1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/354829279): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "ui/gfx/color_utils.h"
#include <stdint.h>
#include <algorithm>
#include <cmath>
#include <functional>
#include <numeric>
#include <ostream>
#include <vector>
#include "base/check_op.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/stringprintf.h"
#include "build/build_config.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "ui/gfx/color_palette.h"
#if BUILDFLAG(IS_WIN)
#include <windows.h>
#include "skia/ext/skia_utils_win.h"
#endif
namespace color_utils {
namespace {
// The darkest reference color in color_utils.
SkColor g_darkest_color = gfx::kGoogleGrey900;
// The luminance midpoint for determining if a color is light or dark. This is
// the value where white and g_darkest_color contrast equally. This default
// value is the midpoint given kGoogleGrey900 as the darkest color.
float g_luminance_midpoint = 0.211692036f;
constexpr float kWhiteLuminance = 1.0f;
int calcHue(float temp1, float temp2, float hue) {
if (hue < 0.0f)
++hue;
else if (hue > 1.0f)
--hue;
float result = temp1;
if (hue * 6.0f < 1.0f)
result = temp1 + (temp2 - temp1) * hue * 6.0f;
else if (hue * 2.0f < 1.0f)
result = temp2;
else if (hue * 3.0f < 2.0f)
result = temp1 + (temp2 - temp1) * (2.0f / 3.0f - hue) * 6.0f;
return base::ClampRound(result * 255);
}
// Assumes sRGB.
float Linearize(float component) {
// The W3C link in the header uses 0.03928 here. See
// https://en.wikipedia.org/wiki/SRGB#Theory_of_the_transformation for
// discussion of why we use this value rather than that one.
return (component <= 0.04045f) ? (component / 12.92f)
: pow((component + 0.055f) / 1.055f, 2.4f);
}
constexpr size_t kNumGoogleColors = 12;
constexpr SkColor kGrey[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGoogleGrey050, gfx::kGoogleGrey100,
gfx::kGoogleGrey200, gfx::kGoogleGrey300, gfx::kGoogleGrey400,
gfx::kGoogleGrey500, gfx::kGoogleGrey600, gfx::kGoogleGrey700,
gfx::kGoogleGrey800, gfx::kGoogleGrey900, gfx::kGoogleGrey900,
};
constexpr SkColor kRed[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGoogleRed050, gfx::kGoogleRed100,
gfx::kGoogleRed200, gfx::kGoogleRed300, gfx::kGoogleRed400,
gfx::kGoogleRed500, gfx::kGoogleRed600, gfx::kGoogleRed700,
gfx::kGoogleRed800, gfx::kGoogleRed900, gfx::kGoogleGrey900,
};
constexpr SkColor kOrange[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGoogleOrange050, gfx::kGoogleOrange100,
gfx::kGoogleOrange200, gfx::kGoogleOrange300, gfx::kGoogleOrange400,
gfx::kGoogleOrange500, gfx::kGoogleOrange600, gfx::kGoogleOrange700,
gfx::kGoogleOrange800, gfx::kGoogleOrange900, gfx::kGoogleGrey900,
};
constexpr SkColor kYellow[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGoogleYellow050, gfx::kGoogleYellow100,
gfx::kGoogleYellow200, gfx::kGoogleYellow300, gfx::kGoogleYellow400,
gfx::kGoogleYellow500, gfx::kGoogleYellow600, gfx::kGoogleYellow700,
gfx::kGoogleYellow800, gfx::kGoogleYellow900, gfx::kGoogleGrey900,
};
constexpr SkColor kGreen[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGoogleGreen050, gfx::kGoogleGreen100,
gfx::kGoogleGreen200, gfx::kGoogleGreen300, gfx::kGoogleGreen400,
gfx::kGoogleGreen500, gfx::kGoogleGreen600, gfx::kGoogleGreen700,
gfx::kGoogleGreen800, gfx::kGoogleGreen900, gfx::kGoogleGrey900,
};
constexpr SkColor kCyan[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGoogleCyan050, gfx::kGoogleCyan100,
gfx::kGoogleCyan200, gfx::kGoogleCyan300, gfx::kGoogleCyan400,
