1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/color_analysis.h"
#include <limits.h>
#include <stdint.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <memory>
#include <queue>
#include <unordered_map>
#include <vector>
#include "base/check_op.h"
#include "base/containers/heap_array.h"
#include "base/containers/span.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/memory/raw_ptr.h"
#include "base/notreached.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkUnPreMultiply.h"
#include "ui/gfx/codec/png_codec.h"
#include "ui/gfx/color_palette.h"
#include "ui/gfx/color_utils.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/range/range.h"
namespace color_utils {
namespace {
// RGBA KMean Constants
const int kNumberOfClusters = 4;
const int kNumberOfIterations = 50;
const HSL kDefaultLowerHSLBound = {-1, -1, 0.15};
const HSL kDefaultUpperHSLBound = {-1, -1, 0.85};
// Background Color Modification Constants
const SkColor kDefaultBgColor = SK_ColorWHITE;
// Support class to hold information about each cluster of pixel data in
// the KMean algorithm. While this class does not contain all of the points
// that exist in the cluster, it keeps track of the aggregate sum so it can
// compute the new center appropriately.
class KMeanCluster {
public:
KMeanCluster() {
Reset();
}
void Reset() {
centroid_[0] = centroid_[1] = centroid_[2] = 0;
aggregate_[0] = aggregate_[1] = aggregate_[2] = 0;
counter_ = 0;
weight_ = 0;
}
inline void SetCentroid(uint8_t r, uint8_t g, uint8_t b) {
centroid_[0] = r;
centroid_[1] = g;
centroid_[2] = b;
}
inline void GetCentroid(uint8_t* r, uint8_t* g, uint8_t* b) {
*r = centroid_[0];
*g = centroid_[1];
*b = centroid_[2];
}
inline bool IsAtCentroid(uint8_t r, uint8_t g, uint8_t b) {
return r == centroid_[0] && g == centroid_[1] && b == centroid_[2];
}
// Recomputes the centroid of the cluster based on the aggregate data. The
// number of points used to calculate this center is stored for weighting
// purposes. The aggregate and counter are then cleared to be ready for the
// next iteration.
inline void RecomputeCentroid() {
if (counter_ > 0) {
centroid_[0] = static_cast<uint8_t>(aggregate_[0] / counter_);
centroid_[1] = static_cast<uint8_t>(aggregate_[1] / counter_);
centroid_[2] = static_cast<uint8_t>(aggregate_[2] / counter_);
aggregate_[0] = aggregate_[1] = aggregate_[2] = 0;
weight_ = counter_;
counter_ = 0;
}
}
inline void AddPoint(uint8_t r, uint8_t g, uint8_t b) {
aggregate_[0] += r;
aggregate_[1] += g;
aggregate_[2] += b;
++counter_;
}
// Just returns the distance^2. Since we are comparing relative distances
// there is no need to perform the expensive sqrt() operation.
inline uint32_t GetDistanceSqr(uint8_t r, uint8_t g, uint8_t b) {
return (r - centroid_[0]) * (r - centroid_[0]) +
(g - centroid_[1]) * (g - centroid_[1]) +
(b - centroid_[2]) * (b - centroid_[2]);
}
// In order to determine if we have hit convergence or not we need to see
// if the centroid of the cluster has moved. This determines whether or
// not the centroid is the same as the aggregate sum of points that will be
// used to generate the next centroid.
inline bool CompareCentroidWithAggregate() {
if (counter_ == 0)
return false;
return aggregate_[0] / counter_ == centroid_[0] &&
aggregate_[1] / counter_ == centroid_[1] &&
aggregate_[2] / counter_ == centroid_[2];
}
// Returns the previous counter, which is used to determine the weight
// of the cluster for sorting.
inline uint32_t GetWeight() const {
return weight_;
}
static bool SortKMeanClusterByWeight(const KMeanCluster& a,
const KMeanCluster& b) {
return a.GetWeight() > b.GetWeight();
}
private:
std::array<uint8_t, 3> centroid_;
// Holds the sum of all the points that make up this cluster. Used to
// generate the next centroid as well as to check for convergence.
