File: color_utils.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (736 lines) | stat: -rw-r--r-- 28,154 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/354829279): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif

#include "ui/gfx/color_utils.h"

#include <stdint.h>

#include <algorithm>
#include <cmath>
#include <functional>
#include <numeric>
#include <ostream>
#include <vector>

#include "base/check_op.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/stringprintf.h"
#include "build/build_config.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "ui/gfx/color_palette.h"

#if BUILDFLAG(IS_WIN)
#include <windows.h>

#include "skia/ext/skia_utils_win.h"
#endif

namespace color_utils {

namespace {

// The darkest reference color in color_utils.
SkColor g_darkest_color = gfx::kGoogleGrey900;

// The luminance midpoint for determining if a color is light or dark.  This is
// the value where white and g_darkest_color contrast equally.  This default
// value is the midpoint given kGoogleGrey900 as the darkest color.
float g_luminance_midpoint = 0.211692036f;

constexpr float kWhiteLuminance = 1.0f;

int calcHue(float temp1, float temp2, float hue) {
  if (hue < 0.0f)
    ++hue;
  else if (hue > 1.0f)
    --hue;

  float result = temp1;
  if (hue * 6.0f < 1.0f)
    result = temp1 + (temp2 - temp1) * hue * 6.0f;
  else if (hue * 2.0f < 1.0f)
    result = temp2;
  else if (hue * 3.0f < 2.0f)
    result = temp1 + (temp2 - temp1) * (2.0f / 3.0f - hue) * 6.0f;

  return base::ClampRound(result * 255);
}

// Assumes sRGB.
float Linearize(float component) {
  // The W3C link in the header uses 0.03928 here.  See
  // https://en.wikipedia.org/wiki/SRGB#Theory_of_the_transformation for
  // discussion of why we use this value rather than that one.
  return (component <= 0.04045f) ? (component / 12.92f)
                                 : pow((component + 0.055f) / 1.055f, 2.4f);
}

constexpr size_t kNumGoogleColors = 12;
constexpr SkColor kGrey[kNumGoogleColors] = {
    SK_ColorWHITE,       gfx::kGoogleGrey050, gfx::kGoogleGrey100,
    gfx::kGoogleGrey200, gfx::kGoogleGrey300, gfx::kGoogleGrey400,
    gfx::kGoogleGrey500, gfx::kGoogleGrey600, gfx::kGoogleGrey700,
    gfx::kGoogleGrey800, gfx::kGoogleGrey900, gfx::kGoogleGrey900,
};

constexpr SkColor kRed[kNumGoogleColors] = {
    SK_ColorWHITE,      gfx::kGoogleRed050, gfx::kGoogleRed100,
    gfx::kGoogleRed200, gfx::kGoogleRed300, gfx::kGoogleRed400,
    gfx::kGoogleRed500, gfx::kGoogleRed600, gfx::kGoogleRed700,
    gfx::kGoogleRed800, gfx::kGoogleRed900, gfx::kGoogleGrey900,
};

constexpr SkColor kOrange[kNumGoogleColors] = {
    SK_ColorWHITE,         gfx::kGoogleOrange050, gfx::kGoogleOrange100,
    gfx::kGoogleOrange200, gfx::kGoogleOrange300, gfx::kGoogleOrange400,
    gfx::kGoogleOrange500, gfx::kGoogleOrange600, gfx::kGoogleOrange700,
    gfx::kGoogleOrange800, gfx::kGoogleOrange900, gfx::kGoogleGrey900,
};

constexpr SkColor kYellow[kNumGoogleColors] = {
    SK_ColorWHITE,         gfx::kGoogleYellow050, gfx::kGoogleYellow100,
    gfx::kGoogleYellow200, gfx::kGoogleYellow300, gfx::kGoogleYellow400,
    gfx::kGoogleYellow500, gfx::kGoogleYellow600, gfx::kGoogleYellow700,
    gfx::kGoogleYellow800, gfx::kGoogleYellow900, gfx::kGoogleGrey900,
};