gfx::kGoogleCyan500, gfx::kGoogleCyan600, gfx::kGoogleCyan700,
gfx::kGoogleCyan800, gfx::kGoogleCyan900, gfx::kGoogleGrey900,
};
constexpr SkColor kBlue[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGoogleBlue050, gfx::kGoogleBlue100,
gfx::kGoogleBlue200, gfx::kGoogleBlue300, gfx::kGoogleBlue400,
gfx::kGoogleBlue500, gfx::kGoogleBlue600, gfx::kGoogleBlue700,
gfx::kGoogleBlue800, gfx::kGoogleBlue900, gfx::kGoogleGrey900,
};
constexpr SkColor kPurple[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGooglePurple050, gfx::kGooglePurple100,
gfx::kGooglePurple200, gfx::kGooglePurple300, gfx::kGooglePurple400,
gfx::kGooglePurple500, gfx::kGooglePurple600, gfx::kGooglePurple700,
gfx::kGooglePurple800, gfx::kGooglePurple900, gfx::kGoogleGrey900,
};
constexpr SkColor kMagenta[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGoogleMagenta050, gfx::kGoogleMagenta100,
gfx::kGoogleMagenta200, gfx::kGoogleMagenta300, gfx::kGoogleMagenta400,
gfx::kGoogleMagenta500, gfx::kGoogleMagenta600, gfx::kGoogleMagenta700,
gfx::kGoogleMagenta800, gfx::kGoogleMagenta900, gfx::kGoogleGrey900,
};
constexpr SkColor kPink[kNumGoogleColors] = {
SK_ColorWHITE, gfx::kGooglePink050, gfx::kGooglePink100,
gfx::kGooglePink200, gfx::kGooglePink300, gfx::kGooglePink400,
gfx::kGooglePink500, gfx::kGooglePink600, gfx::kGooglePink700,
gfx::kGooglePink800, gfx::kGooglePink900, gfx::kGoogleGrey900,
};
SkColor PickGoogleColor(const SkColor (&colors)[kNumGoogleColors],
SkColor color,
SkColor background_color_a,
SkColor background_color_b,
float min_contrast,
float max_contrast_with_nearer) {
// Sanity checks.
DCHECK_GT(kNumGoogleColors, 0u);
DCHECK_GE(min_contrast, 0.0f);
DCHECK_LE(min_contrast, max_contrast_with_nearer);
// First set up `lum_colors`, the corresponding relative luminances of
// `colors`. These could be precomputed and recorded next to `kGrey` etc. for
// some runtime speedup at the cost of maintenance pain.
float lum_colors[kNumGoogleColors];
std::ranges::transform(colors, std::begin(lum_colors), &GetRelativeLuminance);
// This function returns an iterator to the least-contrasting luminance (in
// `lum_colors`) to `lum`.
const auto find_nearest_lum_it = [&lum_colors](float lum) {
// Find the first luminance (since they're sorted decreasing) <= `lum`.
const float* it =
std::ranges::lower_bound(lum_colors, lum, std::ranges::greater());
// If applicable, check against the next greater luminance for whichever is
// lower-contrast.
if (it == std::cend(lum_colors) ||
((it != std::cbegin(lum_colors)) &&
(GetContrastRatio(lum, *it) > GetContrastRatio(*(it - 1), lum)))) {
--it;
}
return it;
};
// Compute `src_it`, the element in `lum_colors` which is closest to `color`.
const float* src_it = find_nearest_lum_it(GetRelativeLuminance(color));
// Compute the background luminances.
const bool one_bg = background_color_a == background_color_b;
const float lum_a = GetRelativeLuminance(background_color_a);
const float lum_b = one_bg ? lum_a : GetRelativeLuminance(background_color_b);
// Compute `lum_mid`, the luminance between `lum_a` and `lum_b` that contrasts
// equally with both.
const float lum_mid =
one_bg ? lum_a : (std::sqrt((lum_a + 0.05f) * (lum_b + 0.05f)) - 0.05f);
// This function returns the luminance of whichever background contrasts less
// with some given luminance (the "nearer background").
const auto bg_lum_near_lum = [&](float lum) {
return ((lum_a > lum_b) == (lum > lum_mid)) ? lum_a : lum_b;
};
// Compute the contrast of `src_it` against the nearer background.