std::array<uint32_t, 3> aggregate_;
uint32_t counter_;
// The weight of the cluster, determined by how many points were used
// to generate the previous centroid.
uint32_t weight_;
};
// Prominent color utilities ---------------------------------------------------
// A |ColorBox| represents a 3-dimensional region in a color space (an ordered
// set of colors). It is a range in the ordered set, with a low index and a high
// index. The diversity (volume) of the box is computed by looking at the range
// of color values it spans, where r, g, and b components are considered
// separately.
class ColorBox {
public:
explicit ColorBox(std::vector<SkColor>* color_space)
: ColorBox(color_space, gfx::Range(0, color_space->size())) {}
ColorBox(const ColorBox& other) = default;
ColorBox& operator=(const ColorBox& other) = default;
~ColorBox() {}
// Can't split if there's only one color in the box.
bool CanSplit() const { return color_range_.length() > 1; }
// Splits |this| in two and returns the other half.
ColorBox Split() {
// Calculate which component has the largest range...
const uint8_t r_dimension = max_r_ - min_r_;
const uint8_t g_dimension = max_g_ - min_g_;
const uint8_t b_dimension = max_b_ - min_b_;
const uint8_t long_dimension =
std::max({r_dimension, g_dimension, b_dimension});
const enum {
RED,
GREEN,
BLUE,
} channel = long_dimension == r_dimension
? RED
: long_dimension == g_dimension ? GREEN : BLUE;
// ... and sort along that axis.
auto sort_function = [channel](SkColor a, SkColor b) {
switch (channel) {
case RED:
return SkColorGetR(a) < SkColorGetR(b);
case GREEN:
return SkColorGetG(a) < SkColorGetG(b);
case BLUE:
return SkColorGetB(a) < SkColorGetB(b);
}
NOTREACHED();
};
// Just the portion of |color_space_| that's covered by this box should be
// sorted.
std::sort(color_space_->begin() + color_range_.start(),
color_space_->begin() + color_range_.end(), sort_function);
// Split at the first color value that's not less than the midpoint (mean of
// the start and values).
uint32_t split_point = color_range_.end() - 1;
for (uint32_t i = color_range_.start() + 1; i < color_range_.end() - 1;
++i) {
bool past_midpoint = false;
switch (channel) {
case RED:
past_midpoint =
static_cast<uint8_t>(SkColorGetR((*color_space_)[i])) >
(min_r_ + max_r_) / 2;
break;
case GREEN:
past_midpoint =
static_cast<uint8_t>(SkColorGetG((*color_space_)[i])) >
(min_g_ + max_g_) / 2;
break;
case BLUE:
past_midpoint =
static_cast<uint8_t>(SkColorGetB((*color_space_)[i])) >
(min_b_ + max_b_) / 2;
break;
}
if (past_midpoint) {
split_point = i;
break;
}
}
// Break off half and return it.
gfx::Range other_range = color_range_;
other_range.set_end(split_point);
ColorBox other_box(color_space_, other_range);
// Keep the other half in |this| and recalculate our color bounds.
color_range_.set_start(split_point);
RecomputeBounds();
return other_box;
}
// Returns the average color of this box, weighted by its popularity in
// |color_counts|.