constexpr SkColor kGreen[kNumGoogleColors] = {
    SK_ColorWHITE,        gfx::kGoogleGreen050, gfx::kGoogleGreen100,
    gfx::kGoogleGreen200, gfx::kGoogleGreen300, gfx::kGoogleGreen400,
    gfx::kGoogleGreen500, gfx::kGoogleGreen600, gfx::kGoogleGreen700,
    gfx::kGoogleGreen800, gfx::kGoogleGreen900, gfx::kGoogleGrey900,
};

constexpr SkColor kCyan[kNumGoogleColors] = {
    SK_ColorWHITE,       gfx::kGoogleCyan050, gfx::kGoogleCyan100,
    gfx::kGoogleCyan200, gfx::kGoogleCyan300, gfx::kGoogleCyan400,
    gfx::kGoogleCyan500, gfx::kGoogleCyan600, gfx::kGoogleCyan700,
    gfx::kGoogleCyan800, gfx::kGoogleCyan900, gfx::kGoogleGrey900,
};

constexpr SkColor kBlue[kNumGoogleColors] = {
    SK_ColorWHITE,       gfx::kGoogleBlue050, gfx::kGoogleBlue100,
    gfx::kGoogleBlue200, gfx::kGoogleBlue300, gfx::kGoogleBlue400,
    gfx::kGoogleBlue500, gfx::kGoogleBlue600, gfx::kGoogleBlue700,
    gfx::kGoogleBlue800, gfx::kGoogleBlue900, gfx::kGoogleGrey900,
};

constexpr SkColor kPurple[kNumGoogleColors] = {
    SK_ColorWHITE,         gfx::kGooglePurple050, gfx::kGooglePurple100,
    gfx::kGooglePurple200, gfx::kGooglePurple300, gfx::kGooglePurple400,
    gfx::kGooglePurple500, gfx::kGooglePurple600, gfx::kGooglePurple700,
    gfx::kGooglePurple800, gfx::kGooglePurple900, gfx::kGoogleGrey900,
};

constexpr SkColor kMagenta[kNumGoogleColors] = {
    SK_ColorWHITE,          gfx::kGoogleMagenta050, gfx::kGoogleMagenta100,
    gfx::kGoogleMagenta200, gfx::kGoogleMagenta300, gfx::kGoogleMagenta400,
    gfx::kGoogleMagenta500, gfx::kGoogleMagenta600, gfx::kGoogleMagenta700,
    gfx::kGoogleMagenta800, gfx::kGoogleMagenta900, gfx::kGoogleGrey900,
};

constexpr SkColor kPink[kNumGoogleColors] = {
    SK_ColorWHITE,       gfx::kGooglePink050, gfx::kGooglePink100,
    gfx::kGooglePink200, gfx::kGooglePink300, gfx::kGooglePink400,
    gfx::kGooglePink500, gfx::kGooglePink600, gfx::kGooglePink700,
    gfx::kGooglePink800, gfx::kGooglePink900, gfx::kGoogleGrey900,
};

SkColor PickGoogleColor(const SkColor (&colors)[kNumGoogleColors],
                        SkColor color,
                        SkColor background_color_a,
                        SkColor background_color_b,
                        float min_contrast,
                        float max_contrast_with_nearer) {
  // Sanity checks.
  DCHECK_GT(kNumGoogleColors, 0u);
  DCHECK_GE(min_contrast, 0.0f);
  DCHECK_LE(min_contrast, max_contrast_with_nearer);

  // First set up `lum_colors`, the corresponding relative luminances of
  // `colors`.  These could be precomputed and recorded next to `kGrey` etc. for
  // some runtime speedup at the cost of maintenance pain.
  float lum_colors[kNumGoogleColors];
  std::ranges::transform(colors, std::begin(lum_colors), &GetRelativeLuminance);

