File: color_conversions.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (774 lines) | stat: -rw-r--r-- 27,762 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ui/gfx/color_conversions.h"

#include <cmath>
#include <numeric>
#include <tuple>

#include "base/compiler_specific.h"
#include "base/numerics/angle_conversions.h"
#include "skia/ext/skcolorspace_primaries.h"
#include "skia/ext/skcolorspace_trfn.h"
#include "third_party/skia/include/core/SkColorSpace.h"
#include "third_party/skia/modules/skcms/skcms.h"
#include "ui/gfx/color_space.h"

namespace gfx {

// Namespace containing some of the helper methods for color conversions.
namespace {
// https://en.wikipedia.org/wiki/CIELAB_color_space#Converting_between_CIELAB_and_CIEXYZ_coordinates
constexpr float kD50_x = 0.9642f;
constexpr float kD50_y = 1.0f;
constexpr float kD50_z = 0.8251f;

// Evaluate the specified transfer function. This can be replaced by
// skcms_TransferFunction_eval when b/331320414 is fixed.
float skcmsTrFnEvalExt(const skcms_TransferFunction* fn, float x) {
  float sign = x < 0 ? -1 : 1;
  x *= sign;
  // TODO(b/331320414): Make skcms_TransferFunction_eval not assert on when
  // this is the case.
  if (x >= fn->d && fn->a * x + fn->b < 0) {
    return sign * fn->e;
  }
  return sign * skcms_TransferFunction_eval(fn, x);
}

// Power function extended to all real numbers by point symmetry.
float powExt(float x, float p) {
  if (x < 0) {
    return -powf(-x, p);
  } else {
    return powf(x, p);
  }
}

const skcms_Matrix3x3* getXYDZ65toXYZD50matrix() {
  constexpr float kD65_x = 0.3127f;
  constexpr float kD65_y = 0.3290f;
  static skcms_Matrix3x3 adapt_d65_to_d50;
  skcms_AdaptToXYZD50(kD65_x, kD65_y, &adapt_d65_to_d50);
  return &adapt_d65_to_d50;
}

const skcms_Matrix3x3* getXYDZ50toXYZD65matrix() {
  static skcms_Matrix3x3 adapt_d50_to_d65;
  skcms_Matrix3x3_invert(getXYDZ65toXYZD50matrix(), &adapt_d50_to_d65);
  return &adapt_d50_to_d65;
}

const skcms_Matrix3x3* getXYZD50TosRGBLinearMatrix() {
  static skcms_Matrix3x3 xyzd50_to_srgb_linear;
  skcms_Matrix3x3_invert(&SkNamedGamut::kSRGB, &xyzd50_to_srgb_linear);
  return &xyzd50_to_srgb_linear;
}

const skcms_Matrix3x3* getXYZD65tosRGBLinearMatrix() {
  static skcms_Matrix3x3 adapt_XYZD65_to_srgb = skcms_Matrix3x3_concat(
      getXYZD50TosRGBLinearMatrix(), getXYDZ65toXYZD50matrix());
  return &adapt_XYZD65_to_srgb;
}

const skcms_Matrix3x3* getProPhotoRGBtoXYZD50Matrix() {
  static skcms_Matrix3x3 lin_proPhoto_to_XYZ_D50;
  SkNamedPrimaries::kProPhotoRGB.toXYZD50(&lin_proPhoto_to_XYZ_D50);
  return &lin_proPhoto_to_XYZ_D50;
}

const skcms_Matrix3x3* getXYZD50toProPhotoRGBMatrix() {
  static skcms_Matrix3x3 xyzd50_to_ProPhotoRGB;
  skcms_Matrix3x3_invert(getProPhotoRGBtoXYZD50Matrix(),
                         &xyzd50_to_ProPhotoRGB);
  return &xyzd50_to_ProPhotoRGB;
}

const skcms_Matrix3x3* getXYZD50toDisplayP3Matrix() {
  static skcms_Matrix3x3 xyzd50_to_DisplayP3;
  skcms_Matrix3x3_invert(&SkNamedGamut::kDisplayP3, &xyzd50_to_DisplayP3);
  return &xyzd50_to_DisplayP3;
}

const skcms_Matrix3x3* getXYZD50toAdobeRGBMatrix() {
  static skcms_Matrix3x3 xyzd50_to_kAdobeRGB;
  skcms_Matrix3x3_invert(&SkNamedGamut::kAdobeRGB, &xyzd50_to_kAdobeRGB);
  return &xyzd50_to_kAdobeRGB;
}