const float nearer_bg_lum = bg_lum_near_lum(*src_it);
const float src_contrast_with_near = GetContrastRatio(*src_it, nearer_bg_lum);
// This function returns the first element E, moving from `begin` towards
// `end` (inclusive), which does not satisfy `comp(proj(E), threshold)`. In
// other words, this is basically a direction-agnostic lower_bound().
const auto first_across_threshold = [&](const float* begin, const float* end,
float threshold, auto comp,
auto proj) {
if (end >= begin) {
return std::ranges::lower_bound(begin, end, threshold, comp, proj);
}
const auto res_it_reversed = std::ranges::lower_bound(
std::make_reverse_iterator(begin + 1),
std::make_reverse_iterator(end + 1), threshold, comp, proj);
return res_it_reversed.base() - 1;
};
// Compute `res_it`, the desired result element in `lum_colors`. Start with
// `src_it`, then adjust depending on the contrast against the nearer
// background.
const float* res_it = src_it;
if (src_contrast_with_near < min_contrast) {
// Need to increase contrast. This will be done by iterating through
// `lum_colors` towards a target element with sufficient contrast. The three
// potential targets are the two endpoints and (if there are two
// backgrounds) the element nearest `lum_mid`.
std::vector<const float*> targets = {std::cbegin(lum_colors),
std::cend(lum_colors) - 1};
const bool src_darker_than_bg_a = *src_it < lum_a;
if (one_bg) {
// To avoid inverting the relationship between source and background,
// prefer the endpoint on the "same side" of the background as the source,
// then the other endpoint.
if (src_darker_than_bg_a) {
std::swap(targets[0], targets[1]);
}
} else if (src_darker_than_bg_a == (*src_it < lum_b)) {
// The source is either lighter or darker than both backgrounds, so prefer
// the endpoint on the "same side", then the midpoint, then the other
// endpoint.
if (src_darker_than_bg_a) {
std::swap(targets[0], targets[1]);
}
targets.insert(targets.cbegin() + 1, find_nearest_lum_it(lum_mid));
} else {
// The source is between the two backgrounds, so prefer the midpoint, then
// the endpoint on the "same side" of the midpoint as the source, then the
// other endpoint.
if (*src_it < lum_mid) {
std::swap(targets[0], targets[1]);
}
targets.insert(targets.cbegin(), find_nearest_lum_it(lum_mid));
}
// Set `targ_it` to the first target in the priority list that has at least
// `min_contrast` against the nearer background. If none of the targets meet
// the contrast threshold, use the one with the best contrast.
const float* targ_it;
float best_contrast = 0;
const auto proj = [&](float lum) {
return GetContrastRatio(lum, bg_lum_near_lum(lum));
};
for (const float* elem : targets) {
const float contrast = proj(*elem);
if (contrast > best_contrast) {
targ_it = elem;
best_contrast = contrast;
if (best_contrast >= min_contrast) {
break;
}
}
}
if (best_contrast < min_contrast) {
// Couldn't meet the threshold, so `targ_it` is the best possible result.
res_it = targ_it;
} else {
// `targ_it` has sufficient contrast. Since `src_it` is already known to
// have insufficient contrast, move it one step towards `targ_it`.
src_it = (targ_it < src_it) ? (src_it - 1) : (src_it + 1);
// Now keep moving towards `targ_it` until contrast is sufficient.
res_it = first_across_threshold(src_it, targ_it, min_contrast,
std::ranges::less(), proj);
}
} else if (src_contrast_with_near > max_contrast_with_nearer) {
// Need to reduce contrast if possible by moving toward the nearer
// background. Compute `targ_it`, the element in `lum_colors` whose
// luminance is closest to the nearer background while staying on the "same
// side" as `src_it`. (This intentionally allows `targ_it` to match the
// nearer background's luminance exactly, in case `min_contrast == 0`.)
const auto* targ_it =
(*src_it > nearer_bg_lum)
? (std::upper_bound(src_it, std::cend(lum_colors), nearer_bg_lum,
std::greater<>()) -
1)
: std::lower_bound(std::cbegin(lum_colors), src_it, nearer_bg_lum,
std::greater<>());
// Ensure `targ_it` reaches `min_contrast` against the nearer background by
// moving toward `src_it`.
