1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/geometry/rect.h"
#include <algorithm>
#include "base/check.h"
#include "base/numerics/clamped_math.h"
#include "base/strings/stringprintf.h"
#include "build/build_config.h"
#include "ui/gfx/geometry/insets.h"
#include "ui/gfx/geometry/outsets.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/rect_f.h"
#if BUILDFLAG(IS_WIN)
#include <windows.h>
#elif BUILDFLAG(IS_IOS)
#include <CoreGraphics/CoreGraphics.h>
#elif BUILDFLAG(IS_MAC)
#include <ApplicationServices/ApplicationServices.h>
#endif
namespace {
void AdjustAlongAxis(int dst_origin, int dst_size, int* origin, int* size) {
*size = std::min(dst_size, *size);
if (*origin < dst_origin)
*origin = dst_origin;
else
*origin = std::min(dst_origin + dst_size, *origin + *size) - *size;
}
// This is the per-axis heuristic for picking the most useful origin and
// width/height to represent the input range.
void SaturatedClampRange(int min, int max, int* origin, int* span) {
if (max < min) {
*span = 0;
*origin = min;
return;
}
int effective_span = base::ClampSub(max, min);
int span_loss = base::ClampSub(max, min + effective_span);
// If the desired width is within the limits of ints, we can just
// use the simple computations to represent the range precisely.
if (span_loss == 0) {
*span = effective_span;
*origin = min;
return;
}
// Now we have to approximate. If one of min or max is close enough
// to zero we choose to represent that one precisely. The other side is
// probably practically "infinite", so we move it.
constexpr unsigned kMaxDimension = std::numeric_limits<int>::max() / 2;
if (base::SafeUnsignedAbs(max) < kMaxDimension) {
// Maintain origin + span == max.
*span = effective_span;
*origin = max - effective_span;
} else if (base::SafeUnsignedAbs(min) < kMaxDimension) {
// Maintain origin == min.
*span = effective_span;
*origin = min;
} else {
// Both are big, so keep the center.
*span = effective_span;
*origin = min + span_loss / 2;
}
}
} // namespace
namespace gfx {
#if BUILDFLAG(IS_WIN)
Rect::Rect(const RECT& r)
: origin_(r.left, r.top),
size_(std::abs(r.right - r.left), std::abs(r.bottom - r.top)) {}
RECT Rect::ToRECT() const {
RECT r;
r.left = x();
r.right = right();
r.top = y();
r.bottom = bottom();
return r;
}
#elif BUILDFLAG(IS_APPLE)
Rect::Rect(const CGRect& r)
: origin_(r.origin.x, r.origin.y), size_(r.size.width, r.size.height) {}
CGRect Rect::ToCGRect() const {
return CGRectMake(x(), y(), width(), height());
}
#endif
void Rect::AdjustForSaturatedRight(int right) {
int new_x, width;
SaturatedClampRange(x(), right, &new_x, &width);
set_x(new_x);
size_.set_width(width);
}
void Rect::AdjustForSaturatedBottom(int bottom) {
int new_y, height;
SaturatedClampRange(y(), bottom, &new_y, &height);
set_y(new_y);
size_.set_height(height);
}
void Rect::Inset(const Insets& insets) {
origin_ += Vector2d(insets.left(), insets.top());
set_width(base::ClampSub(width(), insets.width()));
set_height(base::ClampSub(height(), insets.height()));
}
void Rect::Offset(const Vector2d& distance) {
origin_ += distance;
// Ensure that width and height remain valid.
set_width(width());
set_height(height());
}
Insets Rect::InsetsFrom(const Rect& inner) const {
return Insets::TLBR(inner.y() - y(), inner.x() - x(),
bottom() - inner.bottom(), right() - inner.right());
}
bool Rect::operator<(const Rect& other) const {
if (origin_ == other.origin_) {
if (width() == other.width()) {
return height() < other.height();
} else {
return width() < other.width();
}
} else {
return origin_ < other.origin_;
}
}
bool Rect::Contains(int point_x, int point_y) const {
return (point_x >= x()) && (point_x < right()) && (point_y >= y()) &&
(point_y < bottom());
}
bool Rect::Contains(const Rect& rect) const {
return (rect.x() >= x() && rect.right() <= right() && rect.y() >= y() &&
rect.bottom() <= bottom());
}
bool Rect::Intersects(const Rect& rect) const {
return !(IsEmpty() || rect.IsEmpty() || rect.x() >= right() ||
rect.right() <= x() || rect.y() >= bottom() || rect.bottom() <= y());
}
void Rect::Intersect(const Rect& rect) {
if (IsEmpty() || rect.IsEmpty()) {
SetRect(0, 0, 0, 0); // Throws away empty position.