const skcms_Matrix3x3* getXYZD50toRec2020Matrix() {
  static skcms_Matrix3x3 xyzd50_to_Rec2020;
  skcms_Matrix3x3_invert(&SkNamedGamut::kRec2020, &xyzd50_to_Rec2020);
  return &xyzd50_to_Rec2020;
}

const skcms_Matrix3x3* getXYZToLMSMatrix() {
  static const skcms_Matrix3x3 kXYZ_to_LMS = {
      {{0.8190224432164319f, 0.3619062562801221f, -0.12887378261216414f},
       {0.0329836671980271f, 0.9292868468965546f, 0.03614466816999844f},
       {0.048177199566046255f, 0.26423952494422764f, 0.6335478258136937f}}};
  return &kXYZ_to_LMS;
}

const skcms_Matrix3x3* getLMSToXYZMatrix() {
  static skcms_Matrix3x3 LMS_to_XYZ;
  skcms_Matrix3x3_invert(getXYZToLMSMatrix(), &LMS_to_XYZ);
  return &LMS_to_XYZ;
}

const skcms_Matrix3x3* getOklabToLMSMatrix() {
  static const skcms_Matrix3x3 kOklab_to_LMS = {
      {{0.99999999845051981432f, 0.39633779217376785678f,
        0.21580375806075880339f},
       {1.0000000088817607767f, -0.1055613423236563494f,
        -0.063854174771705903402f},
       {1.0000000546724109177f, -0.089484182094965759684f,
        -1.2914855378640917399f}}};
  return &kOklab_to_LMS;
}

const skcms_Matrix3x3* getLMSToOklabMatrix() {
  static skcms_Matrix3x3 LMS_to_Oklab;
  skcms_Matrix3x3_invert(getOklabToLMSMatrix(), &LMS_to_Oklab);
  return &LMS_to_Oklab;
}

typedef struct {
  std::array<float, 3> vals;
} skcms_Vector3;

typedef struct {
  std::array<float, 2> vals;
} skcms_Vector2;

float dot(const skcms_Vector2& a, const skcms_Vector2& b) {
  return a.vals[0] * b.vals[0] + a.vals[1] * b.vals[1];
}

static skcms_Vector3 skcms_Matrix3x3_apply(const skcms_Matrix3x3* m,
                                           const skcms_Vector3* v) {
  skcms_Vector3 dst = {{0, 0, 0}};
  for (int row = 0; row < 3; ++row) {
    // SAFETY: both row and col are >= 0 <= 2, and skcms_Matrix3x3 is a 3x3
    // float array.
    UNSAFE_BUFFERS(dst.vals[row] = m->vals[row][0] * v->vals[0] +
                                   m->vals[row][1] * v->vals[1] +
                                   m->vals[row][2] * v->vals[2]);
  }
  return dst;
}

skcms_TransferFunction* getSRGBInverseTransferFunction() {
  static skcms_TransferFunction srgb_inverse;
  skcms_TransferFunction_invert(&SkNamedTransferFn::kSRGB, &srgb_inverse);
  return &srgb_inverse;
}

std::tuple<float, float, float> ApplyInverseTransferFnsRGB(float r,
                                                           float g,
                                                           float b) {
  return std::make_tuple(skcmsTrFnEvalExt(getSRGBInverseTransferFunction(), r),
                         skcmsTrFnEvalExt(getSRGBInverseTransferFunction(), g),
                         skcmsTrFnEvalExt(getSRGBInverseTransferFunction(), b));
}

std::tuple<float, float, float> ApplyTransferFnsRGB(float r, float g, float b) {
  return std::make_tuple(skcmsTrFnEvalExt(&SkNamedTransferFn::kSRGB, r),
                         skcmsTrFnEvalExt(&SkNamedTransferFn::kSRGB, g),
                         skcmsTrFnEvalExt(&SkNamedTransferFn::kSRGB, b));
}

std::tuple<float, float, float> ApplyTransferFnProPhoto(float r,
                                                        float g,
                                                        float b) {
  return std::make_tuple(skcmsTrFnEvalExt(&SkNamedTransferFn::kProPhotoRGB, r),
                         skcmsTrFnEvalExt(&SkNamedTransferFn::kProPhotoRGB, g),
                         skcmsTrFnEvalExt(&SkNamedTransferFn::kProPhotoRGB, b));
}

