1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/geometry/quad_f.h"
#include <limits>
#include "base/strings/stringprintf.h"
#include "ui/gfx/geometry/triangle_f.h"
namespace gfx {
namespace {
PointF RightMostCornerToVector(const RectF& rect, const Vector2dF& vector) {
// Return the corner of the rectangle that if it is to the left of the vector
// would mean all of the rectangle is to the left of the vector.
// The vector here represents the side between two points in a clockwise
// convex polygon.
//
// Q XXX
// QQQ XXX If the lower left corner of X is left of the vector that goes
// QQQ from the top corner of Q to the right corner of Q, then all of X
// Q is left of the vector, and intersection impossible.
//
PointF point;
if (vector.x() >= 0)
point.set_y(rect.bottom());
else
point.set_y(rect.y());
if (vector.y() >= 0)
point.set_x(rect.x());
else
point.set_x(rect.right());
return point;
}
// Tests whether the line is contained by or intersected with the circle.
bool LineIntersectsCircle(const PointF& center,
float radius,
const PointF& p0,
const PointF& p1) {
float x0 = p0.x() - center.x(), y0 = p0.y() - center.y();
float x1 = p1.x() - center.x(), y1 = p1.y() - center.y();
float radius2 = radius * radius;
if ((x0 * x0 + y0 * y0) <= radius2 || (x1 * x1 + y1 * y1) <= radius2)
return true;
if (p0 == p1)
return false;
float a = y0 - y1;
float b = x1 - x0;
float c = x0 * y1 - x1 * y0;
float distance2 = c * c / (a * a + b * b);
// If distance between the center point and the line > the radius,
// the line doesn't cross (or is contained by) the ellipse.
if (distance2 > radius2)
return false;
// The nearest point on the line is between p0 and p1?
float x = -a * c / (a * a + b * b);
float y = -b * c / (a * a + b * b);
return (((x0 <= x && x <= x1) || (x0 >= x && x >= x1)) &&
((y0 <= y && y <= y1) || (y1 <= y && y <= y0)));
}
} // anonymous namespace
void QuadF::operator=(const RectF& rect) {
p1_ = PointF(rect.x(), rect.y());
p2_ = PointF(rect.right(), rect.y());
p3_ = PointF(rect.right(), rect.bottom());
p4_ = PointF(rect.x(), rect.bottom());
}
std::string QuadF::ToString() const {
return base::StringPrintf("%s;%s;%s;%s",
p1_.ToString().c_str(),
p2_.ToString().c_str(),
p3_.ToString().c_str(),
p4_.ToString().c_str());
}
static inline bool WithinEpsilon(float a, float b) {
return std::abs(a - b) < std::numeric_limits<float>::epsilon();
}
bool QuadF::IsRectilinear() const {
return
(WithinEpsilon(p1_.x(), p2_.x()) && WithinEpsilon(p2_.y(), p3_.y()) &&
WithinEpsilon(p3_.x(), p4_.x()) && WithinEpsilon(p4_.y(), p1_.y())) ||
(WithinEpsilon(p1_.y(), p2_.y()) && WithinEpsilon(p2_.x(), p3_.x()) &&
WithinEpsilon(p3_.y(), p4_.y()) && WithinEpsilon(p4_.x(), p1_.x()));
}
bool QuadF::IsCounterClockwise() const {
// This math computes the signed area of the quad. Positive area
// indicates the quad is clockwise; negative area indicates the quad is
// counter-clockwise. Note carefully: this is backwards from conventional
// math because our geometric space uses screen coordiantes with y-axis
// pointing downards.
// Reference: http://mathworld.wolfram.com/PolygonArea.html.
// The equation can be written:
// Signed area = determinant1 + determinant2 + determinant3 + determinant4
// In practise, Refactoring the computation of adding determinants so that
// reducing the number of operations. The equation is:
// Signed area = element1 + element2 - element3 - element4
float p24 = p2_.y() - p4_.y();
float p31 = p3_.y() - p1_.y();
// Up-cast to double so this cannot overflow.
double element1 = static_cast<double>(p1_.x()) * p24;
double element2 = static_cast<double>(p2_.x()) * p31;
double element3 = static_cast<double>(p3_.x()) * p24;
double element4 = static_cast<double>(p4_.x()) * p31;
return element1 + element2 < element3 + element4;
}
bool QuadF::Contains(const PointF& point) const {
return PointIsInTriangle(point, p1_, p2_, p3_) ||
PointIsInTriangle(point, p1_, p3_, p4_);
}
bool QuadF::ContainsQuad(const QuadF& other) const {
return Contains(other.p1()) && Contains(other.p2()) && Contains(other.p3()) &&
Contains(other.p4());
}
void QuadF::Scale(float x_scale, float y_scale) {
p1_.Scale(x_scale, y_scale);
p2_.Scale(x_scale, y_scale);
p3_.Scale(x_scale, y_scale);
p4_.Scale(x_scale, y_scale);
}
void QuadF::operator+=(const Vector2dF& rhs) {
p1_ += rhs;
p2_ += rhs;
p3_ += rhs;
p4_ += rhs;
}
void QuadF::operator-=(const Vector2dF& rhs) {
p1_ -= rhs;
p2_ -= rhs;
p3_ -= rhs;
p4_ -= rhs;
}
QuadF operator+(const QuadF& lhs, const Vector2dF& rhs) {
QuadF result = lhs;
result += rhs;
return result;
}
QuadF operator-(const QuadF& lhs, const Vector2dF& rhs) {
QuadF result = lhs;
result -= rhs;
return result;
}
bool QuadF::IntersectsRect(const RectF& rect) const {
// Start by checking this quad against the potential separating axes of the
// rectangle. Since the rectangle is axis-aligned, we can just check for
// intersection between the bounding boxes - if they don't intersect one of
// the edges of the rectangle is a separating axis.