Swatch GetWeightedAverageColor(
const std::unordered_map<SkColor, int>& color_counts) const {
size_t sum_r = 0;
size_t sum_g = 0;
size_t sum_b = 0;
size_t total_count_in_box = 0;
for (size_t i = color_range_.start(); i < color_range_.end(); ++i) {
const SkColor color = (*color_space_)[i];
const auto color_count_iter = color_counts.find(color);
DCHECK(color_count_iter != color_counts.end());
const size_t color_count = color_count_iter->second;
total_count_in_box += color_count;
sum_r += color_count * SkColorGetR(color);
sum_g += color_count * SkColorGetG(color);
sum_b += color_count * SkColorGetB(color);
}
return Swatch(
SkColorSetRGB(
std::round(static_cast<double>(sum_r) / total_count_in_box),
std::round(static_cast<double>(sum_g) / total_count_in_box),
std::round(static_cast<double>(sum_b) / total_count_in_box)),
total_count_in_box);
}
static bool CompareByVolume(const ColorBox& a, const ColorBox& b) {
return a.volume_ < b.volume_;
}
private:
ColorBox(std::vector<SkColor>* color_space, const gfx::Range& color_range)
: color_space_(color_space), color_range_(color_range) {
RecomputeBounds();
}
void RecomputeBounds() {
DCHECK(!color_range_.is_reversed());
DCHECK(!color_range_.is_empty());
DCHECK_LE(color_range_.end(), color_space_->size());
min_r_ = 0xFF;
min_g_ = 0xFF;
min_b_ = 0xFF;
max_r_ = 0;
max_g_ = 0;
max_b_ = 0;
for (uint32_t i = color_range_.start(); i < color_range_.end(); ++i) {
SkColor color = (*color_space_)[i];
min_r_ = std::min<uint8_t>(SkColorGetR(color), min_r_);
min_g_ = std::min<uint8_t>(SkColorGetG(color), min_g_);
min_b_ = std::min<uint8_t>(SkColorGetB(color), min_b_);
max_r_ = std::max<uint8_t>(SkColorGetR(color), max_r_);
max_g_ = std::max<uint8_t>(SkColorGetG(color), max_g_);
max_b_ = std::max<uint8_t>(SkColorGetB(color), max_b_);
}
volume_ =
(max_r_ - min_r_ + 1) * (max_g_ - min_g_ + 1) * (max_b_ - min_b_ + 1);
}
// The set of colors of which this box captures a subset. This vector is not
// owned but may be modified during the split operation.
raw_ptr<std::vector<SkColor>> color_space_;
// The range of indexes into |color_space_| that are part of this box.
gfx::Range color_range_;
// Cached min and max color component values for the colors in this box.
uint8_t min_r_ = 0;
uint8_t min_g_ = 0;
uint8_t min_b_ = 0;
uint8_t max_r_ = 0;
uint8_t max_g_ = 0;
uint8_t max_b_ = 0;
// Cached volume value, which is the product of the range of each color
// component.
int volume_ = 0;
};
// Some color values should be ignored for the purposes of determining prominent
// colors.
bool IsInterestingColor(const SkColor& color) {
const float average_channel_value =
(SkColorGetR(color) + SkColorGetG(color) + SkColorGetB(color)) / 3.0f;
// If a color is too close to white or black, ignore it.
if (average_channel_value >= 237 || average_channel_value <= 22)
return false;
HSL hsl;
SkColorToHSL(color, &hsl);
return !(hsl.h >= 0.028f && hsl.h <= 0.10f && hsl.s <= 0.82f);
}
// Used to group lower_bound, upper_bound, goal HSL color together for prominent
// color calculation.
struct ColorBracket {
HSL lower_bound = {-1};
HSL upper_bound = {-1};
HSL goal = {-1};
};
std::vector<Swatch> CalculateProminentColors(
const SkBitmap& bitmap,
const std::vector<ColorBracket>& color_brackets,
const gfx::Rect& region,
std::optional<ColorSwatchFilter> filter) {
DCHECK(!bitmap.empty());
DCHECK(!bitmap.isNull());
std::vector<Swatch> box_colors =
CalculateColorSwatches(bitmap, 12, region, filter);
std::vector<Swatch> best_colors(color_brackets.size(), Swatch());
if (box_colors.empty())
return best_colors;
size_t max_weight = 0;
for (auto& weighted : box_colors)
max_weight = std::max(max_weight, weighted.population);
// Given these box average colors, find the best one for each desired color
// profile. "Best" in this case means the color which fits in the provided
// bounds and comes closest to |goal|. It's possible that no color will fit in
// the provided bounds, in which case we'll return an empty color.