std::tuple<float, float, float> ApplyTransferFnAdobeRGB(float r,
                                                        float g,
                                                        float b) {
  return std::make_tuple(skcmsTrFnEvalExt(&SkNamedTransferFn::k2Dot2, r),
                         skcmsTrFnEvalExt(&SkNamedTransferFn::k2Dot2, g),
                         skcmsTrFnEvalExt(&SkNamedTransferFn::k2Dot2, b));
}

skcms_TransferFunction* getProPhotoInverseTransferFunction() {
  static skcms_TransferFunction ProPhoto_inverse;
  skcms_TransferFunction_invert(&SkNamedTransferFn::kProPhotoRGB,
                                &ProPhoto_inverse);
  return &ProPhoto_inverse;
}

std::tuple<float, float, float> ApplyInverseTransferFnProPhoto(float r,
                                                               float g,
                                                               float b) {
  return std::make_tuple(
      skcmsTrFnEvalExt(getProPhotoInverseTransferFunction(), r),
      skcmsTrFnEvalExt(getProPhotoInverseTransferFunction(), g),
      skcmsTrFnEvalExt(getProPhotoInverseTransferFunction(), b));
}

skcms_TransferFunction* getAdobeRGBInverseTransferFunction() {
  static skcms_TransferFunction AdobeRGB_inverse;
  skcms_TransferFunction_invert(&SkNamedTransferFn::k2Dot2, &AdobeRGB_inverse);
  return &AdobeRGB_inverse;
}

std::tuple<float, float, float> ApplyInverseTransferFnAdobeRGB(float r,
                                                               float g,
                                                               float b) {
  return std::make_tuple(
      skcmsTrFnEvalExt(getAdobeRGBInverseTransferFunction(), r),
      skcmsTrFnEvalExt(getAdobeRGBInverseTransferFunction(), g),
      skcmsTrFnEvalExt(getAdobeRGBInverseTransferFunction(), b));
}

std::tuple<float, float, float> ApplyTransferFnRec2020(float r,
                                                       float g,
                                                       float b) {
  return std::make_tuple(skcmsTrFnEvalExt(&SkNamedTransferFn::kRec2020, r),
                         skcmsTrFnEvalExt(&SkNamedTransferFn::kRec2020, g),
                         skcmsTrFnEvalExt(&SkNamedTransferFn::kRec2020, b));
}

skcms_TransferFunction* getRec2020nverseTransferFunction() {
  static skcms_TransferFunction Rec2020_inverse;
  skcms_TransferFunction_invert(&SkNamedTransferFn::kRec2020, &Rec2020_inverse);
  return &Rec2020_inverse;
}

std::tuple<float, float, float> ApplyInverseTransferFnRec2020(float r,
                                                              float g,
                                                              float b) {
  return std::make_tuple(
      skcmsTrFnEvalExt(getRec2020nverseTransferFunction(), r),
      skcmsTrFnEvalExt(getRec2020nverseTransferFunction(), g),
      skcmsTrFnEvalExt(getRec2020nverseTransferFunction(), b));
}
}  // namespace

std::tuple<float, float, float> LabToXYZD50(float l, float a, float b) {
  float y = (l + 16.0f) / 116.0f;
  float x = y + a / 500.0f;
  float z = y - b / 200.0f;

  auto LabInverseTransferFunction = [](float t) {
    constexpr float delta = (24.0f / 116.0f);

    if (t <= delta) {
      return (108.0f / 841.0f) * (t - (16.0f / 116.0f));
    }

    return t * t * t;
  };

  x = LabInverseTransferFunction(x) * kD50_x;
  y = LabInverseTransferFunction(y) * kD50_y;
  z = LabInverseTransferFunction(z) * kD50_z;

  return std::make_tuple(x, y, z);
}

std::tuple<float, float, float> XYZD50ToLab(float x, float y, float z) {
  auto LabTransferFunction = [](float t) {
    constexpr float delta_limit =
        (24.0f / 116.0f) * (24.0f / 116.0f) * (24.0f / 116.0f);

    if (t <= delta_limit)
      return (841.0f / 108.0f) * t + (16.0f / 116.0f);
    else
      return std::pow(t, 1.0f / 3.0f);
  };

  x = LabTransferFunction(x / kD50_x);
  y = LabTransferFunction(y / kD50_y);
  z = LabTransferFunction(z / kD50_z);