const auto [min, max] = Extents();
if (min.y() > rect.bottom() || rect.y() > max.y()) {
return false;
}
if (min.x() > rect.right() || rect.x() > max.x()) {
return false;
}
// None of the edges of the rectangle are a separating axis - test the edges
// of this quad.
return IntersectsRectPartial(rect);
}
bool QuadF::IntersectsRectPartial(const RectF& rect) const {
// For each side of the quad clockwise we check if the rectangle is to the
// left of it since only content on the right can overlap with the quad.
// This only works if the quad is convex.
Vector2dF v1, v2, v3, v4;
// Ensure we use clockwise vectors.
if (IsCounterClockwise()) {
v1 = p4_ - p1_;
v2 = p1_ - p2_;
v3 = p2_ - p3_;
v4 = p3_ - p4_;
} else {
v1 = p2_ - p1_;
v2 = p3_ - p2_;
v3 = p4_ - p3_;
v4 = p1_ - p4_;
}
PointF p = RightMostCornerToVector(rect, v1);
if (CrossProduct(v1, p - p1_) < 0)
return false;
p = RightMostCornerToVector(rect, v2);
if (CrossProduct(v2, p - p2_) < 0)
return false;
p = RightMostCornerToVector(rect, v3);
if (CrossProduct(v3, p - p3_) < 0)
return false;
p = RightMostCornerToVector(rect, v4);
if (CrossProduct(v4, p - p4_) < 0)
return false;
// If not all of the rectangle is outside one of the quad's four sides, then
// that means at least a part of the rectangle is overlapping the quad.
return true;
}
bool QuadF::IsToTheLeftOfOrTouchingLine(const PointF& base,
const Vector2dF& vector) const {
if (CrossProduct(vector, p1_ - base) >= 0) {
return false;
}
if (CrossProduct(vector, p2_ - base) >= 0) {
return false;
}
if (CrossProduct(vector, p3_ - base) >= 0) {
return false;
}
if (CrossProduct(vector, p4_ - base) >= 0) {
return false;
}
return true;
}
bool QuadF::FullyOutsideOneEdge(const QuadF& quad) const {
// For each side of the quad clockwise we check if the quad is to the left of
// it since only content on the right can overlap with the quad. This only
// works if the quads are convex.
Vector2dF v1, v2, v3, v4;
// Ensure we use clockwise vectors.
if (IsCounterClockwise()) {
v1 = p4_ - p1_;
v2 = p1_ - p2_;
v3 = p2_ - p3_;
v4 = p3_ - p4_;
} else {
v1 = p2_ - p1_;
v2 = p3_ - p2_;
v3 = p4_ - p3_;
v4 = p1_ - p4_;
}
if (quad.IsToTheLeftOfOrTouchingLine(p1_, v1)) {
return true;
}
if (quad.IsToTheLeftOfOrTouchingLine(p2_, v2)) {
return true;
}
if (quad.IsToTheLeftOfOrTouchingLine(p3_, v3)) {
return true;
}
if (quad.IsToTheLeftOfOrTouchingLine(p4_, v4)) {
return true;
}
return false;
}
bool QuadF::IntersectsQuad(const QuadF& quad) const {
// Check if |quad| is fully outside one of the edges of this quad or vice
// versa.
return !FullyOutsideOneEdge(quad) && !quad.FullyOutsideOneEdge(*this);
}
bool QuadF::IntersectsCircle(const PointF& center, float radius) const {
return Contains(center) || LineIntersectsCircle(center, radius, p1_, p2_) ||
LineIntersectsCircle(center, radius, p2_, p3_) ||
LineIntersectsCircle(center, radius, p3_, p4_) ||
LineIntersectsCircle(center, radius, p4_, p1_);
}
bool QuadF::IntersectsEllipse(const PointF& center, const SizeF& radii) const {
// Transform the ellipse to an origin-centered circle whose radius is the
// product of major radius and minor radius. Here we apply the same
// transformation to the quad.
QuadF transformed_quad = *this;
transformed_quad -= center.OffsetFromOrigin();
transformed_quad.Scale(radii.height(), radii.width());
PointF origin_point;
return transformed_quad.IntersectsCircle(origin_point,
radii.height() * radii.width());
}
} // namespace gfx
|