for (size_t i = 0; i < color_brackets.size(); ++i) {
double best_suitability = 0;
for (const auto& box_color : box_colors) {
HSL hsl;
SkColorToHSL(box_color.color, &hsl);
if (!IsWithinHSLRange(hsl, color_brackets[i].lower_bound,
color_brackets[i].upper_bound)) {
continue;
}
double suitability =
(1 - std::abs(hsl.s - color_brackets[i].goal.s)) * 3 +
(1 - std::abs(hsl.l - color_brackets[i].goal.l)) * 6.5 +
(box_color.population / static_cast<float>(max_weight)) * 0.5;
if (suitability > best_suitability) {
best_suitability = suitability;
best_colors[i] = box_color;
}
}
}
return best_colors;
}
} // namespace
KMeanImageSampler::KMeanImageSampler() {
}
KMeanImageSampler::~KMeanImageSampler() {
}
GridSampler::GridSampler() : calls_(0) {
}
GridSampler::~GridSampler() {
}
int GridSampler::GetSample(int width, int height) {
// Hand-drawn bitmaps often have special outlines or feathering at the edges.
// Start our sampling inset from the top and left edges. For example, a 10x10
// image with 4 clusters would be sampled like this:
// ..........
// .0.4.8....
// ..........
// .1.5.9....
// ..........
// .2.6......
// ..........
// .3.7......
// ..........
// But don't inset if the image is too narrow or too short.
const int kInsetX = (width > 2 ? 1 : 0);
const int kInsetY = (height > 2 ? 1 : 0);
int x = kInsetX + (calls_ / kNumberOfClusters) *
((width - 2 * kInsetX) / kNumberOfClusters);
int y = kInsetY + (calls_ % kNumberOfClusters) *
((height - 2 * kInsetY) / kNumberOfClusters);
int index = x + (y * width);
++calls_;
return index % (width * height);
}
SkColor FindClosestColor(base::span<const uint8_t> image,
int width,
int height,
SkColor color) {
uint8_t in_r = SkColorGetR(color);
uint8_t in_g = SkColorGetG(color);
uint8_t in_b = SkColorGetB(color);
// Search using distance-squared to avoid expensive sqrt() operations.
int best_distance_squared = std::numeric_limits<int32_t>::max();
SkColor best_color = color;
auto byte = image.begin();
for (int i = 0; i < width * height; ++i) {
uint8_t b = *(byte++);
uint8_t g = *(byte++);
uint8_t r = *(byte++);
uint8_t a = *(byte++);
// Ignore fully transparent pixels.
if (a == 0)
continue;
int distance_squared =
(in_b - b) * (in_b - b) +
(in_g - g) * (in_g - g) +
(in_r - r) * (in_r - r);
if (distance_squared < best_distance_squared) {
best_distance_squared = distance_squared;
best_color = SkColorSetRGB(r, g, b);
}
}
return best_color;
}
// For a 16x16 icon on an Intel Core i5 this function takes approximately
// 0.5 ms to run.
// TODO(port): This code assumes the CPU architecture is little-endian.
SkColor CalculateKMeanColorOfBuffer(base::span<const uint8_t> decoded_data,
int img_width,
int img_height,
const HSL& lower_bound,
const HSL& upper_bound,
KMeanImageSampler* sampler,
bool find_closest) {
SkColor color = kDefaultBgColor;
if (img_width > 0 && img_height > 0) {
std::vector<KMeanCluster> clusters;
clusters.resize(static_cast<size_t>(kNumberOfClusters), KMeanCluster());
// Pick a starting point for each cluster
auto new_cluster = clusters.begin();
while (new_cluster != clusters.end()) {
// Try up to 10 times to find a unique color. If no unique color can be
// found, destroy this cluster.