const auto proj = [&](float lum) {
return GetContrastRatio(lum, nearer_bg_lum);
};
targ_it = first_across_threshold(targ_it, src_it, min_contrast,
std::ranges::less(), proj);
// Now move `res_it` towards `targ_it` until contrast is sufficiently low.
res_it = first_across_threshold(src_it, targ_it, max_contrast_with_nearer,
std::ranges::greater(), proj);
}
// Convert `res_it` back to a color.
return colors[res_it - std::begin(lum_colors)];
}
template <typename T>
SkColor PickGoogleColorImpl(SkColor color, T pick_color) {
HSL hsl;
SkColorToHSL(color, &hsl);
if (hsl.s < 0.1) {
// Low saturation, let this be a grey.
return pick_color(kGrey);
}
// Map hue to angles for readability.
const float color_angle = hsl.h * 360;
// Hues in comments below are of the corresponding kGoogleXXX500 color.
// Every cutoff is a halfway point between the two neighboring hue values to
// provide as fair of a representation as possible for what color should be
// used.
// RED: 4
if (color_angle < 15)
return pick_color(kRed);
// ORANGE: 26
if (color_angle < 35)
return pick_color(kOrange);
// YELLOW: 44
if (color_angle < 90)
return pick_color(kYellow);
// GREEN: 136
if (color_angle < 163)
return pick_color(kGreen);
// CYAN: 189
// In dark mode, the Mac system blue hue is right on the border between a
// kGoogleCyan and kGoogleBlue color, so the cutoff point is tweaked to make
// it map to a kGoogleBlue color.
if (color_angle < 202)
return pick_color(kCyan);
// BLUE: 217
if (color_angle < 245)
return pick_color(kBlue);
// PURPLE: 272
if (color_angle < 284)
return pick_color(kPurple);
// MAGENTA: 295
if (color_angle < 311)
return pick_color(kMagenta);
// PINK: 326
if (color_angle < 345)
return pick_color(kPink);
// End of hue wheel is red.
return pick_color(kRed);
}
} // namespace
SkColor PickGoogleColor(SkColor color,
SkColor background_color,
float min_contrast,
float max_contrast) {
const auto pick_color = [&](const SkColor(&colors)[kNumGoogleColors]) {
return PickGoogleColor(colors, color, background_color, background_color,
min_contrast, max_contrast);
};
return PickGoogleColorImpl(color, pick_color);
}
SkColor PickGoogleColorTwoBackgrounds(SkColor color,
SkColor background_color_a,
SkColor background_color_b,
float min_contrast,
float max_contrast_with_nearer) {
const auto pick_color = [&](const SkColor(&colors)[kNumGoogleColors]) {
return PickGoogleColor(colors, color, background_color_a,
background_color_b, min_contrast,
max_contrast_with_nearer);
};
return PickGoogleColorImpl(color, pick_color);
}
float GetContrastRatio(SkColor color_a, SkColor color_b) {
return GetContrastRatio(GetRelativeLuminance(color_a),
GetRelativeLuminance(color_b));
}
float GetContrastRatio(SkColor4f color_a, SkColor4f color_b) {
return GetContrastRatio(GetRelativeLuminance4f(color_a),
GetRelativeLuminance4f(color_b));
}
float GetContrastRatio(float luminance_a, float luminance_b) {
DCHECK_GE(luminance_a, 0.0f);
DCHECK_GE(luminance_b, 0.0f);
luminance_a += 0.05f;
luminance_b += 0.05f;
return (luminance_a > luminance_b) ? (luminance_a / luminance_b)
: (luminance_b / luminance_a);
}
float GetRelativeLuminance(SkColor color) {
return GetRelativeLuminance4f(SkColor4f::FromColor(color));
}
float GetRelativeLuminance4f(SkColor4f color) {
return (0.2126f * Linearize(color.fR)) + (0.7152f * Linearize(color.fG)) +
(0.0722f * Linearize(color.fB));
}
uint8_t GetLuma(SkColor color) {
return base::ClampRound<uint8_t>(0.299f * SkColorGetR(color) +
0.587f * SkColorGetG(color) +
0.114f * SkColorGetB(color));
}
void SkColorToHSL(SkColor c, HSL* hsl) {
float r = SkColorGetR(c) / 255.0f;
float g = SkColorGetG(c) / 255.0f;
float b = SkColorGetB(c) / 255.0f;
auto [vmin, vmax] = std::minmax({r, g, b});
float delta = vmax - vmin;
hsl->l = std::midpoint(vmin, vmax);
if (SkColorGetR(c) == SkColorGetG(c) && SkColorGetR(c) == SkColorGetB(c)) {
hsl->h = hsl->s = 0;
} else {
float dr = (((vmax - r) / 6.0f) + (delta / 2.0f)) / delta;
float dg = (((vmax - g) / 6.0f) + (delta / 2.0f)) / delta;
float db = (((vmax - b) / 6.0f) + (delta / 2.0f)) / delta;
// We need to compare for the max value because comparing vmax to r, g, or b
// can sometimes result in values overflowing registers.