  // This function returns an iterator to the least-contrasting luminance (in
  // `lum_colors`) to `lum`.
  const auto find_nearest_lum_it = [&lum_colors](float lum) {
    // Find the first luminance (since they're sorted decreasing) <= `lum`.
    const float* it =
        std::ranges::lower_bound(lum_colors, lum, std::ranges::greater());
    // If applicable, check against the next greater luminance for whichever is
    // lower-contrast.
    if (it == std::cend(lum_colors) ||
        ((it != std::cbegin(lum_colors)) &&
         (GetContrastRatio(lum, *it) > GetContrastRatio(*(it - 1), lum)))) {
      --it;
    }
    return it;
  };

  // Compute `src_it`, the element in `lum_colors` which is closest to `color`.
  const float* src_it = find_nearest_lum_it(GetRelativeLuminance(color));

  // Compute the background luminances.
  const bool one_bg = background_color_a == background_color_b;
  const float lum_a = GetRelativeLuminance(background_color_a);
  const float lum_b = one_bg ? lum_a : GetRelativeLuminance(background_color_b);

  // Compute `lum_mid`, the luminance between `lum_a` and `lum_b` that contrasts
  // equally with both.
  const float lum_mid =
      one_bg ? lum_a : (std::sqrt((lum_a + 0.05f) * (lum_b + 0.05f)) - 0.05f);

  // This function returns the luminance of whichever background contrasts less
  // with some given luminance (the "nearer background").
  const auto bg_lum_near_lum = [&](float lum) {
    return ((lum_a > lum_b) == (lum > lum_mid)) ? lum_a : lum_b;
  };

  // Compute the contrast of `src_it` against the nearer background.
  const float nearer_bg_lum = bg_lum_near_lum(*src_it);
  const float src_contrast_with_near = GetContrastRatio(*src_it, nearer_bg_lum);

  // This function returns the first element E, moving from `begin` towards
  // `end` (inclusive), which does not satisfy `comp(proj(E), threshold)`. In
  // other words, this is basically a direction-agnostic lower_bound().
  const auto first_across_threshold = [&](const float* begin, const float* end,
                                          float threshold, auto comp,
                                          auto proj) {
    if (end >= begin) {
      return std::ranges::lower_bound(begin, end, threshold, comp, proj);
    }
    const auto res_it_reversed = std::ranges::lower_bound(
        std::make_reverse_iterator(begin + 1),
        std::make_reverse_iterator(end + 1), threshold, comp, proj);
    return res_it_reversed.base() - 1;
  };

  // Compute `res_it`, the desired result element in `lum_colors`. Start with
  // `src_it`, then adjust depending on the contrast against the nearer
  // background.
  const float* res_it = src_it;
  if (src_contrast_with_near < min_contrast) {
    // Need to increase contrast. This will be done by iterating through
    // `lum_colors` towards a target element with sufficient contrast. The three
    // potential targets are the two endpoints and (if there are two
    // backgrounds) the element nearest `lum_mid`.
    std::vector<const float*> targets = {std::cbegin(lum_colors),
                                         std::cend(lum_colors) - 1};
    const bool src_darker_than_bg_a = *src_it < lum_a;
    if (one_bg) {
      // To avoid inverting the relationship between source and background,
      // prefer the endpoint on the "same side" of the background as the source,
      // then the other endpoint.
      if (src_darker_than_bg_a) {
        std::swap(targets[0], targets[1]);
      }
    } else if (src_darker_than_bg_a == (*src_it < lum_b)) {
      // The source is either lighter or darker than both backgrounds, so prefer
      // the endpoint on the "same side", then the midpoint, then the other
      // endpoint.
      if (src_darker_than_bg_a) {
        std::swap(targets[0], targets[1]);
      }
      targets.insert(targets.cbegin() + 1, find_nearest_lum_it(lum_mid));
    } else {
      // The source is between the two backgrounds, so prefer the midpoint, then
      // the endpoint on the "same side" of the midpoint as the source, then the
      // other endpoint.
      if (*src_it < lum_mid) {
        std::swap(targets[0], targets[1]);
      }
      targets.insert(targets.cbegin(), find_nearest_lum_it(lum_mid));
    }

