1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/354829279): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "ui/gfx/geometry/matrix44.h"
#include <algorithm>
#include <cmath>
#include <type_traits>
#include <utility>
#include "ui/gfx/geometry/decomposed_transform.h"
namespace gfx {
namespace {
ALWAYS_INLINE Double4 SwapHighLow(Double4 v) {
return Double4{v[2], v[3], v[0], v[1]};
}
ALWAYS_INLINE Double4 SwapInPairs(Double4 v) {
return Double4{v[1], v[0], v[3], v[2]};
}
// This is based on
// https://github.com/niswegmann/small-matrix-inverse/blob/master/invert4x4_llvm.h,
// which is based on Intel AP-928 "Streaming SIMD Extensions - Inverse of 4x4
// Matrix": https://drive.google.com/file/d/0B9rh9tVI0J5mX1RUam5nZm85OFE/view.
ALWAYS_INLINE bool InverseWithDouble4Cols(Double4& c0,
Double4& c1,
Double4& c2,
Double4& c3) {
// Note that r1 and r3 have components 2/3 and 0/1 swapped.
Double4 r0 = {c0[0], c1[0], c2[0], c3[0]};
Double4 r1 = {c2[1], c3[1], c0[1], c1[1]};
Double4 r2 = {c0[2], c1[2], c2[2], c3[2]};
Double4 r3 = {c2[3], c3[3], c0[3], c1[3]};
Double4 t = SwapInPairs(r2 * r3);
c0 = r1 * t;
c1 = r0 * t;
t = SwapHighLow(t);
c0 = r1 * t - c0;
c1 = SwapHighLow(r0 * t - c1);
t = SwapInPairs(r1 * r2);
c0 += r3 * t;
c3 = r0 * t;
t = SwapHighLow(t);
c0 -= r3 * t;
c3 = SwapHighLow(r0 * t - c3);
t = SwapInPairs(SwapHighLow(r1) * r3);
r2 = SwapHighLow(r2);
c0 += r2 * t;
c2 = r0 * t;
t = SwapHighLow(t);
c0 -= r2 * t;
double det = Sum(r0 * c0);
if (!std::isnormal(static_cast<float>(det)))
return false;
c2 = SwapHighLow(r0 * t - c2);
t = SwapInPairs(r0 * r1);
c2 = r3 * t + c2;
c3 = r2 * t - c3;
t = SwapHighLow(t);
c2 = r3 * t - c2;
c3 -= r2 * t;
t = SwapInPairs(r0 * r3);
c1 -= r2 * t;
c2 = r1 * t + c2;
t = SwapHighLow(t);
c1 = r2 * t + c1;
c2 -= r1 * t;
t = SwapInPairs(r0 * r2);
c1 = r3 * t + c1;
c3 -= r1 * t;
t = SwapHighLow(t);
c1 -= r3 * t;
c3 = r1 * t + c3;
det = 1.0 / det;
c0 *= det;
c1 *= det;
c2 *= det;
c3 *= det;
return true;
}
} // anonymous namespace
void Matrix44::GetColMajor(double dst[16]) const {
const double* src = &matrix_[0][0];
std::copy(src, src + 16, dst);
}
void Matrix44::GetColMajorF(float dst[16]) const {
const double* src = &matrix_[0][0];
std::copy(src, src + 16, dst);
}
void Matrix44::PreTranslate(double dx, double dy) {
SetCol(3, Col(0) * dx + Col(1) * dy + Col(3));
}
void Matrix44::PreTranslate3d(double dx, double dy, double dz) {
if (AllTrue(Double4{dx, dy, dz, 0} == Double4{0, 0, 0, 0}))
return;
SetCol(3, Col(0) * dx + Col(1) * dy + Col(2) * dz + Col(3));
}
void Matrix44::PostTranslate(double dx, double dy) {
if (!HasPerspective()) [[likely]] {
matrix_[3][0] += dx;
matrix_[3][1] += dy;
} else {
if (dx != 0) {
matrix_[0][0] += matrix_[0][3] * dx;
matrix_[1][0] += matrix_[1][3] * dx;
matrix_[2][0] += matrix_[2][3] * dx;
matrix_[3][0] += matrix_[3][3] * dx;
}
if (dy != 0) {
matrix_[0][1] += matrix_[0][3] * dy;
