1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/geometry/cubic_bezier.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include "base/check_op.h"
namespace gfx {
namespace {
const int kMaxNewtonIterations = 4;
} // namespace
static const double kBezierEpsilon = 1e-7;
double CubicBezier::ToFinite(double value) {
// TODO(crbug.com/40808348): We can clamp this in numeric operation helper
// function like ClampedNumeric.
if (std::isinf(value)) {
if (value > 0)
return std::numeric_limits<double>::max();
return std::numeric_limits<double>::lowest();
}
return value;
}
CubicBezier::CubicBezier(double p1x, double p1y, double p2x, double p2y) {
InitCoefficients(p1x, p1y, p2x, p2y);
InitGradients(p1x, p1y, p2x, p2y);
InitRange(p1y, p2y);
InitSpline();
}
CubicBezier::CubicBezier(const CubicBezier& other) = default;
void CubicBezier::InitCoefficients(double p1x,
double p1y,
double p2x,
double p2y) {
// Calculate the polynomial coefficients, implicit first and last control
// points are (0,0) and (1,1).
cx_ = 3.0 * p1x;
bx_ = 3.0 * (p2x - p1x) - cx_;
ax_ = 1.0 - cx_ - bx_;
cy_ = ToFinite(3.0 * p1y);
by_ = ToFinite(3.0 * (p2y - p1y) - cy_);
ay_ = ToFinite(1.0 - cy_ - by_);
#ifndef NDEBUG
// Bezier curves with x-coordinates outside the range [0,1] for internal
// control points may have multiple values for t for a given value of x.
// In this case, calls to SolveCurveX may produce ambiguous results.
monotonically_increasing_ = p1x >= 0 && p1x <= 1 && p2x >= 0 && p2x <= 1;
#endif
}
void CubicBezier::InitGradients(double p1x,
double p1y,
double p2x,
double p2y) {
// End-point gradients are used to calculate timing function results
// outside the range [0, 1].
//
// There are four possibilities for the gradient at each end:
// (1) the closest control point is not horizontally coincident with regard to
// (0, 0) or (1, 1). In this case the line between the end point and
// the control point is tangent to the bezier at the end point.
// (2) the closest control point is coincident with the end point. In
// this case the line between the end point and the far control
// point is tangent to the bezier at the end point.
// (3) both internal control points are coincident with an endpoint. There
// are two special case that fall into this category:
// CubicBezier(0, 0, 0, 0) and CubicBezier(1, 1, 1, 1). Both are
// equivalent to linear.
// (4) the closest control point is horizontally coincident with the end
// point, but vertically distinct. In this case the gradient at the
// end point is Infinite. However, this causes issues when
// interpolating. As a result, we break down to a simple case of
// 0 gradient under these conditions.
if (p1x > 0)
start_gradient_ = p1y / p1x;
else if (!p1y && p2x > 0)
start_gradient_ = p2y / p2x;
else if (!p1y && !p2y)
start_gradient_ = 1;
else
start_gradient_ = 0;
if (p2x < 1)
end_gradient_ = (p2y - 1) / (p2x - 1);
else if (p2y == 1 && p1x < 1)
end_gradient_ = (p1y - 1) / (p1x - 1);
else if (p2y == 1 && p1y == 1)
end_gradient_ = 1;
else
end_gradient_ = 0;
}
// This works by taking taking the derivative of the cubic bezier, on the y
// axis. We can then solve for where the derivative is zero to find the min
// and max distance along the line. We the have to solve those in terms of time
// rather than distance on the x-axis
void CubicBezier::InitRange(double p1y, double p2y) {
range_min_ = 0;
range_max_ = 1;
if (0 <= p1y && p1y < 1 && 0 <= p2y && p2y <= 1)
return;
const double epsilon = kBezierEpsilon;
// Represent the function's derivative in the form at^2 + bt + c
// as in sampleCurveDerivativeY.