    // Set `targ_it` to the first target in the priority list that has at least
    // `min_contrast` against the nearer background. If none of the targets meet
    // the contrast threshold, use the one with the best contrast.
    const float* targ_it;
    float best_contrast = 0;
    const auto proj = [&](float lum) {
      return GetContrastRatio(lum, bg_lum_near_lum(lum));
    };
    for (const float* elem : targets) {
      const float contrast = proj(*elem);
      if (contrast > best_contrast) {
        targ_it = elem;
        best_contrast = contrast;
        if (best_contrast >= min_contrast) {
          break;
        }
      }
    }

    if (best_contrast < min_contrast) {
      // Couldn't meet the threshold, so `targ_it` is the best possible result.
      res_it = targ_it;
    } else {
      // `targ_it` has sufficient contrast. Since `src_it` is already known to
      // have insufficient contrast, move it one step towards `targ_it`.
      src_it = (targ_it < src_it) ? (src_it - 1) : (src_it + 1);

      // Now keep moving towards `targ_it` until contrast is sufficient.
      res_it = first_across_threshold(src_it, targ_it, min_contrast,
                                      std::ranges::less(), proj);
    }
  } else if (src_contrast_with_near > max_contrast_with_nearer) {
    // Need to reduce contrast if possible by moving toward the nearer
    // background. Compute `targ_it`, the element in `lum_colors` whose
    // luminance is closest to the nearer background while staying on the "same
    // side" as `src_it`. (This intentionally allows `targ_it` to match the
    // nearer background's luminance exactly, in case `min_contrast == 0`.)
    const auto* targ_it =
        (*src_it > nearer_bg_lum)
            ? (std::upper_bound(src_it, std::cend(lum_colors), nearer_bg_lum,
                                std::greater<>()) -
               1)
            : std::lower_bound(std::cbegin(lum_colors), src_it, nearer_bg_lum,
                               std::greater<>());

    // Ensure `targ_it` reaches `min_contrast` against the nearer background by
    // moving toward `src_it`.
    const auto proj = [&](float lum) {
      return GetContrastRatio(lum, nearer_bg_lum);
    };
    targ_it = first_across_threshold(targ_it, src_it, min_contrast,
                                     std::ranges::less(), proj);

    // Now move `res_it` towards `targ_it` until contrast is sufficiently low.
    res_it = first_across_threshold(src_it, targ_it, max_contrast_with_nearer,
                                    std::ranges::greater(), proj);
  }

  // Convert `res_it` back to a color.
  return colors[res_it - std::begin(lum_colors)];
}

template <typename T>
SkColor PickGoogleColorImpl(SkColor color, T pick_color) {
  HSL hsl;
  SkColorToHSL(color, &hsl);
  if (hsl.s < 0.1) {
    // Low saturation, let this be a grey.
    return pick_color(kGrey);
  }

  // Map hue to angles for readability.
  const float color_angle = hsl.h * 360;

  // Hues in comments below are of the corresponding kGoogleXXX500 color.
  // Every cutoff is a halfway point between the two neighboring hue values to
  // provide as fair of a representation as possible for what color should be
  // used.
  // RED: 4
  if (color_angle < 15)
    return pick_color(kRed);
  // ORANGE: 26
  if (color_angle < 35)
    return pick_color(kOrange);
  // YELLOW: 44
  if (color_angle < 90)
    return pick_color(kYellow);
  // GREEN: 136
  if (color_angle < 163)
    return pick_color(kGreen);
  // CYAN: 189
  // In dark mode, the Mac system blue hue is right on the border between a
  // kGoogleCyan and kGoogleBlue color, so the cutoff point is tweaked to make
  // it map to a kGoogleBlue color.
  if (color_angle < 202)
    return pick_color(kCyan);
  // BLUE: 217
  if (color_angle < 245)
    return pick_color(kBlue);
  // PURPLE: 272
  if (color_angle < 284)
    return pick_color(kPurple);
  // MAGENTA: 295
  if (color_angle < 311)
    return pick_color(kMagenta);
  // PINK: 326
  if (color_angle < 345)
    return pick_color(kPink);