  float l = 116.0f * y - 16.0f;
  float a = 500.0f * (x - y);
  float b = 200.0f * (y - z);

  return std::make_tuple(l, a, b);
}

// Projects the color (l,a,b) to be within a polyhedral approximation of the
// Rec2020 gamut. This is done by finding the maximum value of alpha such that
// (l, alpha*a, alpha*b) is within that polyhedral approximation.
std::tuple<float, float, float> OklabGamutMap(float l, float a, float b) {
  // Constants for the normal vector of the plane formed by white, black, and
  // the specified vertex of the gamut.
  const skcms_Vector2 normal_R{{0.409702, -0.912219}};
  const skcms_Vector2 normal_M{{-0.397919, -0.917421}};
  const skcms_Vector2 normal_B{{-0.906800, 0.421562}};
  const skcms_Vector2 normal_C{{-0.171122, 0.985250}};
  const skcms_Vector2 normal_G{{0.460276, 0.887776}};
  const skcms_Vector2 normal_Y{{0.947925, 0.318495}};

  // For the triangles formed by white (W) or black (K) with the vertices
  // of Yellow and Red (YR), Red and Magenta (RM), etc, the constants to be
  // used to compute the intersection of a line of constant hue and luminance
  // with that plane.
  const float c0_YR = 0.091132;
  const skcms_Vector2 cW_YR{{0.070370, 0.034139}};
  const skcms_Vector2 cK_YR{{0.018170, 0.378550}};
  const float c0_RM = 0.113902;
  const skcms_Vector2 cW_RM{{0.090836, 0.036251}};
  const skcms_Vector2 cK_RM{{0.226781, 0.018764}};
  const float c0_MB = 0.161739;
  const skcms_Vector2 cW_MB{{-0.008202, -0.264819}};
  const skcms_Vector2 cK_MB{{0.187156, -0.284304}};
  const float c0_BC = 0.102047;
  const skcms_Vector2 cW_BC{{-0.014804, -0.162608}};
  const skcms_Vector2 cK_BC{{-0.276786, 0.004193}};
  const float c0_CG = 0.092029;
  const skcms_Vector2 cW_CG{{-0.038533, -0.001650}};
  const skcms_Vector2 cK_CG{{-0.232572, -0.094331}};
  const float c0_GY = 0.081709;
  const skcms_Vector2 cW_GY{{-0.034601, -0.002215}};
  const skcms_Vector2 cK_GY{{0.012185, 0.338031}};

  const float L = l;
  const float one_minus_L = 1.0 - L;
  const skcms_Vector2 ab{{a, b}};

  // Find the planes to intersect with and set the constants based on those
  // planes.
  float c0 = 0.f;
  skcms_Vector2 cW{{0.f, 0.f}};
  skcms_Vector2 cK{{0.f, 0.f}};
  if (dot(ab, normal_R) < 0.0) {
    if (dot(ab, normal_G) < 0.0) {
      if (dot(ab, normal_C) < 0.0) {
        c0 = c0_BC;
        cW = cW_BC;
        cK = cK_BC;
      } else {
        c0 = c0_CG;
        cW = cW_CG;
        cK = cK_CG;
      }
    } else {
      if (dot(ab, normal_Y) < 0.0) {
        c0 = c0_GY;
        cW = cW_GY;
        cK = cK_GY;
      } else {
        c0 = c0_YR;
        cW = cW_YR;
        cK = cK_YR;
      }
    }
  } else {
    if (dot(ab, normal_B) < 0.0) {
      if (dot(ab, normal_M) < 0.0) {
        c0 = c0_RM;
        cW = cW_RM;
        cK = cK_RM;
      } else {
        c0 = c0_MB;
        cW = cW_MB;
        cK = cK_MB;
      }
    } else {
      c0 = c0_BC;
      cW = cW_BC;
      cK = cK_BC;
    }
  }

  // Perform the intersection.
  float alpha = 1.f;

  // Intersect with the plane with white.
  const float w_denom = dot(cW, ab);
  if (w_denom > 0.f) {
    const float w_num = c0 * one_minus_L;
    if (w_num < w_denom) {
      alpha = std::min(alpha, w_num / w_denom);
    }
  }

  // Intersect with the plane with black.
  const float k_denom = dot(cK, ab);
  if (k_denom > 0.f) {
    const float k_num = c0 * L;
    if (k_num < k_denom) {
      alpha = std::min(alpha, k_num / k_denom);
    }
  }