matrix_[1][1] += matrix_[1][3] * dy;
matrix_[2][1] += matrix_[2][3] * dy;
matrix_[3][1] += matrix_[3][3] * dy;
}
}
}
void Matrix44::PostTranslate3d(double dx, double dy, double dz) {
Double4 t{dx, dy, dz, 0};
if (AllTrue(t == Double4{0, 0, 0, 0}))
return;
if (!HasPerspective()) [[likely]] {
SetCol(3, Col(3) + t);
} else {
for (int i = 0; i < 4; ++i)
SetCol(i, Col(i) + t * matrix_[i][3]);
}
}
void Matrix44::PreScale(double sx, double sy) {
SetCol(0, Col(0) * sx);
SetCol(1, Col(1) * sy);
}
void Matrix44::PreScale3d(double sx, double sy, double sz) {
if (AllTrue(Double4{sx, sy, sz, 1} == Double4{1, 1, 1, 1}))
return;
SetCol(0, Col(0) * sx);
SetCol(1, Col(1) * sy);
SetCol(2, Col(2) * sz);
}
void Matrix44::PostScale(double sx, double sy) {
if (sx != 1) {
matrix_[0][0] *= sx;
matrix_[1][0] *= sx;
matrix_[2][0] *= sx;
matrix_[3][0] *= sx;
}
if (sy != 1) {
matrix_[0][1] *= sy;
matrix_[1][1] *= sy;
matrix_[2][1] *= sy;
matrix_[3][1] *= sy;
}
}
void Matrix44::PostScale3d(double sx, double sy, double sz) {
if (AllTrue(Double4{sx, sy, sz, 1} == Double4{1, 1, 1, 1}))
return;
Double4 s{sx, sy, sz, 1};
for (int i = 0; i < 4; i++)
SetCol(i, Col(i) * s);
}
void Matrix44::RotateUnitSinCos(double x,
double y,
double z,
double sin_angle,
double cos_angle) {
// Optimize cases where the axis is along a major axis. Since we've already
// normalized the vector we don't need to check that the other two dimensions
// are zero. Tiny errors of the other two dimensions are ignored.
if (z == 1.0) {
RotateAboutZAxisSinCos(sin_angle, cos_angle);
return;
}
if (y == 1.0) {
RotateAboutYAxisSinCos(sin_angle, cos_angle);
return;
}
if (x == 1.0) {
RotateAboutXAxisSinCos(sin_angle, cos_angle);
return;
}
double c = cos_angle;
double s = sin_angle;
double C = 1 - c;
double xs = x * s;
double ys = y * s;
double zs = z * s;
double xC = x * C;
double yC = y * C;
double zC = z * C;
double xyC = x * yC;
double yzC = y * zC;
double zxC = z * xC;
PreConcat(Matrix44(x * xC + c, xyC + zs, zxC - ys, 0, // col 0
xyC - zs, y * yC + c, yzC + xs, 0, // col 1
zxC + ys, yzC - xs, z * zC + c, 0, // col 2
0, 0, 0, 1)); // col 3
}
void Matrix44::RotateAboutXAxisSinCos(double sin_angle, double cos_angle) {
Double4 c1 = Col(1);
Double4 c2 = Col(2);
SetCol(1, c1 * cos_angle + c2 * sin_angle);
SetCol(2, c2 * cos_angle - c1 * sin_angle);
}
void Matrix44::RotateAboutYAxisSinCos(double sin_angle, double cos_angle) {
Double4 c0 = Col(0);
Double4 c2 = Col(2);
SetCol(0, c0 * cos_angle - c2 * sin_angle);
SetCol(2, c2 * cos_angle + c0 * sin_angle);
}
void Matrix44::RotateAboutZAxisSinCos(double sin_angle, double cos_angle) {
Double4 c0 = Col(0);
Double4 c1 = Col(1);
SetCol(0, c0 * cos_angle + c1 * sin_angle);
SetCol(1, c1 * cos_angle - c0 * sin_angle);
}
void Matrix44::Skew(double tan_skew_x, double tan_skew_y) {
Double4 c0 = Col(0);
Double4 c1 = Col(1);
SetCol(0, c0 + c1 * tan_skew_y);
SetCol(1, c1 + c0 * tan_skew_x);
}