if (r >= g && r >= b)
hsl->h = db - dg;
else if (g >= r && g >= b)
hsl->h = (1.0f / 3.0f) + dr - db;
else // (b >= r && b >= g)
hsl->h = (2.0f / 3.0f) + dg - dr;
if (hsl->h < 0.0f)
++hsl->h;
else if (hsl->h > 1.0f)
--hsl->h;
hsl->s = delta / ((hsl->l < 0.5f) ? (vmax + vmin) : (2 - vmax - vmin));
}
}
SkColor HSLToSkColor(const HSL& hsl, SkAlpha alpha) {
float hue = hsl.h;
float saturation = hsl.s;
float lightness = hsl.l;
// If there's no color, we don't care about hue and can do everything based on
// brightness.
if (!saturation) {
const uint8_t light = base::ClampRound<uint8_t>(lightness * 255);
return SkColorSetARGB(alpha, light, light, light);
}
float temp2 = (lightness < 0.5f)
? (lightness * (1.0f + saturation))
: (lightness + saturation - (lightness * saturation));
float temp1 = 2.0f * lightness - temp2;
return SkColorSetARGB(alpha, calcHue(temp1, temp2, hue + 1.0f / 3.0f),
calcHue(temp1, temp2, hue),
calcHue(temp1, temp2, hue - 1.0f / 3.0f));
}
bool IsWithinHSLRange(const HSL& hsl,
const HSL& lower_bound,
const HSL& upper_bound) {
DCHECK(hsl.h >= 0 && hsl.h <= 1) << hsl.h;
DCHECK(hsl.s >= 0 && hsl.s <= 1) << hsl.s;
DCHECK(hsl.l >= 0 && hsl.l <= 1) << hsl.l;
DCHECK(lower_bound.h < 0 || upper_bound.h < 0 ||
(lower_bound.h <= 1 && upper_bound.h <= lower_bound.h + 1))
<< "lower_bound.h: " << lower_bound.h
<< ", upper_bound.h: " << upper_bound.h;
DCHECK(lower_bound.s < 0 || upper_bound.s < 0 ||
(lower_bound.s <= upper_bound.s && upper_bound.s <= 1))
<< "lower_bound.s: " << lower_bound.s
<< ", upper_bound.s: " << upper_bound.s;
DCHECK(lower_bound.l < 0 || upper_bound.l < 0 ||
(lower_bound.l <= upper_bound.l && upper_bound.l <= 1))
<< "lower_bound.l: " << lower_bound.l
<< ", upper_bound.l: " << upper_bound.l;
// If the upper hue is >1, the given hue bounds wrap around at 1.
bool matches_hue = upper_bound.h > 1
? hsl.h >= lower_bound.h || hsl.h <= upper_bound.h - 1
: hsl.h >= lower_bound.h && hsl.h <= upper_bound.h;
return (upper_bound.h < 0 || lower_bound.h < 0 || matches_hue) &&
(upper_bound.s < 0 || lower_bound.s < 0 ||
(hsl.s >= lower_bound.s && hsl.s <= upper_bound.s)) &&
(upper_bound.l < 0 || lower_bound.l < 0 ||
(hsl.l >= lower_bound.l && hsl.l <= upper_bound.l));
}
void MakeHSLShiftValid(HSL* hsl) {
if (hsl->h < 0 || hsl->h > 1)
hsl->h = -1;
if (hsl->s < 0 || hsl->s > 1)
hsl->s = -1;
if (hsl->l < 0 || hsl->l > 1)
hsl->l = -1;
}
bool IsHSLShiftMeaningful(const HSL& hsl) {
// -1 in any channel has no effect, and 0.5 has no effect for S/L. A shift
// with an effective value in ANY channel is meaningful.