  // End of hue wheel is red.
  return pick_color(kRed);
}

}  // namespace

SkColor PickGoogleColor(SkColor color,
                        SkColor background_color,
                        float min_contrast,
                        float max_contrast) {
  const auto pick_color = [&](const SkColor(&colors)[kNumGoogleColors]) {
    return PickGoogleColor(colors, color, background_color, background_color,
                           min_contrast, max_contrast);
  };
  return PickGoogleColorImpl(color, pick_color);
}

SkColor PickGoogleColorTwoBackgrounds(SkColor color,
                                      SkColor background_color_a,
                                      SkColor background_color_b,
                                      float min_contrast,
                                      float max_contrast_with_nearer) {
  const auto pick_color = [&](const SkColor(&colors)[kNumGoogleColors]) {
    return PickGoogleColor(colors, color, background_color_a,
                           background_color_b, min_contrast,
                           max_contrast_with_nearer);
  };
  return PickGoogleColorImpl(color, pick_color);
}

float GetContrastRatio(SkColor color_a, SkColor color_b) {
  return GetContrastRatio(GetRelativeLuminance(color_a),
                          GetRelativeLuminance(color_b));
}

float GetContrastRatio(SkColor4f color_a, SkColor4f color_b) {
  return GetContrastRatio(GetRelativeLuminance4f(color_a),
                          GetRelativeLuminance4f(color_b));
}

float GetContrastRatio(float luminance_a, float luminance_b) {
  DCHECK_GE(luminance_a, 0.0f);
  DCHECK_GE(luminance_b, 0.0f);
  luminance_a += 0.05f;
  luminance_b += 0.05f;
  return (luminance_a > luminance_b) ? (luminance_a / luminance_b)
                                     : (luminance_b / luminance_a);
}

float GetRelativeLuminance(SkColor color) {
  return GetRelativeLuminance4f(SkColor4f::FromColor(color));
}

float GetRelativeLuminance4f(SkColor4f color) {
  return (0.2126f * Linearize(color.fR)) + (0.7152f * Linearize(color.fG)) +
         (0.0722f * Linearize(color.fB));
}

uint8_t GetLuma(SkColor color) {
  return base::ClampRound<uint8_t>(0.299f * SkColorGetR(color) +
                                   0.587f * SkColorGetG(color) +
                                   0.114f * SkColorGetB(color));
}

void SkColorToHSL(SkColor c, HSL* hsl) {
  float r = SkColorGetR(c) / 255.0f;
  float g = SkColorGetG(c) / 255.0f;
  float b = SkColorGetB(c) / 255.0f;
  auto [vmin, vmax] = std::minmax({r, g, b});
  float delta = vmax - vmin;
  hsl->l = std::midpoint(vmin, vmax);
  if (SkColorGetR(c) == SkColorGetG(c) && SkColorGetR(c) == SkColorGetB(c)) {
    hsl->h = hsl->s = 0;
  } else {
    float dr = (((vmax - r) / 6.0f) + (delta / 2.0f)) / delta;
    float dg = (((vmax - g) / 6.0f) + (delta / 2.0f)) / delta;
    float db = (((vmax - b) / 6.0f) + (delta / 2.0f)) / delta;
    // We need to compare for the max value because comparing vmax to r, g, or b
    // can sometimes result in values overflowing registers.
    if (r >= g && r >= b)
      hsl->h = db - dg;
    else if (g >= r && g >= b)
      hsl->h = (1.0f / 3.0f) + dr - db;
    else  // (b >= r && b >= g)
      hsl->h = (2.0f / 3.0f) + dg - dr;

    if (hsl->h < 0.0f)
      ++hsl->h;
    else if (hsl->h > 1.0f)
      --hsl->h;

    hsl->s = delta / ((hsl->l < 0.5f) ? (vmax + vmin) : (2 - vmax - vmin));
  }
}

SkColor HSLToSkColor(const HSL& hsl, SkAlpha alpha) {
  float hue = hsl.h;
  float saturation = hsl.s;
  float lightness = hsl.l;

