File: rect.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (419 lines) | stat: -rw-r--r-- 11,759 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ui/gfx/geometry/rect.h"

#include <algorithm>

#include "base/check.h"
#include "base/numerics/clamped_math.h"
#include "base/strings/stringprintf.h"
#include "build/build_config.h"
#include "ui/gfx/geometry/insets.h"
#include "ui/gfx/geometry/outsets.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/rect_f.h"

#if BUILDFLAG(IS_WIN)
#include <windows.h>
#elif BUILDFLAG(IS_IOS)
#include <CoreGraphics/CoreGraphics.h>
#elif BUILDFLAG(IS_MAC)
#include <ApplicationServices/ApplicationServices.h>
#endif

namespace {

void AdjustAlongAxis(int dst_origin, int dst_size, int* origin, int* size) {
  *size = std::min(dst_size, *size);
  if (*origin < dst_origin)
    *origin = dst_origin;
  else
    *origin = std::min(dst_origin + dst_size, *origin + *size) - *size;
}

// This is the per-axis heuristic for picking the most useful origin and
// width/height to represent the input range.
void SaturatedClampRange(int min, int max, int* origin, int* span) {
  if (max < min) {
    *span = 0;
    *origin = min;
    return;
  }

  int effective_span = base::ClampSub(max, min);
  int span_loss = base::ClampSub(max, min + effective_span);

  // If the desired width is within the limits of ints, we can just
  // use the simple computations to represent the range precisely.
  if (span_loss == 0) {
    *span = effective_span;
    *origin = min;
    return;
  }

  // Now we have to approximate. If one of min or max is close enough
  // to zero we choose to represent that one precisely. The other side is
  // probably practically "infinite", so we move it.
  constexpr unsigned kMaxDimension = std::numeric_limits<int>::max() / 2;
  if (base::SafeUnsignedAbs(max) < kMaxDimension) {
    // Maintain origin + span == max.
    *span = effective_span;
    *origin = max - effective_span;
  } else if (base::SafeUnsignedAbs(min) < kMaxDimension) {
    // Maintain origin == min.
    *span = effective_span;
    *origin = min;
  } else {
    // Both are big, so keep the center.
    *span = effective_span;
    *origin = min + span_loss / 2;
  }
}

}  // namespace

namespace gfx {

#if BUILDFLAG(IS_WIN)

Rect::Rect(const RECT& r)
    : origin_(r.left, r.top),
      size_(std::abs(r.right - r.left), std::abs(r.bottom - r.top)) {}

RECT Rect::ToRECT() const {
  RECT r;
  r.left = x();
  r.right = right();
  r.top = y();
  r.bottom = bottom();
  return r;
}

#elif BUILDFLAG(IS_APPLE)

Rect::Rect(const CGRect& r)
    : origin_(r.origin.x, r.origin.y), size_(r.size.width, r.size.height) {}

CGRect Rect::ToCGRect() const {
  return CGRectMake(x(), y(), width(), height());
}

#endif

void Rect::AdjustForSaturatedRight(int right) {
  int new_x, width;
  SaturatedClampRange(x(), right, &new_x, &width);
  set_x(new_x);
  size_.set_width(width);
}

void Rect::AdjustForSaturatedBottom(int bottom) {
  int new_y, height;
  SaturatedClampRange(y(), bottom, &new_y, &height);
  set_y(new_y);
  size_.set_height(height);
}

void Rect::Inset(const Insets& insets) {
  origin_ += Vector2d(insets.left(), insets.top());
  set_width(base::ClampSub(width(), insets.width()));
  set_height(base::ClampSub(height(), insets.height()));
}

void Rect::Offset(const Vector2d& distance) {
  origin_ += distance;
  // Ensure that width and height remain valid.
  set_width(width());
  set_height(height());
}

