1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/354829279): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#ifndef UI_GFX_GEOMETRY_DOUBLE4_H_
#define UI_GFX_GEOMETRY_DOUBLE4_H_
#include <type_traits>
namespace gfx {
// This header defines Double4 type for vectorized SIMD operations used in
// optimized transformation code. The type should be only used for local
// variables, or inline function parameters or return values. Don't use the
// type in other cases (e.g. for class data members) due to constraints
// (e.g. alignment).
//
// Here are some examples of usages:
//
// double matrix[4][4] = ...;
// // The scalar value will be applied to all components.
// Double4 c0 = Load(matrix[0]) + 5;
// Double4 c1 = Load(matrix[1]) * Double4{1, 2, 3, 4};
//
// Double4 v = c0 * c1;
// // s0/s1/s2/s3 are preferred to x/y/z/w for consistency.
// double a = v.s0 + Sum(c1);
// // v.s3210 is equivalent to {v.s3, v.s2, v.s1, v.s0}.
// // Should use this form instead of __builtin_shufflevector() etc.
// Double4 swapped = {v[3], v[2], v[1], v[0]};
//
// // Logical operations.
// bool b1 = AllTrue(swapped == c0);
// // & is preferred to && to reduce branches.
// bool b2 = AllTrue((c0 == c1) & (c0 == v) & (c0 >= swapped));
//
// Store(swapped, matrix_[2]);
// Store(v, matrix_[3]);
//
// We use the gcc extension (supported by clang) instead of the clang extension
// to make sure the code can compile with either gcc or clang.
//
// For more details, see
// https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
#if !defined(__GNUC__) && !defined(__clang__)
#error Unsupported compiler.
#endif
typedef double __attribute__((vector_size(4 * sizeof(double)))) Double4;
typedef float __attribute__((vector_size(4 * sizeof(float)))) Float4;
ALWAYS_INLINE double Sum(Double4 v) {
return v[0] + v[1] + v[2] + v[3];
}
ALWAYS_INLINE Double4 LoadDouble4(const double s[4]) {
return Double4{s[0], s[1], s[2], s[3]};
}
ALWAYS_INLINE void StoreDouble4(Double4 v, double d[4]) {
d[0] = v[0];
d[1] = v[1];
d[2] = v[2];
d[3] = v[3];
}
// The parameter should be the result of Double4/Float4 operations that would
// produce bool results if they were original scalar operators, e.g.
// auto b4 = double4_a == double4_b;
// A zero value of a component of |b4| means false, otherwise true.
// This function checks whether all 4 components in |b4| are true.
// |&| instead of |&&| is used to avoid branches, which results shorter and
// faster code in most cases. It's used like:
// if (AllTrue(double4_a == double4_b))
// ...
// if (AllTrue((double4_a1 == double4_b1) & (double4_a2 == double4_b2)))
// ...
typedef int64_t __attribute__((vector_size(4 * sizeof(int64_t))))
DoubleBoolean4;
ALWAYS_INLINE int64_t AllTrue(DoubleBoolean4 b4) {
return b4[0] & b4[1] & b4[2] & b4[3];
}
typedef int32_t __attribute__((vector_size(4 * sizeof(int32_t)))) FloatBoolean4;
ALWAYS_INLINE int32_t AllTrue(FloatBoolean4 b4) {
return b4[0] & b4[1] & b4[2] & b4[3];
}
} // namespace gfx
#endif // UI_GFX_GEOMETRY_DOUBLE4_H_
|