  // Attenuate the ab coordinate by alpha.
  return std::make_tuple(L, alpha * a, alpha * b);
}

std::tuple<float, float, float> OklabToXYZD65(float l, float a, float b) {
  skcms_Vector3 lab_input{{l, a, b}};
  skcms_Vector3 lms_intermediate =
      skcms_Matrix3x3_apply(getOklabToLMSMatrix(), &lab_input);
  lms_intermediate.vals[0] = lms_intermediate.vals[0] *
                             lms_intermediate.vals[0] *
                             lms_intermediate.vals[0];
  lms_intermediate.vals[1] = lms_intermediate.vals[1] *
                             lms_intermediate.vals[1] *
                             lms_intermediate.vals[1];
  lms_intermediate.vals[2] = lms_intermediate.vals[2] *
                             lms_intermediate.vals[2] *
                             lms_intermediate.vals[2];
  skcms_Vector3 xyz_output =
      skcms_Matrix3x3_apply(getLMSToXYZMatrix(), &lms_intermediate);
  return std::make_tuple(xyz_output.vals[0], xyz_output.vals[1],
                         xyz_output.vals[2]);
}

std::tuple<float, float, float> XYZD65ToOklab(float x, float y, float z) {
  skcms_Vector3 xyz_input{{x, y, z}};
  skcms_Vector3 lms_intermediate =
      skcms_Matrix3x3_apply(getXYZToLMSMatrix(), &xyz_input);

  lms_intermediate.vals[0] = powExt(lms_intermediate.vals[0], 1.0f / 3.0f);
  lms_intermediate.vals[1] = powExt(lms_intermediate.vals[1], 1.0f / 3.0f);
  lms_intermediate.vals[2] = powExt(lms_intermediate.vals[2], 1.0f / 3.0f);

  skcms_Vector3 lab_output =
      skcms_Matrix3x3_apply(getLMSToOklabMatrix(), &lms_intermediate);
  return std::make_tuple(lab_output.vals[0], lab_output.vals[1],
                         lab_output.vals[2]);
}

std::tuple<float, float, float> LchToLab(float l, float c, float h) {
  return std::make_tuple(l, c * std::cos(base::DegToRad(h)),
                         c * std::sin(base::DegToRad(h)));
}
std::tuple<float, float, float> LabToLch(float l, float a, float b) {
  return std::make_tuple(l, std::sqrt(a * a + b * b),
                         base::RadToDeg(atan2f(b, a)));
}

std::tuple<float, float, float> DisplayP3ToXYZD50(float r, float g, float b) {
  auto [r_, g_, b_] = ApplyTransferFnsRGB(r, g, b);
  skcms_Vector3 rgb_input{{r_, g_, b_}};
  skcms_Vector3 xyz_output =
      skcms_Matrix3x3_apply(&SkNamedGamut::kDisplayP3, &rgb_input);
  return std::make_tuple(xyz_output.vals[0], xyz_output.vals[1],
                         xyz_output.vals[2]);
}

std::tuple<float, float, float> XYZD50ToDisplayP3(float x, float y, float z) {
  skcms_Vector3 xyz_input{{x, y, z}};
  skcms_Vector3 rgb_output =
      skcms_Matrix3x3_apply(getXYZD50toDisplayP3Matrix(), &xyz_input);
  return ApplyInverseTransferFnsRGB(rgb_output.vals[0], rgb_output.vals[1],
                                    rgb_output.vals[2]);
}

std::tuple<float, float, float> ProPhotoToXYZD50(float r, float g, float b) {
  auto [r_, g_, b_] = ApplyTransferFnProPhoto(r, g, b);
  skcms_Vector3 rgb_input{{r_, g_, b_}};
  skcms_Vector3 xyz_output =
      skcms_Matrix3x3_apply(getProPhotoRGBtoXYZD50Matrix(), &rgb_input);
  return std::make_tuple(xyz_output.vals[0], xyz_output.vals[1],
                         xyz_output.vals[2]);
}

std::tuple<float, float, float> XYZD50ToProPhoto(float x, float y, float z) {
  skcms_Vector3 xyz_input{{x, y, z}};
  skcms_Vector3 rgb_output =
      skcms_Matrix3x3_apply(getXYZD50toProPhotoRGBMatrix(), &xyz_input);
  return ApplyInverseTransferFnProPhoto(rgb_output.vals[0], rgb_output.vals[1],
                                        rgb_output.vals[2]);
}