return hsl.h != -1 || (hsl.s != -1 && hsl.s != 0.5) ||
(hsl.l != -1 && hsl.l != 0.5);
}
SkColor HSLShift(SkColor color, const HSL& shift) {
SkAlpha alpha = SkColorGetA(color);
if (shift.h >= 0 || shift.s >= 0) {
HSL hsl;
SkColorToHSL(color, &hsl);
// Replace the hue with the tint's hue.
if (shift.h >= 0)
hsl.h = shift.h;
// Change the saturation.
if (shift.s >= 0) {
if (shift.s <= 0.5f)
hsl.s *= shift.s * 2.0f;
else
hsl.s += (1.0f - hsl.s) * ((shift.s - 0.5f) * 2.0f);
}
color = HSLToSkColor(hsl, alpha);
}
if (shift.l < 0)
return color;
// Lightness shifts in the style of popular image editors aren't actually
// represented in HSL - the L value does have some effect on saturation.
float r = static_cast<float>(SkColorGetR(color));
float g = static_cast<float>(SkColorGetG(color));
float b = static_cast<float>(SkColorGetB(color));
if (shift.l <= 0.5f) {
r *= (shift.l * 2.0f);
g *= (shift.l * 2.0f);
b *= (shift.l * 2.0f);
} else {
r += (255.0f - r) * ((shift.l - 0.5f) * 2.0f);
g += (255.0f - g) * ((shift.l - 0.5f) * 2.0f);
b += (255.0f - b) * ((shift.l - 0.5f) * 2.0f);
}
return SkColorSetARGB(alpha, base::ClampRound<U8CPU>(r),
base::ClampRound<U8CPU>(g), base::ClampRound<U8CPU>(b));
}
SkColor AlphaBlend(SkColor foreground, SkColor background, SkAlpha alpha) {
return AlphaBlend(foreground, background, alpha / 255.0f);
}
SkColor AlphaBlend(SkColor foreground, SkColor background, float alpha) {
DCHECK_GE(alpha, 0.0f);
DCHECK_LE(alpha, 1.0f);
if (alpha == 0.0f)
return background;
if (alpha == 1.0f)
return foreground;
int f_alpha = SkColorGetA(foreground);
int b_alpha = SkColorGetA(background);
float normalizer = f_alpha * alpha + b_alpha * (1.0f - alpha);
if (normalizer == 0.0f)
return SK_ColorTRANSPARENT;
float f_weight = f_alpha * alpha / normalizer;
float b_weight = b_alpha * (1.0f - alpha) / normalizer;
float r =
SkColorGetR(foreground) * f_weight + SkColorGetR(background) * b_weight;
float g =
SkColorGetG(foreground) * f_weight + SkColorGetG(background) * b_weight;
float b =
SkColorGetB(foreground) * f_weight + SkColorGetB(background) * b_weight;
return SkColorSetARGB(base::ClampRound<U8CPU>(normalizer),
base::ClampRound<U8CPU>(r), base::ClampRound<U8CPU>(g),
base::ClampRound<U8CPU>(b));
}
SkColor GetResultingPaintColor(SkColor foreground, SkColor background) {
return AlphaBlend(SkColorSetA(foreground, SK_AlphaOPAQUE), background,
static_cast<SkAlpha>(SkColorGetA(foreground)));
}
bool IsDark(SkColor color) {
return GetRelativeLuminance(color) < g_luminance_midpoint;
}
SkColor GetColorWithMaxContrast(SkColor color) {
return IsDark(color) ? SK_ColorWHITE : g_darkest_color;
}
SkColor GetEndpointColorWithMinContrast(SkColor color) {
return IsDark(color) ? g_darkest_color : SK_ColorWHITE;
}
SkColor BlendTowardMaxContrast(SkColor color, SkAlpha alpha) {
SkAlpha original_alpha = SkColorGetA(color);
SkColor blended_color = AlphaBlend(GetColorWithMaxContrast(color),
SkColorSetA(color, SK_AlphaOPAQUE), alpha);
return SkColorSetA(blended_color, original_alpha);
}
SkColor PickContrastingColor(SkColor foreground1,
SkColor foreground2,
SkColor background) {
const float background_luminance = GetRelativeLuminance(background);
return (GetContrastRatio(GetRelativeLuminance(foreground1),
background_luminance) >=
GetContrastRatio(GetRelativeLuminance(foreground2),
background_luminance)) ?