  // If there's no color, we don't care about hue and can do everything based on
  // brightness.
  if (!saturation) {
    const uint8_t light = base::ClampRound<uint8_t>(lightness * 255);
    return SkColorSetARGB(alpha, light, light, light);
  }

  float temp2 = (lightness < 0.5f)
                    ? (lightness * (1.0f + saturation))
                    : (lightness + saturation - (lightness * saturation));
  float temp1 = 2.0f * lightness - temp2;
  return SkColorSetARGB(alpha, calcHue(temp1, temp2, hue + 1.0f / 3.0f),
                        calcHue(temp1, temp2, hue),
                        calcHue(temp1, temp2, hue - 1.0f / 3.0f));
}

bool IsWithinHSLRange(const HSL& hsl,
                      const HSL& lower_bound,
                      const HSL& upper_bound) {
  DCHECK(hsl.h >= 0 && hsl.h <= 1) << hsl.h;
  DCHECK(hsl.s >= 0 && hsl.s <= 1) << hsl.s;
  DCHECK(hsl.l >= 0 && hsl.l <= 1) << hsl.l;
  DCHECK(lower_bound.h < 0 || upper_bound.h < 0 ||
         (lower_bound.h <= 1 && upper_bound.h <= lower_bound.h + 1))
      << "lower_bound.h: " << lower_bound.h
      << ", upper_bound.h: " << upper_bound.h;
  DCHECK(lower_bound.s < 0 || upper_bound.s < 0 ||
         (lower_bound.s <= upper_bound.s && upper_bound.s <= 1))
      << "lower_bound.s: " << lower_bound.s
      << ", upper_bound.s: " << upper_bound.s;
  DCHECK(lower_bound.l < 0 || upper_bound.l < 0 ||
         (lower_bound.l <= upper_bound.l && upper_bound.l <= 1))
      << "lower_bound.l: " << lower_bound.l
      << ", upper_bound.l: " << upper_bound.l;

  // If the upper hue is >1, the given hue bounds wrap around at 1.
  bool matches_hue = upper_bound.h > 1
                         ? hsl.h >= lower_bound.h || hsl.h <= upper_bound.h - 1
                         : hsl.h >= lower_bound.h && hsl.h <= upper_bound.h;
  return (upper_bound.h < 0 || lower_bound.h < 0 || matches_hue) &&
         (upper_bound.s < 0 || lower_bound.s < 0 ||
          (hsl.s >= lower_bound.s && hsl.s <= upper_bound.s)) &&
         (upper_bound.l < 0 || lower_bound.l < 0 ||
          (hsl.l >= lower_bound.l && hsl.l <= upper_bound.l));
}

void MakeHSLShiftValid(HSL* hsl) {
  if (hsl->h < 0 || hsl->h > 1)
    hsl->h = -1;
  if (hsl->s < 0 || hsl->s > 1)
    hsl->s = -1;
  if (hsl->l < 0 || hsl->l > 1)
    hsl->l = -1;
}

bool IsHSLShiftMeaningful(const HSL& hsl) {
  // -1 in any channel has no effect, and 0.5 has no effect for S/L.  A shift
  // with an effective value in ANY channel is meaningful.
  return hsl.h != -1 || (hsl.s != -1 && hsl.s != 0.5) ||
         (hsl.l != -1 && hsl.l != 0.5);
}

SkColor HSLShift(SkColor color, const HSL& shift) {
  SkAlpha alpha = SkColorGetA(color);

  if (shift.h >= 0 || shift.s >= 0) {
    HSL hsl;
    SkColorToHSL(color, &hsl);

    // Replace the hue with the tint's hue.
    if (shift.h >= 0)
      hsl.h = shift.h;

    // Change the saturation.
    if (shift.s >= 0) {
      if (shift.s <= 0.5f)
        hsl.s *= shift.s * 2.0f;
      else
        hsl.s += (1.0f - hsl.s) * ((shift.s - 0.5f) * 2.0f);
    }

    color = HSLToSkColor(hsl, alpha);
  }

  if (shift.l < 0)
    return color;