bool color_unique = false;
for (int i = 0; i < 10; ++i) {
const auto pixel_pos =
static_cast<size_t>(sampler->GetSample(img_width, img_height) %
(img_width * img_height));
uint8_t b = decoded_data[pixel_pos * 4];
uint8_t g = decoded_data[pixel_pos * 4 + 1];
uint8_t r = decoded_data[pixel_pos * 4 + 2];
uint8_t a = decoded_data[pixel_pos * 4 + 3];
// Skip fully transparent pixels as they usually contain black in their
// RGB channels but do not contribute to the visual image.
if (a == 0)
continue;
// Loop through the previous clusters and check to see if we have seen
// this color before.
color_unique = true;
for (auto cluster = clusters.begin(); cluster != new_cluster;
++cluster) {
if (cluster->IsAtCentroid(r, g, b)) {
color_unique = false;
break;
}
}
// If we have a unique color set the center of the cluster to
// that color.
if (color_unique) {
new_cluster->SetCentroid(r, g, b);
break;
}
}
// If we don't have a unique color erase this cluster.
if (!color_unique) {
new_cluster = clusters.erase(new_cluster);
} else {
// Have to increment the iterator here, otherwise the increment in the
// for loop will skip a cluster due to the erase if the color wasn't
// unique.
++new_cluster;
}
}
// If all pixels in the image are transparent we will have no clusters.
if (clusters.empty())
return color;
bool convergence = false;
for (int iteration = 0;
iteration < kNumberOfIterations && !convergence;
++iteration) {
// Loop through each pixel so we can place it in the appropriate cluster.
auto pixel = decoded_data.begin();
auto decoded_data_end =
decoded_data.begin() + (img_width * img_height * 4);
while (pixel < decoded_data_end) {
uint8_t b = *(pixel++);
uint8_t g = *(pixel++);
uint8_t r = *(pixel++);
uint8_t a = *(pixel++);
// Skip transparent pixels, see above.
if (a == 0)
continue;
uint32_t distance_sqr_to_closest_cluster = UINT_MAX;
auto closest_cluster = clusters.begin();
// Figure out which cluster this color is closest to in RGB space.
for (auto cluster = clusters.begin(); cluster != clusters.end();
++cluster) {
uint32_t distance_sqr = cluster->GetDistanceSqr(r, g, b);
if (distance_sqr < distance_sqr_to_closest_cluster) {
distance_sqr_to_closest_cluster = distance_sqr;
closest_cluster = cluster;
}
}
closest_cluster->AddPoint(r, g, b);
}
// Calculate the new cluster centers and see if we've converged or not.
convergence = true;
for (auto cluster = clusters.begin(); cluster != clusters.end();
++cluster) {
convergence &= cluster->CompareCentroidWithAggregate();
cluster->RecomputeCentroid();
}
}
// Sort the clusters by population so we can tell what the most popular
// color is.
std::sort(clusters.begin(), clusters.end(),
KMeanCluster::SortKMeanClusterByWeight);
// Loop through the clusters to figure out which cluster has an appropriate
// color. Skip any that are too bright/dark and go in order of weight.
for (auto cluster = clusters.begin(); cluster != clusters.end();
++cluster) {
uint8_t r, g, b;
cluster->GetCentroid(&r, &g, &b);
SkColor current_color = SkColorSetARGB(SK_AlphaOPAQUE, r, g, b);
HSL hsl;
SkColorToHSL(current_color, &hsl);
if (IsWithinHSLRange(hsl, lower_bound, upper_bound)) {
// If we found a valid color just set it and break. We don't want to
// check the other ones.
color = current_color;
break;
} else if (cluster == clusters.begin()) {
// We haven't found a valid color, but we are at the first color so
// set the color anyway to make sure we at least have a value here.
color = current_color;
}
}
}
// The K-mean cluster center will not usually be a color that appears in the
// image. If desired, find a color that actually appears.
