alpha);
}
float BlendColorComponentsFloat(float start,
float target,
float start_alpha,
float target_alpha,
float blended_alpha,
double progress) {
// Since progress can be outside [0, 1], blending can produce a value outside
// [0, 1].
float blended_premultiplied = Tween::FloatValueBetween(
progress, start * start_alpha, target * target_alpha);
return blended_premultiplied / blended_alpha;
}
} // namespace
// static
SkColor4f Tween::ColorValueBetween(double value,
SkColor4f start,
SkColor4f target) {
float start_a = start.fA;
float target_a = target.fA;
float blended_a = FloatValueBetween(value, start_a, target_a);
if (blended_a <= 0.f)
return SkColors::kTransparent;
blended_a = std::min(blended_a, 1.f);
auto blended_r = BlendColorComponentsFloat(start.fR, target.fR, start_a,
target_a, blended_a, value);
auto blended_g = BlendColorComponentsFloat(start.fG, target.fG, start_a,
target_a, blended_a, value);
auto blended_b = BlendColorComponentsFloat(start.fB, target.fB, start_a,
target_a, blended_a, value);
return SkColor4f{blended_r, blended_g, blended_b, blended_a};
}
SkColor Tween::ColorValueBetween(double value, SkColor start, SkColor target) {
float start_a = SkColorGetA(start) / 255.f;
float target_a = SkColorGetA(target) / 255.f;
float blended_a = FloatValueBetween(value, start_a, target_a);
if (blended_a <= 0.f)
return SK_ColorTRANSPARENT;
blended_a = std::min(blended_a, 1.f);
uint8_t blended_r =
BlendColorComponents(SkColorGetR(start), SkColorGetR(target), start_a,
target_a, blended_a, value);
uint8_t blended_g =
BlendColorComponents(SkColorGetG(start), SkColorGetG(target), start_a,
target_a, blended_a, value);
uint8_t blended_b =
BlendColorComponents(SkColorGetB(start), SkColorGetB(target), start_a,
target_a, blended_a, value);
return SkColorSetARGB(FloatToColorByte(blended_a), blended_r, blended_g,
blended_b);
}
// static
double Tween::DoubleValueBetween(double value, double start, double target) {
return start + (target - start) * value;
}
// static
float Tween::FloatValueBetween(double value, float start, float target) {
return static_cast<float>(start + (target - start) * value);
}
// static
float Tween::ClampedFloatValueBetween(const base::TimeTicks& time,
const base::TimeTicks& start_time,
float start,
const base::TimeTicks& target_time,
float target) {
if (time <= start_time)
return start;
if (time >= target_time)
return target;
const double progress = (time - start_time) / (target_time - start_time);
return FloatValueBetween(progress, start, target);
}
// static
int Tween::IntValueBetween(double value, int start, int target) {
if (start == target)
return start;
double delta = static_cast<double>(target - start);
if (delta < 0)
delta--;
else
delta++;
#if BUILDFLAG(IS_WIN)
return start + static_cast<int>(value * _nextafter(delta, 0));
#else
return start + static_cast<int>(value * nextafter(delta, 0));
#endif
}
// static
int Tween::LinearIntValueBetween(double value, int start, int target) {
// NOTE: Do not use base::ClampRound()! See comments on function declaration.
return base::ClampFloor(0.5 + DoubleValueBetween(value, start, target));
}
// static
gfx::Rect Tween::RectValueBetween(double value,
const gfx::Rect& start,
const gfx::Rect& target) {
const int x = LinearIntValueBetween(value, start.x(), target.x());
const int y = LinearIntValueBetween(value, start.y(), target.y());
const int right = LinearIntValueBetween(value, start.right(), target.right());
const int bottom =
LinearIntValueBetween(value, start.bottom(), target.bottom());
return gfx::Rect(x, y, right - x, bottom - y);
}
// static
gfx::RectF Tween::RectFValueBetween(double value,
const gfx::RectF& start,
const gfx::RectF& target) {
const float x = FloatValueBetween(value, start.x(), target.x());
const float y = FloatValueBetween(value, start.y(), target.y());
const float right = FloatValueBetween(value, start.right(), target.right());
const float bottom =
FloatValueBetween(value, start.bottom(), target.bottom());
return gfx::RectF(x, y, right - x, bottom - y);
}
// static
gfx::Transform Tween::TransformValueBetween(double value,
const gfx::Transform& start,
const gfx::Transform& target) {
if (value >= 1.0)
return target;
if (value <= 0.0)
return start;
gfx::Transform to_return = target;
to_return.Blend(start, value);
return to_return;
}
// static
gfx::TransformOperations Tween::TransformOperationsValueBetween(
double value,
const gfx::TransformOperations& start,
const gfx::TransformOperations& target) {
return target.Blend(start, value);
}
gfx::Size Tween::SizeValueBetween(double value,
const gfx::Size& start,
const gfx::Size& target) {
return gfx::Size(
Tween::LinearIntValueBetween(value, start.width(), target.width()),
Tween::LinearIntValueBetween(value, start.height(), target.height()));
}
gfx::SizeF Tween::SizeFValueBetween(double value,
const gfx::SizeF& start,
const gfx::SizeF& target) {
return gfx::SizeF(
Tween::FloatValueBetween(value, start.width(), target.width()),
Tween::FloatValueBetween(value, start.height(), target.height()));
}
} // namespace gfx
|