void Matrix44::ApplyDecomposedSkews(base::span<const double, 3> skews) {
Double4 c0 = Col(0);
Double4 c1 = Col(1);
Double4 c2 = Col(2);
// / |1 0 0 0| |1 0 s1 0| |1 s0 0 0| |1 s0 s1 0| \
// |c0 c1 c2 c3| * | |0 1 s2 0| * |0 1 0 0| * |0 1 0 0| = |0 1 s2 0| |
// | |0 0 1 0| |0 0 1 0| |0 0 1 0| |0 0 1 0| |
// \ |0 0 0 1| |0 0 0 1| |0 0 0 1| |0 0 0 1| /
SetCol(1, c1 + c0 * skews[0]);
SetCol(2, c0 * skews[1] + c1 * skews[2] + c2);
}
void Matrix44::ApplyPerspectiveDepth(double perspective) {
DCHECK_NE(perspective, 0.0);
SetCol(2, Col(2) + Col(3) * (-1.0 / perspective));
}
void Matrix44::SetConcat(const Matrix44& x, const Matrix44& y) {
if (x.Is2dTransform() && y.Is2dTransform()) {
double a = x.matrix_[0][0];
double b = x.matrix_[0][1];
double c = x.matrix_[1][0];
double d = x.matrix_[1][1];
double e = x.matrix_[3][0];
double f = x.matrix_[3][1];
double ya = y.matrix_[0][0];
double yb = y.matrix_[0][1];
double yc = y.matrix_[1][0];
double yd = y.matrix_[1][1];
double ye = y.matrix_[3][0];
double yf = y.matrix_[3][1];
*this = Matrix44(a * ya + c * yb, b * ya + d * yb, 0, 0, // col 0
a * yc + c * yd, b * yc + d * yd, 0, 0, // col 1
0, 0, 1, 0, // col 2
a * ye + c * yf + e, b * ye + d * yf + f, 0, 1); // col 3
return;
}
auto c0 = x.Col(0);
auto c1 = x.Col(1);
auto c2 = x.Col(2);
auto c3 = x.Col(3);
auto mc0 = y.Col(0);
auto mc1 = y.Col(1);
auto mc2 = y.Col(2);
auto mc3 = y.Col(3);
SetCol(0, c0 * mc0[0] + c1 * mc0[1] + c2 * mc0[2] + c3 * mc0[3]);
SetCol(1, c0 * mc1[0] + c1 * mc1[1] + c2 * mc1[2] + c3 * mc1[3]);
SetCol(2, c0 * mc2[0] + c1 * mc2[1] + c2 * mc2[2] + c3 * mc2[3]);
SetCol(3, c0 * mc3[0] + c1 * mc3[1] + c2 * mc3[2] + c3 * mc3[3]);
}
bool Matrix44::GetInverse(Matrix44& result) const {
if (Is2dTransform()) {
double determinant = Determinant();
if (!std::isnormal(static_cast<float>(determinant)))
return false;
double inv_det = 1.0 / determinant;
double a = matrix_[0][0];
double b = matrix_[0][1];
double c = matrix_[1][0];
double d = matrix_[1][1];
double e = matrix_[3][0];
double f = matrix_[3][1];
result = Matrix44(d * inv_det, -b * inv_det, 0, 0, // col 0
-c * inv_det, a * inv_det, 0, 0, // col 1
0, 0, 1, 0, // col 2
(c * f - d * e) * inv_det, (b * e - a * f) * inv_det, 0,
1); // col 3
return true;
}
Double4 c0 = Col(0);
Double4 c1 = Col(1);
Double4 c2 = Col(2);
Double4 c3 = Col(3);
if (!InverseWithDouble4Cols(c0, c1, c2, c3))
return false;
result.SetCol(0, c0);
result.SetCol(1, c1);
result.SetCol(2, c2);
result.SetCol(3, c3);
return true;
}
bool Matrix44::IsInvertible() const {
return std::isnormal(static_cast<float>(Determinant()));
}
// This is a simplified version of InverseWithDouble4Cols().
double Matrix44::Determinant() const {
if (Is2dTransform())
return matrix_[0][0] * matrix_[1][1] - matrix_[0][1] * matrix_[1][0];
Double4 c0 = Col(0);
Double4 c1 = Col(1);
Double4 c2 = Col(2);
Double4 c3 = Col(3);
// Note that r1 and r3 have components 2/3 and 0/1 swapped.