  // Lightness shifts in the style of popular image editors aren't actually
  // represented in HSL - the L value does have some effect on saturation.
  float r = static_cast<float>(SkColorGetR(color));
  float g = static_cast<float>(SkColorGetG(color));
  float b = static_cast<float>(SkColorGetB(color));
  if (shift.l <= 0.5f) {
    r *= (shift.l * 2.0f);
    g *= (shift.l * 2.0f);
    b *= (shift.l * 2.0f);
  } else {
    r += (255.0f - r) * ((shift.l - 0.5f) * 2.0f);
    g += (255.0f - g) * ((shift.l - 0.5f) * 2.0f);
    b += (255.0f - b) * ((shift.l - 0.5f) * 2.0f);
  }
  return SkColorSetARGB(alpha, base::ClampRound<U8CPU>(r),
                        base::ClampRound<U8CPU>(g), base::ClampRound<U8CPU>(b));
}

SkColor AlphaBlend(SkColor foreground, SkColor background, SkAlpha alpha) {
  return AlphaBlend(foreground, background, alpha / 255.0f);
}

SkColor AlphaBlend(SkColor foreground, SkColor background, float alpha) {
  DCHECK_GE(alpha, 0.0f);
  DCHECK_LE(alpha, 1.0f);

  if (alpha == 0.0f)
    return background;
  if (alpha == 1.0f)
    return foreground;

  int f_alpha = SkColorGetA(foreground);
  int b_alpha = SkColorGetA(background);

  float normalizer = f_alpha * alpha + b_alpha * (1.0f - alpha);
  if (normalizer == 0.0f)
    return SK_ColorTRANSPARENT;

  float f_weight = f_alpha * alpha / normalizer;
  float b_weight = b_alpha * (1.0f - alpha) / normalizer;

  float r =
      SkColorGetR(foreground) * f_weight + SkColorGetR(background) * b_weight;
  float g =
      SkColorGetG(foreground) * f_weight + SkColorGetG(background) * b_weight;
  float b =
      SkColorGetB(foreground) * f_weight + SkColorGetB(background) * b_weight;

  return SkColorSetARGB(base::ClampRound<U8CPU>(normalizer),
                        base::ClampRound<U8CPU>(r), base::ClampRound<U8CPU>(g),
                        base::ClampRound<U8CPU>(b));
}

SkColor GetResultingPaintColor(SkColor foreground, SkColor background) {
  return AlphaBlend(SkColorSetA(foreground, SK_AlphaOPAQUE), background,
                    static_cast<SkAlpha>(SkColorGetA(foreground)));
}

bool IsDark(SkColor color) {
  return GetRelativeLuminance(color) < g_luminance_midpoint;
}

SkColor GetColorWithMaxContrast(SkColor color) {
  return IsDark(color) ? SK_ColorWHITE : g_darkest_color;
}

SkColor GetEndpointColorWithMinContrast(SkColor color) {
  return IsDark(color) ? g_darkest_color : SK_ColorWHITE;
}

SkColor BlendTowardMaxContrast(SkColor color, SkAlpha alpha) {
  SkAlpha original_alpha = SkColorGetA(color);
  SkColor blended_color = AlphaBlend(GetColorWithMaxContrast(color),
                                     SkColorSetA(color, SK_AlphaOPAQUE), alpha);
  return SkColorSetA(blended_color, original_alpha);
}

SkColor PickContrastingColor(SkColor foreground1,
                             SkColor foreground2,
                             SkColor background) {
  const float background_luminance = GetRelativeLuminance(background);
  return (GetContrastRatio(GetRelativeLuminance(foreground1),
                           background_luminance) >=
          GetContrastRatio(GetRelativeLuminance(foreground2),
                           background_luminance)) ?
      foreground1 : foreground2;
}

