File: cubic_bezier.h

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (113 lines) | stat: -rw-r--r-- 3,484 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef UI_GFX_GEOMETRY_CUBIC_BEZIER_H_
#define UI_GFX_GEOMETRY_CUBIC_BEZIER_H_

#include <array>

#include "base/component_export.h"

namespace gfx {

#define CUBIC_BEZIER_SPLINE_SAMPLES 11

class COMPONENT_EXPORT(GEOMETRY) CubicBezier {
 public:
  CubicBezier(double p1x, double p1y, double p2x, double p2y);
  CubicBezier(const CubicBezier& other);

  CubicBezier& operator=(const CubicBezier&) = delete;

  double SampleCurveX(double t) const {
    // `ax t^3 + bx t^2 + cx t' expanded using Horner's rule.
    // The x values are in the range [0, 1]. So it isn't needed toFinite
    // clamping.
    // https://drafts.csswg.org/css-easing-1/#funcdef-cubic-bezier-easing-function-cubic-bezier
    return ((ax_ * t + bx_) * t + cx_) * t;
  }

  double SampleCurveY(double t) const {
    return ToFinite(((ay_ * t + by_) * t + cy_) * t);
  }

  double SampleCurveDerivativeX(double t) const {
    return (3.0 * ax_ * t + 2.0 * bx_) * t + cx_;
  }

  double SampleCurveDerivativeY(double t) const {
    return ToFinite(
        ToFinite(ToFinite(3.0 * ay_) * t + ToFinite(2.0 * by_)) * t + cy_);
  }

  static double GetDefaultEpsilon();

  // Given an x value, find a parametric value it came from.
  // x must be in [0, 1] range. Doesn't use gradients.
  double SolveCurveX(double x, double epsilon) const;

  // Evaluates y at the given x with default epsilon.
  double Solve(double x) const;
  // Evaluates y at the given x. The epsilon parameter provides a hint as to the
  // required accuracy and is not guaranteed. Uses gradients if x is
  // out of [0, 1] range.
  double SolveWithEpsilon(double x, double epsilon) const {
    if (x < 0.0)
      return ToFinite(0.0 + start_gradient_ * x);
    if (x > 1.0)
      return ToFinite(1.0 + end_gradient_ * (x - 1.0));
    return SampleCurveY(SolveCurveX(x, epsilon));
  }

  // Returns an approximation of dy/dx at the given x with default epsilon.
  double Slope(double x) const;
  // Returns an approximation of dy/dx at the given x.
  // Clamps x to range [0, 1].
  double SlopeWithEpsilon(double x, double epsilon) const;

  // These getters are used rarely. We reverse compute them from coefficients.
  // See CubicBezier::InitCoefficients. The speed has been traded for memory.
  double GetX1() const;
  double GetY1() const;
  double GetX2() const;
  double GetY2() const;

  // Gets the bezier's minimum y value in the interval [0, 1].
  double range_min() const { return range_min_; }
  // Gets the bezier's maximum y value in the interval [0, 1].
  double range_max() const { return range_max_; }

 private:
  void InitCoefficients(double p1x, double p1y, double p2x, double p2y);
  void InitGradients(double p1x, double p1y, double p2x, double p2y);
  void InitRange(double p1y, double p2y);
  void InitSpline();
  static double ToFinite(double value);

  double ax_;
  double bx_;
  double cx_;

  double ay_;
  double by_;
  double cy_;

  double start_gradient_;
  double end_gradient_;

  double range_min_;
  double range_max_;

  std::array<double, CUBIC_BEZIER_SPLINE_SAMPLES> spline_samples_;

#ifndef NDEBUG
  // Guard against attempted to solve for t given x in the event that the curve
  // may have multiple values for t for some values of x in [0, 1].
  bool monotonically_increasing_;
#endif
};

}  // namespace gfx

#endif  // UI_GFX_GEOMETRY_CUBIC_BEZIER_H_