Double4 r0 = {c0[0], c1[0], c2[0], c3[0]};
Double4 r1 = {c2[1], c3[1], c0[1], c1[1]};
Double4 r2 = {c0[2], c1[2], c2[2], c3[2]};
Double4 r3 = {c2[3], c3[3], c0[3], c1[3]};
Double4 t = SwapInPairs(r2 * r3);
c0 = r1 * t;
t = SwapHighLow(t);
c0 = r1 * t - c0;
t = SwapInPairs(r1 * r2);
c0 += r3 * t;
t = SwapHighLow(t);
c0 -= r3 * t;
t = SwapInPairs(SwapHighLow(r1) * r3);
r2 = SwapHighLow(r2);
c0 += r2 * t;
t = SwapHighLow(t);
c0 -= r2 * t;
return Sum(r0 * c0);
}
void Matrix44::Transpose() {
using std::swap;
swap(matrix_[0][1], matrix_[1][0]);
swap(matrix_[0][2], matrix_[2][0]);
swap(matrix_[0][3], matrix_[3][0]);
swap(matrix_[1][2], matrix_[2][1]);
swap(matrix_[1][3], matrix_[3][1]);
swap(matrix_[2][3], matrix_[3][2]);
}
void Matrix44::Zoom(double zoom_factor) {
matrix_[0][3] /= zoom_factor;
matrix_[1][3] /= zoom_factor;
matrix_[2][3] /= zoom_factor;
matrix_[3][0] *= zoom_factor;
matrix_[3][1] *= zoom_factor;
matrix_[3][2] *= zoom_factor;
}
double Matrix44::MapVector2(double vec[2]) const {
double v0 = vec[0];
double v1 = vec[1];
double x = v0 * matrix_[0][0] + v1 * matrix_[1][0] + matrix_[3][0];
double y = v0 * matrix_[0][1] + v1 * matrix_[1][1] + matrix_[3][1];
double w = v0 * matrix_[0][3] + v1 * matrix_[1][3] + matrix_[3][3];
vec[0] = x;
vec[1] = y;
return w;
}
void Matrix44::MapVector4(double vec[4]) const {
Double4 v = LoadDouble4(vec);
Double4 r0{matrix_[0][0], matrix_[1][0], matrix_[2][0], matrix_[3][0]};
Double4 r1{matrix_[0][1], matrix_[1][1], matrix_[2][1], matrix_[3][1]};
Double4 r2{matrix_[0][2], matrix_[1][2], matrix_[2][2], matrix_[3][2]};
Double4 r3{matrix_[0][3], matrix_[1][3], matrix_[2][3], matrix_[3][3]};
StoreDouble4(Double4{Sum(r0 * v), Sum(r1 * v), Sum(r2 * v), Sum(r3 * v)},
vec);
}
void Matrix44::Flatten() {
matrix_[0][2] = 0;
matrix_[1][2] = 0;
matrix_[3][2] = 0;
SetCol(2, Double4{0, 0, 1, 0});
}
// TODO(crbug.com/40237414): Consider letting this function always succeed.
std::optional<DecomposedTransform> Matrix44::Decompose2d() const {
DCHECK(Is2dTransform());
// https://www.w3.org/TR/css-transforms-1/#decomposing-a-2d-matrix.
// Decompose a 2D transformation matrix of the form:
// [m11 m21 0 m41]
// [m12 m22 0 m42]
// [ 0 0 1 0 ]
// [ 0 0 0 1 ]
//
// The decomposition is of the form:
// M = translate * rotate * skew * scale
// [1 0 0 Tx] [cos(R) -sin(R) 0 0] [1 K 0 0] [Sx 0 0 0]
// = [0 1 0 Ty] [sin(R) cos(R) 0 0] [0 1 0 0] [0 Sy 0 0]
// [0 0 1 0 ] [ 0 0 1 0] [0 0 1 0] [0 0 1 0]
// [0 0 0 1 ] [ 0 0 0 1] [0 0 0 1] [0 0 0 1]
double m11 = matrix_[0][0];
double m21 = matrix_[1][0];
double m12 = matrix_[0][1];
double m22 = matrix_[1][1];
double determinant = m11 * m22 - m12 * m21;
// Test for matrix being singular.
if (determinant == 0)
return std::nullopt;
DecomposedTransform decomp;
// Translation transform.