return find_closest
? FindClosestColor(decoded_data, img_width, img_height, color)
: color;
}
SkColor CalculateKMeanColorOfPNG(base::span<const uint8_t> png,
const HSL& lower_bound,
const HSL& upper_bound,
KMeanImageSampler* sampler) {
if (png.empty()) {
return kDefaultBgColor;
}
std::optional<gfx::PNGCodec::DecodeOutput> output =
gfx::PNGCodec::Decode(png, gfx::PNGCodec::FORMAT_BGRA);
if (!output) {
return kDefaultBgColor;
}
return CalculateKMeanColorOfBuffer(output->output, output->width,
output->height, lower_bound, upper_bound,
sampler, /*find_closest=*/true);
}
SkColor CalculateKMeanColorOfPNG(base::span<const uint8_t> png) {
GridSampler sampler;
return CalculateKMeanColorOfPNG(
png, kDefaultLowerHSLBound, kDefaultUpperHSLBound, &sampler);
}
SkColor CalculateKMeanColorOfBitmap(const SkBitmap& bitmap,
int height,
const HSL& lower_bound,
const HSL& upper_bound,
bool find_closest) {
// Clamp the height being used to the height of the provided image (otherwise,
// we can end up creating a larger buffer than we have data for, and the end
// of the buffer will remain uninitialized after we copy/UnPreMultiply the
// image data into it).
height = std::clamp(height, 0, bitmap.height());
// SkBitmap uses pre-multiplied alpha but the KMean clustering function
// above uses non-pre-multiplied alpha. Transform the bitmap before we
// analyze it because the function reads each pixel multiple times.
int pixel_count = bitmap.width() * height;
base::HeapArray<uint32_t> image =
base::HeapArray<uint32_t>::Uninit(pixel_count);
// SAFETY: We know that height <= bitmap.height() and pixel_bound ==
// bitmap.width() * height, so pixel_count <= the amount of actual pixels in
// the buffer here. However, Skia has no span-based API for this.
// TODO(https://crbug.com/357905831): switch to SkSpan when possible.
UNSAFE_BUFFERS(
base::span<uint32_t> in(static_cast<uint32_t*>(bitmap.getPixels()),
base::checked_cast<size_t>(pixel_count)));
// Un-premultiply into the out buffer.
std::transform(in.begin(), in.end(), image.begin(),
SkUnPreMultiply::PMColorToColor);
GridSampler sampler;
return CalculateKMeanColorOfBuffer(base::as_byte_span(image), bitmap.width(),
height, lower_bound, upper_bound, &sampler,
find_closest);
}
SkColor CalculateKMeanColorOfBitmap(const SkBitmap& bitmap) {
return CalculateKMeanColorOfBitmap(
bitmap, bitmap.height(), kDefaultLowerHSLBound, kDefaultUpperHSLBound,
true);
}
const int kMaxConsideredPixelsForSwatches = 10007;
// This algorithm is a port of Android's Palette API. Compare to package
// android.support.v7.graphics and see that code for additional high-level
// explanation of this algorithm. There are some minor differences:
// * This code doesn't exclude the same color from being used for
// different color profiles.
// * This code doesn't try to heuristically derive missing colors from
// existing colors.
std::vector<Swatch> CalculateColorSwatches(
const SkBitmap& bitmap,
size_t max_swatches,
const gfx::Rect& region,
std::optional<ColorSwatchFilter> filter) {
DCHECK(!bitmap.empty());
DCHECK(!bitmap.isNull());
DCHECK(!region.IsEmpty());
DCHECK_LE(region.width(), bitmap.width());
DCHECK_LE(region.height(), bitmap.height());
const int pixel_count = region.width() * region.height();
// For better performance, only consider at most 10k pixels (evenly
// distributed throughout the image). This has a very minor impact on the
// outcome but improves runtime substantially for large images. 10,007 is a
// prime number to reduce the chance of picking an unrepresentative sample.
const float pixel_increment = std::max(
1.0f, static_cast<float>(pixel_count) / kMaxConsideredPixelsForSwatches);
std::unordered_map<SkColor, int> color_counts(
kMaxConsideredPixelsForSwatches);
// First extract all colors into counts.
