File: cubic_bezier.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (275 lines) | stat: -rw-r--r-- 8,050 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.


#include "ui/gfx/geometry/cubic_bezier.h"

#include <algorithm>
#include <cmath>
#include <limits>

#include "base/check_op.h"

namespace gfx {

namespace {

const int kMaxNewtonIterations = 4;

}  // namespace

static const double kBezierEpsilon = 1e-7;

double CubicBezier::ToFinite(double value) {
  // TODO(crbug.com/40808348): We can clamp this in numeric operation helper
  // function like ClampedNumeric.
  if (std::isinf(value)) {
    if (value > 0)
      return std::numeric_limits<double>::max();
    return std::numeric_limits<double>::lowest();
  }
  return value;
}

CubicBezier::CubicBezier(double p1x, double p1y, double p2x, double p2y) {
  InitCoefficients(p1x, p1y, p2x, p2y);
  InitGradients(p1x, p1y, p2x, p2y);
  InitRange(p1y, p2y);
  InitSpline();
}

CubicBezier::CubicBezier(const CubicBezier& other) = default;

void CubicBezier::InitCoefficients(double p1x,
                                   double p1y,
                                   double p2x,
                                   double p2y) {
  // Calculate the polynomial coefficients, implicit first and last control
  // points are (0,0) and (1,1).
  cx_ = 3.0 * p1x;
  bx_ = 3.0 * (p2x - p1x) - cx_;
  ax_ = 1.0 - cx_ - bx_;

  cy_ = ToFinite(3.0 * p1y);
  by_ = ToFinite(3.0 * (p2y - p1y) - cy_);
  ay_ = ToFinite(1.0 - cy_ - by_);

#ifndef NDEBUG
  // Bezier curves with x-coordinates outside the range [0,1] for internal
  // control points may have multiple values for t for a given value of x.
  // In this case, calls to SolveCurveX may produce ambiguous results.
  monotonically_increasing_ = p1x >= 0 && p1x <= 1 && p2x >= 0 && p2x <= 1;
#endif
}

void CubicBezier::InitGradients(double p1x,
                                double p1y,
                                double p2x,
                                double p2y) {
  // End-point gradients are used to calculate timing function results
  // outside the range [0, 1].
  //
  // There are four possibilities for the gradient at each end:
  // (1) the closest control point is not horizontally coincident with regard to
  //     (0, 0) or (1, 1). In this case the line between the end point and
  //     the control point is tangent to the bezier at the end point.
  // (2) the closest control point is coincident with the end point. In
  //     this case the line between the end point and the far control
  //     point is tangent to the bezier at the end point.
  // (3) both internal control points are coincident with an endpoint. There
  //     are two special case that fall into this category:
  //     CubicBezier(0, 0, 0, 0) and CubicBezier(1, 1, 1, 1). Both are
  //     equivalent to linear.
  // (4) the closest control point is horizontally coincident with the end
  //     point, but vertically distinct. In this case the gradient at the
  //     end point is Infinite. However, this causes issues when
  //     interpolating. As a result, we break down to a simple case of
  //     0 gradient under these conditions.

  if (p1x > 0)
    start_gradient_ = p1y / p1x;
  else if (!p1y && p2x > 0)
    start_gradient_ = p2y / p2x;
  else if (!p1y && !p2y)
    start_gradient_ = 1;
  else
    start_gradient_ = 0;

  if (p2x < 1)
    end_gradient_ = (p2y - 1) / (p2x - 1);
  else if (p2y == 1 && p1x < 1)
    end_gradient_ = (p1y - 1) / (p1x - 1);
  else if (p2y == 1 && p1y == 1)
    end_gradient_ = 1;
  else
    end_gradient_ = 0;
}

// This works by taking taking the derivative of the cubic bezier, on the y
// axis. We can then solve for where the derivative is zero to find the min
// and max distance along the line. We the have to solve those in terms of time
// rather than distance on the x-axis
void CubicBezier::InitRange(double p1y, double p2y) {
  range_min_ = 0;
  range_max_ = 1;
  if (0 <= p1y && p1y < 1 && 0 <= p2y && p2y <= 1)
    return;

  const double epsilon = kBezierEpsilon;

  // Represent the function's derivative in the form at^2 + bt + c
  // as in sampleCurveDerivativeY.
  // (Technically this is (dy/dt)*(1/3), which is suitable for finding zeros
  // but does not actually give the slope of the curve.)
  const double a = 3.0 * ay_;
  const double b = 2.0 * by_;
  const double c = cy_;

  // Check if the derivative is constant.
  if (std::abs(a) < epsilon && std::abs(b) < epsilon)
    return;