Insets Rect::InsetsFrom(const Rect& inner) const {
  return Insets::TLBR(inner.y() - y(), inner.x() - x(),
                      bottom() - inner.bottom(), right() - inner.right());
}

bool Rect::operator<(const Rect& other) const {
  if (origin_ == other.origin_) {
    if (width() == other.width()) {
      return height() < other.height();
    } else {
      return width() < other.width();
    }
  } else {
    return origin_ < other.origin_;
  }
}

bool Rect::Contains(int point_x, int point_y) const {
  return (point_x >= x()) && (point_x < right()) && (point_y >= y()) &&
         (point_y < bottom());
}

bool Rect::Contains(const Rect& rect) const {
  return (rect.x() >= x() && rect.right() <= right() && rect.y() >= y() &&
          rect.bottom() <= bottom());
}

bool Rect::Intersects(const Rect& rect) const {
  return !(IsEmpty() || rect.IsEmpty() || rect.x() >= right() ||
           rect.right() <= x() || rect.y() >= bottom() || rect.bottom() <= y());
}

void Rect::Intersect(const Rect& rect) {
  if (IsEmpty() || rect.IsEmpty()) {
    SetRect(0, 0, 0, 0);  // Throws away empty position.
    return;
  }

  int left = std::max(x(), rect.x());
  int top = std::max(y(), rect.y());
  int new_right = std::min(right(), rect.right());
  int new_bottom = std::min(bottom(), rect.bottom());

  if (left >= new_right || top >= new_bottom) {
    SetRect(0, 0, 0, 0);  // Throws away empty position.
    return;
  }

  SetByBounds(left, top, new_right, new_bottom);
}

bool Rect::InclusiveIntersect(const Rect& rect) {
  int left = std::max(x(), rect.x());
  int top = std::max(y(), rect.y());
  int new_right = std::min(right(), rect.right());
  int new_bottom = std::min(bottom(), rect.bottom());

  // Return a clean empty rectangle for non-intersecting cases.
  if (left > new_right || top > new_bottom) {
    SetRect(0, 0, 0, 0);
    return false;
  }

  SetByBounds(left, top, new_right, new_bottom);
  return true;
}

void Rect::Union(const Rect& rect) {
  if (IsEmpty()) {
    *this = rect;
    return;
  }
  if (rect.IsEmpty())
    return;

  UnionEvenIfEmpty(rect);
}

void Rect::UnionEvenIfEmpty(const Rect& rect) {
  SetByBounds(std::min(x(), rect.x()), std::min(y(), rect.y()),
              std::max(right(), rect.right()),
              std::max(bottom(), rect.bottom()));
}

void Rect::Subtract(const Rect& rect) {
  if (!Intersects(rect))
    return;
  if (rect.Contains(*this)) {
    SetRect(0, 0, 0, 0);
    return;
  }

  int rx = x();
  int ry = y();
  int rr = right();
  int rb = bottom();

  if (rect.y() <= y() && rect.bottom() >= bottom()) {
    // complete intersection in the y-direction
    if (rect.x() <= x()) {
      rx = rect.right();
    } else if (rect.right() >= right()) {
      rr = rect.x();
    }
  } else if (rect.x() <= x() && rect.right() >= right()) {
    // complete intersection in the x-direction
    if (rect.y() <= y()) {
      ry = rect.bottom();
    } else if (rect.bottom() >= bottom()) {
      rb = rect.y();
    }
  }
  SetByBounds(rx, ry, rr, rb);
}

void Rect::AdjustToFit(const Rect& rect) {
  int new_x = x();
  int new_y = y();
  int new_width = width();
  int new_height = height();
  AdjustAlongAxis(rect.x(), rect.width(), &new_x, &new_width);
  AdjustAlongAxis(rect.y(), rect.height(), &new_y, &new_height);
  SetRect(new_x, new_y, new_width, new_height);
}

Point Rect::CenterPoint() const {
  return Point(x() + width() / 2, y() + height() / 2);
}

void Rect::ToCenteredSize(const Size& size) {
  int new_x = x() + (width() - size.width()) / 2;
  int new_y = y() + (height() - size.height()) / 2;
  SetRect(new_x, new_y, size.width(), size.height());
}

void Rect::ClampToCenteredSize(const Size& to_size) {
  gfx::Size new_size = size();
  new_size.SetToMin(to_size);
  ToCenteredSize(new_size);
}

void Rect::Transpose() {
  SetRect(y(), x(), height(), width());
}

void Rect::SplitVertically(Rect& left_half, Rect& right_half) const {
  left_half.SetRect(x(), y(), width() / 2, height());
  right_half.SetRect(left_half.right(), y(), width() - left_half.width(),
                     height());
}

void Rect::SplitHorizontally(Rect& top_half, Rect& bottom_half) const {
  top_half.SetRect(x(), y(), width(), height() / 2);
  bottom_half.SetRect(x(), top_half.bottom(), width(),
                      height() - top_half.height());
}