return;
}
int left = std::max(x(), rect.x());
int top = std::max(y(), rect.y());
int new_right = std::min(right(), rect.right());
int new_bottom = std::min(bottom(), rect.bottom());
if (left >= new_right || top >= new_bottom) {
SetRect(0, 0, 0, 0); // Throws away empty position.
return;
}
SetByBounds(left, top, new_right, new_bottom);
}
bool Rect::InclusiveIntersect(const Rect& rect) {
int left = std::max(x(), rect.x());
int top = std::max(y(), rect.y());
int new_right = std::min(right(), rect.right());
int new_bottom = std::min(bottom(), rect.bottom());
// Return a clean empty rectangle for non-intersecting cases.
if (left > new_right || top > new_bottom) {
SetRect(0, 0, 0, 0);
return false;
}
SetByBounds(left, top, new_right, new_bottom);
return true;
}
void Rect::Union(const Rect& rect) {
if (IsEmpty()) {
*this = rect;
return;
}
if (rect.IsEmpty())
return;
UnionEvenIfEmpty(rect);
}
void Rect::UnionEvenIfEmpty(const Rect& rect) {
SetByBounds(std::min(x(), rect.x()), std::min(y(), rect.y()),
std::max(right(), rect.right()),
std::max(bottom(), rect.bottom()));
}
void Rect::Subtract(const Rect& rect) {
if (!Intersects(rect))
return;
if (rect.Contains(*this)) {
SetRect(0, 0, 0, 0);
return;
}
int rx = x();
int ry = y();
int rr = right();
int rb = bottom();
if (rect.y() <= y() && rect.bottom() >= bottom()) {
// complete intersection in the y-direction
if (rect.x() <= x()) {
rx = rect.right();
} else if (rect.right() >= right()) {
rr = rect.x();
}
} else if (rect.x() <= x() && rect.right() >= right()) {
// complete intersection in the x-direction
if (rect.y() <= y()) {
ry = rect.bottom();
} else if (rect.bottom() >= bottom()) {
rb = rect.y();
}
}
SetByBounds(rx, ry, rr, rb);
}
void Rect::AdjustToFit(const Rect& rect) {
int new_x = x();
int new_y = y();
int new_width = width();
int new_height = height();
AdjustAlongAxis(rect.x(), rect.width(), &new_x, &new_width);
AdjustAlongAxis(rect.y(), rect.height(), &new_y, &new_height);
SetRect(new_x, new_y, new_width, new_height);
}
Point Rect::CenterPoint() const {
return Point(x() + width() / 2, y() + height() / 2);
}
void Rect::ToCenteredSize(const Size& size) {
int new_x = x() + (width() - size.width()) / 2;
int new_y = y() + (height() - size.height()) / 2;
SetRect(new_x, new_y, size.width(), size.height());
}
void Rect::ClampToCenteredSize(const Size& to_size) {
gfx::Size new_size = size();
new_size.SetToMin(to_size);
ToCenteredSize(new_size);
}
void Rect::Transpose() {
SetRect(y(), x(), height(), width());
}
void Rect::SplitVertically(Rect& left_half, Rect& right_half) const {
left_half.SetRect(x(), y(), width() / 2, height());
right_half.SetRect(left_half.right(), y(), width() - left_half.width(),
height());
}
void Rect::SplitHorizontally(Rect& top_half, Rect& bottom_half) const {
top_half.SetRect(x(), y(), width(), height() / 2);
bottom_half.SetRect(x(), top_half.bottom(), width(),
height() - top_half.height());
}
bool Rect::SharesEdgeWith(const Rect& rect) const {
return (y() == rect.y() && height() == rect.height() &&
(x() == rect.right() || right() == rect.x())) ||
(x() == rect.x() && width() == rect.width() &&
(y() == rect.bottom() || bottom() == rect.y()));
}
int Rect::ManhattanDistanceToPoint(const Point& point) const {