  // Zeros of the function's derivative.
  double t1 = 0;
  double t2 = 0;

  if (std::abs(a) < epsilon) {
    // The function's derivative is linear.
    t1 = -c / b;
  } else {
    // The function's derivative is a quadratic. We find the zeros of this
    // quadratic using the quadratic formula.
    double discriminant = b * b - 4 * a * c;
    if (discriminant < 0)
      return;
    double discriminant_sqrt = sqrt(discriminant);
    t1 = (-b + discriminant_sqrt) / (2 * a);
    t2 = (-b - discriminant_sqrt) / (2 * a);
  }

  double sol1 = 0;
  double sol2 = 0;

  // If the solution is in the range [0,1] then we include it, otherwise we
  // ignore it.

  // An interesting fact about these beziers is that they are only
  // actually evaluated in [0,1]. After that we take the tangent at that point
  // and linearly project it out.
  if (0 < t1 && t1 < 1)
    sol1 = SampleCurveY(t1);

  if (0 < t2 && t2 < 1)
    sol2 = SampleCurveY(t2);

  range_min_ = std::min({range_min_, sol1, sol2});
  range_max_ = std::max({range_max_, sol1, sol2});
}

void CubicBezier::InitSpline() {
  double delta_t = 1.0 / (CUBIC_BEZIER_SPLINE_SAMPLES - 1);
  for (int i = 0; i < CUBIC_BEZIER_SPLINE_SAMPLES; i++) {
    spline_samples_[i] = SampleCurveX(i * delta_t);
  }
}

double CubicBezier::GetDefaultEpsilon() {
  return kBezierEpsilon;
}

double CubicBezier::SolveCurveX(double x, double epsilon) const {
  DCHECK_GE(x, 0.0);
  DCHECK_LE(x, 1.0);

  double t0;
  double t1;
  double t2 = x;
  double x2;
  double d2;
  int i;

#ifndef NDEBUG
  DCHECK(monotonically_increasing_);
#endif

  // Linear interpolation of spline curve for initial guess.
  double delta_t = 1.0 / (CUBIC_BEZIER_SPLINE_SAMPLES - 1);
  for (i = 1; i < CUBIC_BEZIER_SPLINE_SAMPLES; i++) {
    if (x <= spline_samples_[i]) {
      t1 = delta_t * i;
      t0 = t1 - delta_t;
      t2 = t0 + (t1 - t0) * (x - spline_samples_[i - 1]) /
                    (spline_samples_[i] - spline_samples_[i - 1]);
      break;
    }
  }

  // Perform a few iterations of Newton's method -- normally very fast.
  // See https://en.wikipedia.org/wiki/Newton%27s_method.
  double newton_epsilon = std::min(kBezierEpsilon, epsilon);
  for (i = 0; i < kMaxNewtonIterations; i++) {
    x2 = SampleCurveX(t2) - x;
    if (fabs(x2) < newton_epsilon)
      return t2;
    d2 = SampleCurveDerivativeX(t2);
    if (fabs(d2) < kBezierEpsilon)
      break;
    t2 = t2 - x2 / d2;
  }
  if (fabs(x2) < epsilon)
    return t2;

  // Fall back to the bisection method for reliability.
  while (t0 < t1) {
    x2 = SampleCurveX(t2);
    if (fabs(x2 - x) < epsilon)
      return t2;
    if (x > x2)
      t0 = t2;
    else
      t1 = t2;
    t2 = (t1 + t0) * .5;
  }

  // Failure.
  return t2;
}

double CubicBezier::Solve(double x) const {
  return SolveWithEpsilon(x, kBezierEpsilon);
}

double CubicBezier::SlopeWithEpsilon(double x, double epsilon) const {
  x = std::clamp(x, 0.0, 1.0);
  double t = SolveCurveX(x, epsilon);
  double dx = SampleCurveDerivativeX(t);
  double dy = SampleCurveDerivativeY(t);
  // TODO(crbug.com/40207101): We should clamp NaN to a proper value.
  // Please see the issue for detail.
  if (!dx && !dy)
    return 0;
  return ToFinite(dy / dx);
}

double CubicBezier::Slope(double x) const {
  return SlopeWithEpsilon(x, kBezierEpsilon);
}

double CubicBezier::GetX1() const {
  return cx_ / 3.0;
}

double CubicBezier::GetY1() const {
  return cy_ / 3.0;
}

double CubicBezier::GetX2() const {
  return (bx_ + cx_) / 3.0 + GetX1();
}

double CubicBezier::GetY2() const {
  return (by_ + cy_) / 3.0 + GetY1();
}

}  // namespace gfx