// [m11 m21 0 m41] [1 0 0 Tx] [m11 m21 0 0]
// [m12 m22 0 m42] = [0 1 0 Ty] [m12 m22 0 0]
// [ 0 0 1 0 ] [0 0 1 0 ] [ 0 0 1 0]
// [ 0 0 0 1 ] [0 0 0 1 ] [ 0 0 0 1]
decomp.translate[0] = matrix_[3][0];
decomp.translate[1] = matrix_[3][1];
// For the remainder of the decomposition process, we can focus on the upper
// 2x2 submatrix
// [m11 m21] = [cos(R) -sin(R)] [1 K] [Sx 0 ]
// [m12 m22] [sin(R) cos(R)] [0 1] [0 Sy]
// = [Sx*cos(R) Sy*(K*cos(R) - sin(R))]
// [Sx*sin(R) Sy*(K*sin(R) + cos(R))]
// Determine sign of the x and y scale.
if (determinant < 0) {
// If the determinant is negative, we need to flip either the x or y scale.
// Flipping both is equivalent to rotating by 180 degrees.
if (m11 < m22) {
decomp.scale[0] *= -1;
} else {
decomp.scale[1] *= -1;
}
}
// X Scale.
// m11^2 + m12^2 = Sx^2*(cos^2(R) + sin^2(R)) = Sx^2.
// Sx = +/-sqrt(m11^2 + m22^2)
decomp.scale[0] *= sqrt(m11 * m11 + m12 * m12);
m11 /= decomp.scale[0];
m12 /= decomp.scale[0];
// Post normalization, the submatrix is now of the form:
// [m11 m21] = [cos(R) Sy*(K*cos(R) - sin(R))]
// [m12 m22] [sin(R) Sy*(K*sin(R) + cos(R))]
// XY Shear.
// m11 * m21 + m12 * m22 = Sy*K*cos^2(R) - Sy*sin(R)*cos(R) +
// Sy*K*sin^2(R) + Sy*cos(R)*sin(R)
// = Sy*K
double scaled_shear = m11 * m21 + m12 * m22;
m21 -= m11 * scaled_shear;
m22 -= m12 * scaled_shear;
// Post normalization, the submatrix is now of the form:
// [m11 m21] = [cos(R) -Sy*sin(R)]
// [m12 m22] [sin(R) Sy*cos(R)]
// Y Scale.
// Similar process to determining x-scale.
decomp.scale[1] *= sqrt(m21 * m21 + m22 * m22);
m21 /= decomp.scale[1];
m22 /= decomp.scale[1];
decomp.skew[0] = scaled_shear / decomp.scale[1];
// Rotation transform.
// [1-2(yy+zz) 2(xy-zw) 2(xz+yw) ] [cos(R) -sin(R) 0]
// [2(xy+zw) 1-2(xx+zz) 2(yz-xw) ] = [sin(R) cos(R) 0]
// [2(xz-yw) 2*(yz+xw) 1-2(xx+yy)] [ 0 0 1]
// Comparing terms, we can conclude that x = y = 0.
// [1-2zz -2zw 0] [cos(R) -sin(R) 0]
// [ 2zw 1-2zz 0] = [sin(R) cos(R) 0]
// [ 0 0 1] [ 0 0 1]
// cos(R) = 1 - 2*z^2
// From the double angle formula: cos(2a) = 1 - 2 sin(a)^2
// cos(R) = 1 - 2*sin(R/2)^2 = 1 - 2*z^2 ==> z = sin(R/2)
// sin(R) = 2*z*w
// But sin(2a) = 2 sin(a) cos(a)
// sin(R) = 2 sin(R/2) cos(R/2) = 2*z*w ==> w = cos(R/2)
double angle = std::atan2(m12, m11);
decomp.quaternion.set_x(0);
decomp.quaternion.set_y(0);
decomp.quaternion.set_z(std::sin(0.5 * angle));
decomp.quaternion.set_w(std::cos(0.5 * angle));
return decomp;
}
std::optional<DecomposedTransform> Matrix44::Decompose() const {
// See documentation of Transform::Decompose() for why we need the 2d branch.
if (Is2dTransform())
return Decompose2d();
// https://www.w3.org/TR/css-transforms-2/#decomposing-a-3d-matrix.