std::tuple<float, float, float> AdobeRGBToXYZD50(float r, float g, float b) {
  auto [r_, g_, b_] = ApplyTransferFnAdobeRGB(r, g, b);
  skcms_Vector3 rgb_input{{r_, g_, b_}};
  skcms_Vector3 xyz_output =
      skcms_Matrix3x3_apply(&SkNamedGamut::kAdobeRGB, &rgb_input);
  return std::make_tuple(xyz_output.vals[0], xyz_output.vals[1],
                         xyz_output.vals[2]);
}

std::tuple<float, float, float> XYZD50ToAdobeRGB(float x, float y, float z) {
  skcms_Vector3 xyz_input{{x, y, z}};
  skcms_Vector3 rgb_output =
      skcms_Matrix3x3_apply(getXYZD50toAdobeRGBMatrix(), &xyz_input);
  return ApplyInverseTransferFnAdobeRGB(rgb_output.vals[0], rgb_output.vals[1],
                                        rgb_output.vals[2]);
}

std::tuple<float, float, float> Rec2020ToXYZD50(float r, float g, float b) {
  auto [r_, g_, b_] = ApplyTransferFnRec2020(r, g, b);
  skcms_Vector3 rgb_input{{r_, g_, b_}};
  skcms_Vector3 xyz_output =
      skcms_Matrix3x3_apply(&SkNamedGamut::kRec2020, &rgb_input);
  return std::make_tuple(xyz_output.vals[0], xyz_output.vals[1],
                         xyz_output.vals[2]);
}

std::tuple<float, float, float> XYZD50ToRec2020(float x, float y, float z) {
  skcms_Vector3 xyz_input{{x, y, z}};
  skcms_Vector3 rgb_output =
      skcms_Matrix3x3_apply(getXYZD50toRec2020Matrix(), &xyz_input);
  return ApplyInverseTransferFnRec2020(rgb_output.vals[0], rgb_output.vals[1],
                                       rgb_output.vals[2]);
}

std::tuple<float, float, float> XYZD50ToD65(float x, float y, float z) {
  skcms_Vector3 xyz_input{{x, y, z}};
  skcms_Vector3 xyz_output =
      skcms_Matrix3x3_apply(getXYDZ50toXYZD65matrix(), &xyz_input);
  return std::make_tuple(xyz_output.vals[0], xyz_output.vals[1],
                         xyz_output.vals[2]);
}

std::tuple<float, float, float> XYZD65ToD50(float x, float y, float z) {
  skcms_Vector3 xyz_input{{x, y, z}};
  skcms_Vector3 xyz_output =
      skcms_Matrix3x3_apply(getXYDZ65toXYZD50matrix(), &xyz_input);
  return std::make_tuple(xyz_output.vals[0], xyz_output.vals[1],
                         xyz_output.vals[2]);
}

std::tuple<float, float, float> SRGBToSRGBLegacy(float r, float g, float b) {
  return std::make_tuple(r * 255.0, g * 255.0, b * 255.0);
}

std::tuple<float, float, float> SRGBLegacyToSRGB(float r, float g, float b) {
  return std::make_tuple(r / 255.0, g / 255.0, b / 255.0);
}

std::tuple<float, float, float> XYZD50TosRGB(float x, float y, float z) {
  skcms_Vector3 xyz_input{{x, y, z}};
  skcms_Vector3 rgb_result =
      skcms_Matrix3x3_apply(getXYZD50TosRGBLinearMatrix(), &xyz_input);
  return ApplyInverseTransferFnsRGB(rgb_result.vals[0], rgb_result.vals[1],
                                    rgb_result.vals[2]);
}

std::tuple<float, float, float> XYZD65TosRGBLinear(float x, float y, float z) {
  skcms_Vector3 xyz_input{{x, y, z}};
  skcms_Vector3 rgb_result =
      skcms_Matrix3x3_apply(getXYZD65tosRGBLinearMatrix(), &xyz_input);
  return std::make_tuple(rgb_result.vals[0], rgb_result.vals[1],
                         rgb_result.vals[2]);
}

std::tuple<float, float, float> XYZD50TosRGBLinear(float x, float y, float z) {
  skcms_Vector3 xyz_input{{x, y, z}};
  skcms_Vector3 rgb_result =
      skcms_Matrix3x3_apply(getXYZD50TosRGBLinearMatrix(), &xyz_input);
  return std::make_tuple(rgb_result.vals[0], rgb_result.vals[1],
                         rgb_result.vals[2]);
}