// (Technically this is (dy/dt)*(1/3), which is suitable for finding zeros
// but does not actually give the slope of the curve.)
const double a = 3.0 * ay_;
const double b = 2.0 * by_;
const double c = cy_;
// Check if the derivative is constant.
if (std::abs(a) < epsilon && std::abs(b) < epsilon)
return;
// Zeros of the function's derivative.
double t1 = 0;
double t2 = 0;
if (std::abs(a) < epsilon) {
// The function's derivative is linear.
t1 = -c / b;
} else {
// The function's derivative is a quadratic. We find the zeros of this
// quadratic using the quadratic formula.
double discriminant = b * b - 4 * a * c;
if (discriminant < 0)
return;
double discriminant_sqrt = sqrt(discriminant);
t1 = (-b + discriminant_sqrt) / (2 * a);
t2 = (-b - discriminant_sqrt) / (2 * a);
}
double sol1 = 0;
double sol2 = 0;
// If the solution is in the range [0,1] then we include it, otherwise we
// ignore it.
// An interesting fact about these beziers is that they are only
// actually evaluated in [0,1]. After that we take the tangent at that point
// and linearly project it out.
if (0 < t1 && t1 < 1)
sol1 = SampleCurveY(t1);
if (0 < t2 && t2 < 1)
sol2 = SampleCurveY(t2);
range_min_ = std::min({range_min_, sol1, sol2});
range_max_ = std::max({range_max_, sol1, sol2});
}
void CubicBezier::InitSpline() {
double delta_t = 1.0 / (CUBIC_BEZIER_SPLINE_SAMPLES - 1);
for (int i = 0; i < CUBIC_BEZIER_SPLINE_SAMPLES; i++) {
spline_samples_[i] = SampleCurveX(i * delta_t);
}
}
double CubicBezier::GetDefaultEpsilon() {
return kBezierEpsilon;
}
double CubicBezier::SolveCurveX(double x, double epsilon) const {
DCHECK_GE(x, 0.0);
DCHECK_LE(x, 1.0);
double t0;
double t1;
double t2 = x;
double x2;
double d2;
int i;
#ifndef NDEBUG
DCHECK(monotonically_increasing_);
#endif
// Linear interpolation of spline curve for initial guess.
double delta_t = 1.0 / (CUBIC_BEZIER_SPLINE_SAMPLES - 1);
for (i = 1; i < CUBIC_BEZIER_SPLINE_SAMPLES; i++) {
if (x <= spline_samples_[i]) {
t1 = delta_t * i;
t0 = t1 - delta_t;
t2 = t0 + (t1 - t0) * (x - spline_samples_[i - 1]) /
(spline_samples_[i] - spline_samples_[i - 1]);
break;
}
}
// Perform a few iterations of Newton's method -- normally very fast.
// See https://en.wikipedia.org/wiki/Newton%27s_method.
double newton_epsilon = std::min(kBezierEpsilon, epsilon);
for (i = 0; i < kMaxNewtonIterations; i++) {
x2 = SampleCurveX(t2) - x;
if (fabs(x2) < newton_epsilon)
return t2;
d2 = SampleCurveDerivativeX(t2);
if (fabs(d2) < kBezierEpsilon)
break;
t2 = t2 - x2 / d2;
}
if (fabs(x2) < epsilon)
return t2;
// Fall back to the bisection method for reliability.
while (t0 < t1) {
x2 = SampleCurveX(t2);
if (fabs(x2 - x) < epsilon)
return t2;
if (x > x2)
t0 = t2;
else
t1 = t2;
t2 = (t1 + t0) * .5;
}
// Failure.
return t2;
}
double CubicBezier::Solve(double x) const {
return SolveWithEpsilon(x, kBezierEpsilon);
}
double CubicBezier::SlopeWithEpsilon(double x, double epsilon) const {
x = std::clamp(x, 0.0, 1.0);
double t = SolveCurveX(x, epsilon);
double dx = SampleCurveDerivativeX(t);
double dy = SampleCurveDerivativeY(t);
// TODO(crbug.com/40207101): We should clamp NaN to a proper value.
// Please see the issue for detail.
if (!dx && !dy)
return 0;
return ToFinite(dy / dx);
}
double CubicBezier::Slope(double x) const {
return SlopeWithEpsilon(x, kBezierEpsilon);
}
double CubicBezier::GetX1() const {
return cx_ / 3.0;
}
double CubicBezier::GetY1() const {
return cy_ / 3.0;
}
double CubicBezier::GetX2() const {
return (bx_ + cx_) / 3.0 + GetX1();
}
double CubicBezier::GetY2() const {
return (by_ + cy_) / 3.0 + GetY1();
}
} // namespace gfx
|