foreground1 : foreground2;
}
BlendResult BlendForMinContrast(SkColor default_foreground,
SkColor background,
std::optional<SkColor> high_contrast_foreground,
float contrast_ratio) {
DCHECK_EQ(SkColorGetA(background), SK_AlphaOPAQUE);
default_foreground = GetResultingPaintColor(default_foreground, background);
if (GetContrastRatio(default_foreground, background) >= contrast_ratio)
return {SK_AlphaTRANSPARENT, default_foreground};
const SkColor target_foreground = GetResultingPaintColor(
high_contrast_foreground.value_or(GetColorWithMaxContrast(background)),
background);
const float background_luminance = GetRelativeLuminance(background);
SkAlpha best_alpha = SK_AlphaOPAQUE;
SkColor best_color = target_foreground;
// Use int for inclusive lower bound and exclusive upper bound, reserving
// conversion to SkAlpha for the end (reduces casts).
for (int low = SK_AlphaTRANSPARENT, high = SK_AlphaOPAQUE + 1; low < high;) {
const SkAlpha alpha = std::midpoint(low, high);
const SkColor color =
AlphaBlend(target_foreground, default_foreground, alpha);
const float luminance = GetRelativeLuminance(color);
const float contrast = GetContrastRatio(luminance, background_luminance);
if (contrast >= contrast_ratio) {
best_alpha = alpha;
best_color = color;
high = alpha;
} else {
low = alpha + 1;
}
}
return {best_alpha, best_color};
}
SkColor InvertColor(SkColor color) {
return SkColorSetARGB(SkColorGetA(color), 255 - SkColorGetR(color),
255 - SkColorGetG(color), 255 - SkColorGetB(color));
}
SkColor GetSysSkColor(int which) {
#if BUILDFLAG(IS_WIN)
return skia::COLORREFToSkColor(GetSysColor(which));
#else
NOTIMPLEMENTED();
return SK_ColorLTGRAY;
#endif
}
SkColor DeriveDefaultIconColor(SkColor text_color) {
// Lighten dark colors and brighten light colors. The alpha value here (0x4c)
// is chosen to generate a value close to GoogleGrey700 from GoogleGrey900.
return BlendTowardMaxContrast(text_color, 0x4c);
}
std::string SkColorToRgbaString(SkColor color) {
// We convert the alpha using NumberToString because StringPrintf will use
// locale specific formatters (e.g., use , instead of . in German).
return base::StringPrintf(
"rgba(%s,%s)", SkColorToRgbString(color).c_str(),
base::NumberToString(SkColorGetA(color) / 255.0).c_str());
}
std::string SkColor4fToRgbaString(SkColor4f color) {
return base::StringPrintf("rgba(%f, %f, %f, %f", color.fR, color.fG, color.fB,
color.fA);
}
std::string SkColorToRgbString(SkColor color) {
return base::StringPrintf("%d,%d,%d", SkColorGetR(color), SkColorGetG(color),
SkColorGetB(color));
}
std::string SkColor4fToRgbString(SkColor4f color) {
return base::StringPrintf("rgba(%f, %f, %f", color.fR, color.fG, color.fB);
}
SkColor SetDarkestColorForTesting(SkColor color) {
const SkColor previous_darkest_color = g_darkest_color;
g_darkest_color = color;
const float dark_luminance = GetRelativeLuminance(color);
// We want to compute |g_luminance_midpoint| such that
// GetContrastRatio(dark_luminance, g_luminance_midpoint) ==
// GetContrastRatio(kWhiteLuminance, g_luminance_midpoint). The formula below
// can be verified by plugging it into how GetContrastRatio() operates.
g_luminance_midpoint =
std::sqrt((dark_luminance + 0.05f) * (kWhiteLuminance + 0.05f)) - 0.05f;
return previous_darkest_color;
}
std::tuple<float, float, float> GetLuminancesForTesting() {
return std::make_tuple(GetRelativeLuminance(g_darkest_color),
g_luminance_midpoint, kWhiteLuminance);
}
} // namespace color_utils
|