std::tuple<float, float, float> SRGBLinearToXYZD50(float r, float g, float b) {
  skcms_Vector3 rgb_input{{r, g, b}};
  skcms_Vector3 xyz_output =
      skcms_Matrix3x3_apply(&SkNamedGamut::kSRGB, &rgb_input);
  return std::make_tuple(xyz_output.vals[0], xyz_output.vals[1],
                         xyz_output.vals[2]);
}

std::tuple<float, float, float> SRGBToXYZD50(float r, float g, float b) {
  auto [r_, g_, b_] = ApplyTransferFnsRGB(r, g, b);
  skcms_Vector3 rgb_input{{r_, g_, b_}};
  skcms_Vector3 xyz_output =
      skcms_Matrix3x3_apply(&SkNamedGamut::kSRGB, &rgb_input);
  return std::make_tuple(xyz_output.vals[0], xyz_output.vals[1],
                         xyz_output.vals[2]);
}

std::tuple<float, float, float> HSLToSRGB(float h, float s, float l) {
  // See https://www.w3.org/TR/css-color-4/#hsl-to-rgb
  if (!s) {
    return std::make_tuple(l, l, l);
  }

  auto f = [&h, &l, &s](float n) {
    float k = fmod(n + h / 30.0f, 12.0);
    float a = s * std::min(l, 1.0f - l);
    return l - a * std::max(-1.0f, std::min({k - 3.0f, 9.0f - k, 1.0f}));
  };

  return std::make_tuple(f(0), f(8), f(4));
}

std::tuple<float, float, float> SRGBToHSL(float r, float g, float b) {
  // See https://drafts.csswg.org/css-color-4/#rgb-to-hsl
  // TODO(crbug.com/329301908): check if there's any change after this draft
  // becomes settled.
  auto [min, max] = std::minmax({r, g, b});
  float hue = 0.0f, saturation = 0.0f, lightness = std::midpoint(min, max);
  float d = max - min;

  if (d != 0.0f) {
    saturation = (lightness == 0.0f || lightness == 1.0f)
                     ? 0.0f
                     : (max - lightness) / std::min(lightness, 1 - lightness);
    if (max == r) {
      hue = (g - b) / d + (g < b ? 6.0f : 0.0f);
    } else if (max == g) {
      hue = (b - r) / d + 2.0f;
    } else {  // if(max == b)
      hue = (r - g) / d + 4.0f;
    }
    hue *= 60.0f;
  }

  // Very out of gamut colors can produce negative saturation.
  // If so, just rotate the hue by 180 and use a positive saturation.
  // See https://github.com/w3c/csswg-drafts/issues/9222
  if (saturation < 0) {
    hue += 180;
    saturation = std::abs(saturation);
  }

  if (hue >= 360) {
    hue -= 360;
  }

  return std::make_tuple(hue, saturation, lightness);
}

std::tuple<float, float, float> HWBToSRGB(float h, float w, float b) {
  if (w + b >= 1.0f) {
    float gray = (w / (w + b));
    return std::make_tuple(gray, gray, gray);
  }

  // Leverage HSL to RGB conversion to find HWB to RGB, see
  // https://drafts.csswg.org/css-color-4/#hwb-to-rgb
  auto [red, green, blue] = HSLToSRGB(h, 1.0f, 0.5f);

  red += w - (w + b) * red;
  green += w - (w + b) * green;
  blue += w - (w + b) * blue;

  return std::make_tuple(red, green, blue);
}

static inline float SRGBToHue(float r, float g, float b) {
  // See https://drafts.csswg.org/css-color-4/#rgb-to-hwb
  // Similar to rgbToHsl, except that saturation and lightness are not
  // calculated, and potential negative saturation is ignored.
  // TODO(crbug.com/329301908): check if there's any change after this draft
  // becomes settled.
  auto [min, max] = std::minmax({r, g, b});
  float hue = 0.0f;
  float d = max - min;

  if (d != 0) {
    if (max == r) {
      hue = (g - b) / d + (g < b ? 6 : 0);
    } else if (max == g) {
      hue = (b - r) / d + 2;
    } else {
      hue = (r - g) / d + 4;
    }