bool Rect::SharesEdgeWith(const Rect& rect) const {
  return (y() == rect.y() && height() == rect.height() &&
          (x() == rect.right() || right() == rect.x())) ||
         (x() == rect.x() && width() == rect.width() &&
          (y() == rect.bottom() || bottom() == rect.y()));
}

int Rect::ManhattanDistanceToPoint(const Point& point) const {
  int x_distance =
      std::max<int>(0, std::max(x() - point.x(), point.x() - right()));
  int y_distance =
      std::max<int>(0, std::max(y() - point.y(), point.y() - bottom()));

  return x_distance + y_distance;
}

int Rect::ManhattanInternalDistance(const Rect& rect) const {
  Rect c(*this);
  c.Union(rect);

  int x = std::max(0, c.width() - width() - rect.width() + 1);
  int y = std::max(0, c.height() - height() - rect.height() + 1);
  return x + y;
}

std::string Rect::ToString() const {
  return base::StringPrintf("%s %s",
                            origin().ToString().c_str(),
                            size().ToString().c_str());
}

bool Rect::ApproximatelyEqual(const Rect& rect, int tolerance) const {
  return std::abs(x() - rect.x()) <= tolerance &&
         std::abs(y() - rect.y()) <= tolerance &&
         std::abs(right() - rect.right()) <= tolerance &&
         std::abs(bottom() - rect.bottom()) <= tolerance;
}

Rect operator+(const Rect& lhs, const Vector2d& rhs) {
  Rect result(lhs);
  result += rhs;
  return result;
}

Rect operator-(const Rect& lhs, const Vector2d& rhs) {
  Rect result(lhs);
  result -= rhs;
  return result;
}

Rect IntersectRects(const Rect& a, const Rect& b) {
  Rect result = a;
  result.Intersect(b);
  return result;
}

Rect UnionRects(const Rect& a, const Rect& b) {
  Rect result = a;
  result.Union(b);
  return result;
}

Rect UnionRects(base::span<const Rect> rects) {
  Rect result;
  for (const Rect& rect : rects) {
    result.Union(rect);
  }
  return result;
}

Rect UnionRectsEvenIfEmpty(const Rect& a, const Rect& b) {
  Rect result = a;
  result.UnionEvenIfEmpty(b);
  return result;
}

Rect SubtractRects(const Rect& a, const Rect& b) {
  Rect result = a;
  result.Subtract(b);
  return result;
}

Rect BoundingRect(const Point& p1, const Point& p2) {
  Rect result;
  result.SetByBounds(std::min(p1.x(), p2.x()), std::min(p1.y(), p2.y()),
                     std::max(p1.x(), p2.x()), std::max(p1.y(), p2.y()));
  return result;
}

Rect ScaleToEnclosingRectIgnoringError(const Rect& rect,
                                       float scale,
                                       float epsilon) {
  RectF rect_f(rect);
  rect_f.Scale(scale);
  return ToEnclosingRectIgnoringError(rect_f, epsilon);
}

Rect MaximumCoveredRect(const Rect& a, const Rect& b) {
  // Check a or b by itself.
  Rect maximum = a;
  uint64_t maximum_area = a.size().Area64();
  if (b.size().Area64() > maximum_area) {
    maximum = b;
    maximum_area = b.size().Area64();
  }
  // Check the regions that include the intersection of a and b. This can be
  // done by taking the intersection and expanding it vertically and
  // horizontally. These expanded intersections will both still be covered by
  // a or b.
  Rect intersection = a;
  intersection.InclusiveIntersect(b);
  if (!intersection.size().IsZero()) {
    Rect vert_expanded_intersection = intersection;
    vert_expanded_intersection.SetVerticalBounds(
        std::min(a.y(), b.y()), std::max(a.bottom(), b.bottom()));
    if (vert_expanded_intersection.size().Area64() > maximum_area) {
      maximum = vert_expanded_intersection;
      maximum_area = vert_expanded_intersection.size().Area64();
    }
    Rect horiz_expanded_intersection = intersection;
    horiz_expanded_intersection.SetHorizontalBounds(
        std::min(a.x(), b.x()), std::max(a.right(), b.right()));
    if (horiz_expanded_intersection.size().Area64() > maximum_area) {
      maximum = horiz_expanded_intersection;
      maximum_area = horiz_expanded_intersection.size().Area64();
    }
  }
  return maximum;
}

}  // namespace gfx