int x_distance =
std::max<int>(0, std::max(x() - point.x(), point.x() - right()));
int y_distance =
std::max<int>(0, std::max(y() - point.y(), point.y() - bottom()));
return x_distance + y_distance;
}
int Rect::ManhattanInternalDistance(const Rect& rect) const {
Rect c(*this);
c.Union(rect);
int x = std::max(0, c.width() - width() - rect.width() + 1);
int y = std::max(0, c.height() - height() - rect.height() + 1);
return x + y;
}
std::string Rect::ToString() const {
return base::StringPrintf("%s %s",
origin().ToString().c_str(),
size().ToString().c_str());
}
bool Rect::ApproximatelyEqual(const Rect& rect, int tolerance) const {
return std::abs(x() - rect.x()) <= tolerance &&
std::abs(y() - rect.y()) <= tolerance &&
std::abs(right() - rect.right()) <= tolerance &&
std::abs(bottom() - rect.bottom()) <= tolerance;
}
Rect operator+(const Rect& lhs, const Vector2d& rhs) {
Rect result(lhs);
result += rhs;
return result;
}
Rect operator-(const Rect& lhs, const Vector2d& rhs) {
Rect result(lhs);
result -= rhs;
return result;
}
Rect IntersectRects(const Rect& a, const Rect& b) {
Rect result = a;
result.Intersect(b);
return result;
}
Rect UnionRects(const Rect& a, const Rect& b) {
Rect result = a;
result.Union(b);
return result;
}
Rect UnionRects(base::span<const Rect> rects) {
Rect result;
for (const Rect& rect : rects) {
result.Union(rect);
}
return result;
}
Rect UnionRectsEvenIfEmpty(const Rect& a, const Rect& b) {
Rect result = a;
result.UnionEvenIfEmpty(b);
return result;
}
Rect SubtractRects(const Rect& a, const Rect& b) {
Rect result = a;
result.Subtract(b);
return result;
}
Rect BoundingRect(const Point& p1, const Point& p2) {
Rect result;
result.SetByBounds(std::min(p1.x(), p2.x()), std::min(p1.y(), p2.y()),
std::max(p1.x(), p2.x()), std::max(p1.y(), p2.y()));
return result;
}
Rect ScaleToEnclosingRectIgnoringError(const Rect& rect,
float scale,
float epsilon) {
RectF rect_f(rect);
rect_f.Scale(scale);
return ToEnclosingRectIgnoringError(rect_f, epsilon);
}
Rect MaximumCoveredRect(const Rect& a, const Rect& b) {
// Check a or b by itself.
Rect maximum = a;
uint64_t maximum_area = a.size().Area64();
if (b.size().Area64() > maximum_area) {
maximum = b;
maximum_area = b.size().Area64();
}
// Check the regions that include the intersection of a and b. This can be
// done by taking the intersection and expanding it vertically and
// horizontally. These expanded intersections will both still be covered by
// a or b.
Rect intersection = a;
intersection.InclusiveIntersect(b);
if (!intersection.size().IsZero()) {
Rect vert_expanded_intersection = intersection;
vert_expanded_intersection.SetVerticalBounds(
std::min(a.y(), b.y()), std::max(a.bottom(), b.bottom()));
if (vert_expanded_intersection.size().Area64() > maximum_area) {
maximum = vert_expanded_intersection;
maximum_area = vert_expanded_intersection.size().Area64();
}
Rect horiz_expanded_intersection = intersection;
horiz_expanded_intersection.SetHorizontalBounds(
std::min(a.x(), b.x()), std::max(a.right(), b.right()));
if (horiz_expanded_intersection.size().Area64() > maximum_area) {
maximum = horiz_expanded_intersection;
maximum_area = horiz_expanded_intersection.size().Area64();
}
}
return maximum;
}
} // namespace gfx
|