    hue *= 60;
  }

  if (hue >= 360) {
    hue -= 360;
  }

  return hue;
}

std::tuple<float, float, float> SRGBToHWB(float r, float g, float b) {
  // See https://drafts.csswg.org/css-color-4/#rgb-to-hwb
  // TODO(crbug.com/329301908): check if there's any change after this draft
  // becomes settled.
  float hue = SRGBToHue(r, g, b);
  float white = std::min({r, g, b});
  float black = 1.0f - std::max({r, g, b});

  return std::make_tuple(hue, white, black);
}

SkColor4f SRGBLinearToSkColor4f(float r, float g, float b, float alpha) {
  auto [srgb_r, srgb_g, srgb_b] = ApplyInverseTransferFnsRGB(r, g, b);
  return SkColor4f{srgb_r, srgb_g, srgb_b, alpha};
}

SkColor4f XYZD50ToSkColor4f(float x, float y, float z, float alpha) {
  auto [r, g, b] = XYZD50TosRGBLinear(x, y, z);
  return SRGBLinearToSkColor4f(r, g, b, alpha);
}

SkColor4f XYZD65ToSkColor4f(float x, float y, float z, float alpha) {
  auto [r, g, b] = XYZD65TosRGBLinear(x, y, z);
  return SRGBLinearToSkColor4f(r, g, b, alpha);
}

SkColor4f LabToSkColor4f(float l, float a, float b, float alpha) {
  auto [x, y, z] = LabToXYZD50(l, a, b);
  return XYZD50ToSkColor4f(x, y, z, alpha);
}

SkColor4f ProPhotoToSkColor4f(float r, float g, float b, float alpha) {
  auto [x, y, z] = ProPhotoToXYZD50(r, g, b);
  return XYZD50ToSkColor4f(x, y, z, alpha);
}

SkColor4f OklabToSkColor4f(float l, float a, float b, float alpha) {
  auto [x, y, z] = OklabToXYZD65(l, a, b);
  return XYZD65ToSkColor4f(x, y, z, alpha);
}

SkColor4f OklabGamutMapToSkColor4f(float l, float a, float b, float alpha) {
  auto [l_gm, a_gm, b_gm] = OklabGamutMap(l, a, b);
  auto [x, y, z] = OklabToXYZD65(l_gm, a_gm, b_gm);
  return XYZD65ToSkColor4f(x, y, z, alpha);
}

SkColor4f DisplayP3ToSkColor4f(float r, float g, float b, float alpha) {
  auto [x, y, z] = DisplayP3ToXYZD50(r, g, b);
  return XYZD50ToSkColor4f(x, y, z, alpha);
}

SkColor4f LchToSkColor4f(float l_input, float c, float h, float alpha) {
  auto [l, a, b] = LchToLab(l_input, c, h);
  auto [x, y, z] = LabToXYZD50(l, a, b);
  return XYZD50ToSkColor4f(x, y, z, alpha);
}
SkColor4f AdobeRGBToSkColor4f(float r, float g, float b, float alpha) {
  auto [x, y, z] = AdobeRGBToXYZD50(r, g, b);
  return XYZD50ToSkColor4f(x, y, z, alpha);
}

SkColor4f Rec2020ToSkColor4f(float r, float g, float b, float alpha) {
  auto [x, y, z] = Rec2020ToXYZD50(r, g, b);
  return XYZD50ToSkColor4f(x, y, z, alpha);
}

SkColor4f OklchToSkColor4f(float l_input, float c, float h, float alpha) {
  auto [l, a, b] = LchToLab(l_input, c, h);
  auto [x, y, z] = OklabToXYZD65(l, a, b);
  return XYZD65ToSkColor4f(x, y, z, alpha);
}

SkColor4f OklchGamutMapToSkColor4f(float l_input,
                                   float c,
                                   float h,
                                   float alpha) {
  auto [l, a, b] = LchToLab(l_input, c, h);
  auto [l_gm, a_gm, b_gm] = OklabGamutMap(l, a, b);
  auto [x, y, z] = OklabToXYZD65(l_gm, a_gm, b_gm);
  return XYZD65ToSkColor4f(x, y, z, alpha);
}

SkColor4f HSLToSkColor4f(float h, float s, float l, float alpha) {
  auto [r, g, b] = HSLToSRGB(h, s, l);
  return SkColor4f{r, g, b, alpha};
}

SkColor4f HWBToSkColor4f(float h, float w, float b, float alpha) {
  auto [red, green, blue] = HWBToSRGB(h, w, b);
  return SkColor4f{red, green, blue, alpha};
}
}  // namespace gfx