for (float f = 0; f < pixel_count; f += pixel_increment) {
const int x = region.x() + static_cast<int>(f) % region.width();
const int y = region.y() + static_cast<int>(f) / region.width();
const SkColor pixel = bitmap.getColor(x, y);
if (SkColorGetA(pixel) == SK_AlphaTRANSPARENT)
continue;
color_counts[pixel]++;
}
// Now throw out some uninteresting colors if there is a filter.
std::vector<SkColor> interesting_colors;
interesting_colors.reserve(color_counts.size());
for (auto color_count : color_counts) {
SkColor color = color_count.first;
if (!filter || filter->Run(color))
interesting_colors.push_back(color);
}
if (interesting_colors.empty())
return {};
// Group the colors into "boxes" and repeatedly split the most voluminous box.
// We stop the process when a box can no longer be split (there's only one
// color in it) or when the number of color boxes reaches |max_colors|.
//
// Boxes are sorted by volume with the most voluminous at the front of the PQ.
std::priority_queue<ColorBox, std::vector<ColorBox>,
bool (*)(const ColorBox&, const ColorBox&)>
boxes(&ColorBox::CompareByVolume);
boxes.emplace(&interesting_colors);
while (boxes.size() < max_swatches) {
auto box = boxes.top();
if (!box.CanSplit())
break;
boxes.pop();
boxes.push(box.Split());
boxes.push(box);
}
// Now extract a single color to represent each box. This is the average color
// in the box, weighted by the frequency of that color in the source image.
size_t max_weight = 0;
std::vector<Swatch> box_colors;
box_colors.reserve(max_swatches);
while (!boxes.empty()) {
box_colors.push_back(boxes.top().GetWeightedAverageColor(color_counts));
boxes.pop();
max_weight = std::max(max_weight, box_colors.back().population);
}
return box_colors;
}
std::vector<color_utils::Swatch> CalculateProminentColorsOfBitmap(
const SkBitmap& bitmap,
const std::vector<ColorProfile>& color_profiles,
gfx::Rect* region,
ColorSwatchFilter filter) {
if (color_profiles.empty())
return std::vector<Swatch>();
size_t size = color_profiles.size();
if (bitmap.empty() || bitmap.isNull())
return std::vector<Swatch>(size, Swatch());
// The hue is not relevant to our bounds or goal colors.
std::vector<ColorBracket> color_brackets(size);
for (size_t i = 0; i < size; ++i) {
switch (color_profiles[i].luma) {
case LumaRange::ANY:
color_brackets[i].lower_bound.l = 0;
color_brackets[i].upper_bound.l = 1;
color_brackets[i].goal.l = 0.5f;
break;
case LumaRange::LIGHT:
color_brackets[i].lower_bound.l = 0.55f;
color_brackets[i].upper_bound.l = 1;
color_brackets[i].goal.l = 0.74f;
break;
case LumaRange::NORMAL:
color_brackets[i].lower_bound.l = 0.3f;
color_brackets[i].upper_bound.l = 0.7f;
color_brackets[i].goal.l = 0.5f;
break;
case LumaRange::DARK:
color_brackets[i].lower_bound.l = 0;
color_brackets[i].upper_bound.l = 0.45f;
color_brackets[i].goal.l = 0.26f;
break;
}
switch (color_profiles[i].saturation) {
case SaturationRange::ANY:
color_brackets[i].lower_bound.s = 0;
color_brackets[i].upper_bound.s = 1;
color_brackets[i].goal.s = 0.5f;
break;
case SaturationRange::VIBRANT:
color_brackets[i].lower_bound.s = 0.35f;
color_brackets[i].upper_bound.s = 1;
color_brackets[i].goal.s = 1;
break;
case SaturationRange::MUTED:
color_brackets[i].lower_bound.s = 0;
color_brackets[i].upper_bound.s = 0.4f;
color_brackets[i].goal.s = 0.3f;
break;
}
}
return CalculateProminentColors(
bitmap, color_brackets,
region ? *region : gfx::Rect(bitmap.width(), bitmap.height()),
filter.is_null() ? base::BindRepeating(&IsInterestingColor) : filter);
}
} // namespace color_utils
|