BlendResult BlendForMinContrast(SkColor default_foreground,
                                SkColor background,
                                std::optional<SkColor> high_contrast_foreground,
                                float contrast_ratio) {
  DCHECK_EQ(SkColorGetA(background), SK_AlphaOPAQUE);
  default_foreground = GetResultingPaintColor(default_foreground, background);
  if (GetContrastRatio(default_foreground, background) >= contrast_ratio)
    return {SK_AlphaTRANSPARENT, default_foreground};
  const SkColor target_foreground = GetResultingPaintColor(
      high_contrast_foreground.value_or(GetColorWithMaxContrast(background)),
      background);

  const float background_luminance = GetRelativeLuminance(background);

  SkAlpha best_alpha = SK_AlphaOPAQUE;
  SkColor best_color = target_foreground;
  // Use int for inclusive lower bound and exclusive upper bound, reserving
  // conversion to SkAlpha for the end (reduces casts).
  for (int low = SK_AlphaTRANSPARENT, high = SK_AlphaOPAQUE + 1; low < high;) {
    const SkAlpha alpha = std::midpoint(low, high);
    const SkColor color =
        AlphaBlend(target_foreground, default_foreground, alpha);
    const float luminance = GetRelativeLuminance(color);
    const float contrast = GetContrastRatio(luminance, background_luminance);
    if (contrast >= contrast_ratio) {
      best_alpha = alpha;
      best_color = color;
      high = alpha;
    } else {
      low = alpha + 1;
    }
  }
  return {best_alpha, best_color};
}

SkColor InvertColor(SkColor color) {
  return SkColorSetARGB(SkColorGetA(color), 255 - SkColorGetR(color),
                        255 - SkColorGetG(color), 255 - SkColorGetB(color));
}

SkColor GetSysSkColor(int which) {
#if BUILDFLAG(IS_WIN)
  return skia::COLORREFToSkColor(GetSysColor(which));
#else
  NOTIMPLEMENTED();
  return SK_ColorLTGRAY;
#endif
}

SkColor DeriveDefaultIconColor(SkColor text_color) {
  // Lighten dark colors and brighten light colors. The alpha value here (0x4c)
  // is chosen to generate a value close to GoogleGrey700 from GoogleGrey900.
  return BlendTowardMaxContrast(text_color, 0x4c);
}

std::string SkColorToRgbaString(SkColor color) {
  // We convert the alpha using NumberToString because StringPrintf will use
  // locale specific formatters (e.g., use , instead of . in German).
  return base::StringPrintf(
      "rgba(%s,%s)", SkColorToRgbString(color).c_str(),
      base::NumberToString(SkColorGetA(color) / 255.0).c_str());
}

std::string SkColor4fToRgbaString(SkColor4f color) {
  return base::StringPrintf("rgba(%f, %f, %f, %f", color.fR, color.fG, color.fB,
                            color.fA);
}

std::string SkColorToRgbString(SkColor color) {
  return base::StringPrintf("%d,%d,%d", SkColorGetR(color), SkColorGetG(color),
                            SkColorGetB(color));
}

std::string SkColor4fToRgbString(SkColor4f color) {
  return base::StringPrintf("rgba(%f, %f, %f", color.fR, color.fG, color.fB);
}

SkColor SetDarkestColorForTesting(SkColor color) {
  const SkColor previous_darkest_color = g_darkest_color;
  g_darkest_color = color;

  const float dark_luminance = GetRelativeLuminance(color);
  // We want to compute |g_luminance_midpoint| such that
  // GetContrastRatio(dark_luminance, g_luminance_midpoint) ==
  // GetContrastRatio(kWhiteLuminance, g_luminance_midpoint).  The formula below
  // can be verified by plugging it into how GetContrastRatio() operates.
  g_luminance_midpoint =
      std::sqrt((dark_luminance + 0.05f) * (kWhiteLuminance + 0.05f)) - 0.05f;

  return previous_darkest_color;
}

std::tuple<float, float, float> GetLuminancesForTesting() {
  return std::make_tuple(GetRelativeLuminance(g_darkest_color),
                         g_luminance_midpoint, kWhiteLuminance);
}

}  // namespace color_utils