Double4 c0 = Col(0);
Double4 c1 = Col(1);
Double4 c2 = Col(2);
Double4 c3 = Col(3);
// Normalize the matrix.
if (!std::isnormal(c3[3]))
return std::nullopt;
double inv_w = 1.0 / c3[3];
c0 *= inv_w;
c1 *= inv_w;
c2 *= inv_w;
c3 *= inv_w;
Double4 perspective = {c0[3], c1[3], c2[3], 1.0};
// Clear the perspective partition.
c0[3] = c1[3] = c2[3] = 0;
c3[3] = 1;
Double4 inverse_c0 = c0;
Double4 inverse_c1 = c1;
Double4 inverse_c2 = c2;
Double4 inverse_c3 = c3;
if (!InverseWithDouble4Cols(inverse_c0, inverse_c1, inverse_c2, inverse_c3))
return std::nullopt;
DecomposedTransform decomp;
// First, isolate perspective.
if (!AllTrue(perspective == Double4{0, 0, 0, 1})) {
// Solve the equation by multiplying perspective by the inverse.
decomp.perspective[0] = gfx::Sum(perspective * inverse_c0);
decomp.perspective[1] = gfx::Sum(perspective * inverse_c1);
decomp.perspective[2] = gfx::Sum(perspective * inverse_c2);
decomp.perspective[3] = gfx::Sum(perspective * inverse_c3);
}
// Next take care of translation (easy).
decomp.translate[0] = c3[0];
c3[0] = 0;
decomp.translate[1] = c3[1];
c3[1] = 0;
decomp.translate[2] = c3[2];
c3[2] = 0;
// Note: Deviating from the spec in terms of variable naming. The matrix is
// stored on column major order and not row major. Using the variable 'row'
// instead of 'column' in the spec pseudocode has been the source of
// confusion, specifically in sorting out rotations.
// From now on, only the first 3 components of the Double4 column is used.
auto sum3 = [](Double4 c) -> double { return c[0] + c[1] + c[2]; };
auto extract_scale = [&sum3](Double4& c, double& scale) -> bool {
scale = std::sqrt(sum3(c * c));
if (!std::isnormal(scale))
return false;
c *= 1.0 / scale;
return true;
};
auto epsilon_to_zero = [](double d) -> double {
return std::abs(d) < std::numeric_limits<float>::epsilon() ? 0 : d;
};
// Compute X scale factor and normalize the first column.
if (!extract_scale(c0, decomp.scale[0]))
return std::nullopt;
// Compute XY shear factor and make 2nd column orthogonal to 1st.
decomp.skew[0] = epsilon_to_zero(sum3(c0 * c1));
c1 -= c0 * decomp.skew[0];
// Now, compute Y scale and normalize 2nd column.
if (!extract_scale(c1, decomp.scale[1]))
return std::nullopt;
decomp.skew[0] /= decomp.scale[1];
// Compute XZ and YZ shears, and orthogonalize the 3rd column.
decomp.skew[1] = epsilon_to_zero(sum3(c0 * c2));
c2 -= c0 * decomp.skew[1];
decomp.skew[2] = epsilon_to_zero(sum3(c1 * c2));
c2 -= c1 * decomp.skew[2];
// Next, get Z scale and normalize the 3rd column.
if (!extract_scale(c2, decomp.scale[2]))
return std::nullopt;
decomp.skew[1] /= decomp.scale[2];
decomp.skew[2] /= decomp.scale[2];
// At this point, the matrix is orthonormal.
// Check for a coordinate system flip. If the determinant is -1, then negate
// the matrix and the scaling factors.
auto cross3 = [](Double4 a, Double4 b) -> Double4 {
return Double4{a[1], a[2], a[0], a[3]} * Double4{b[2], b[0], b[1], b[3]} -
Double4{a[2], a[0], a[1], a[3]} * Double4{b[1], b[2], b[0], b[3]};
};
Double4 pdum3 = cross3(c1, c2);
if (sum3(c0 * pdum3) < 0) {
// Flip all 3 scaling factors, following the 3d decomposition spec. See
// documentation of Transform::Decompose() about the difference between
// the 2d spec and and 3d spec about scale flipping.
decomp.scale[0] *= -1;
decomp.scale[1] *= -1;
decomp.scale[2] *= -1;
c0 *= -1;
c1 *= -1;
c2 *= -1;
}
// Lastly, compute the quaternions.
// See https://en.wikipedia.org/wiki/Rotation_matrix#Quaternion.
// Note: deviating from spec (http://www.w3.org/TR/css3-transforms/)
// which has a degenerate case when the trace (t) of the orthonormal matrix
// (Q) approaches -1. In the Wikipedia article, Q_ij is indexing on row then
// column. Thus, Q_ij = column[j][i].
// The following are equivalent representations of the rotation matrix:
//
// Axis-angle form:
//
// [ c+(1-c)x^2 (1-c)xy-sz (1-c)xz+sy ] c = cos theta
// R = [ (1-c)xy+sz c+(1-c)y^2 (1-c)yz-sx ] s = sin theta
// [ (1-c)xz-sy (1-c)yz+sx c+(1-c)z^2 ] [x,y,z] = axis or rotation
//
// The sum of the diagonal elements (trace) is a simple function of the cosine
// of the angle. The w component of the quaternion is cos(theta/2), and we
// make use of the double angle formula to directly compute w from the
// trace. Differences between pairs of skew symmetric elements in this matrix
// isolate the remaining components. Since w can be zero (also numerically
// unstable if near zero), we cannot rely solely on this approach to compute
// the quaternion components.
//
// Quaternion form:
//
// [ 1-2(y^2+z^2) 2(xy-zw) 2(xz+yw) ]
// r = [ 2(xy+zw) 1-2(x^2+z^2) 2(yz-xw) ] q = (x,y,z,w)
// [ 2(xz-yw) 2(yz+xw) 1-2(x^2+y^2) ]
//
// Different linear combinations of the diagonal elements isolates x, y or z.
// Sums or differences between skew symmetric elements isolate the remainder.
double r, s, t, x, y, z, w;
t = c0[0] + c1[1] + c2[2]; // trace of Q
// https://en.wikipedia.org/wiki/Rotation_matrix#Quaternion
if (1 + t > 0.001) {
// Numerically stable as long as 1+t is not close to zero. Otherwise use the
// diagonal element with the greatest value to compute the quaternions.
r = std::sqrt(1.0 + t);
s = 0.5 / r;
w = 0.5 * r;
x = (c1[2] - c2[1]) * s;
y = (c2[0] - c0[2]) * s;
z = (c0[1] - c1[0]) * s;
} else if (c0[0] > c1[1] && c0[0] > c2[2]) {
// Q_xx is largest.
r = std::sqrt(1.0 + c0[0] - c1[1] - c2[2]);
s = 0.5 / r;
x = 0.5 * r;
y = (c1[0] + c0[1]) * s;
z = (c2[0] + c0[2]) * s;
w = (c1[2] - c2[1]) * s;
} else if (c1[1] > c2[2]) {
// Q_yy is largest.
r = std::sqrt(1.0 - c0[0] + c1[1] - c2[2]);
s = 0.5 / r;
x = (c1[0] + c0[1]) * s;
y = 0.5 * r;
z = (c2[1] + c1[2]) * s;
w = (c2[0] - c0[2]) * s;
} else {
// Q_zz is largest.
r = std::sqrt(1.0 - c0[0] - c1[1] + c2[2]);
s = 0.5 / r;
x = (c2[0] + c0[2]) * s;
y = (c2[1] + c1[2]) * s;
z = 0.5 * r;
w = (c0[1] - c1[0]) * s;
}
decomp.quaternion.set_x(x);
decomp.quaternion.set_y(y);
decomp.quaternion.set_z(z);
decomp.quaternion.set_w(w);
return decomp;
}
} // namespace gfx
|