1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Defines a simple integer rectangle class. The containment semantics
// are array-like; that is, the coordinate (x, y) is considered to be
// contained by the rectangle, but the coordinate (x + width, y) is not.
// The class will happily let you create malformed rectangles (that is,
// rectangles with negative width and/or height), but there will be assertions
// in the operations (such as Contains()) to complain in this case.
#ifndef UI_GFX_GEOMETRY_RECT_H_
#define UI_GFX_GEOMETRY_RECT_H_
#include <cmath>
#include <iosfwd>
#include <string>
#include "base/component_export.h"
#include "base/containers/span.h"
#include "base/numerics/clamped_math.h"
#include "base/numerics/safe_conversions.h"
#include "build/build_config.h"
#include "ui/gfx/geometry/insets.h"
#include "ui/gfx/geometry/outsets.h"
#include "ui/gfx/geometry/point.h"
#include "ui/gfx/geometry/size.h"
#include "ui/gfx/geometry/vector2d.h"
#if BUILDFLAG(IS_WIN)
typedef struct tagRECT RECT;
#elif BUILDFLAG(IS_APPLE)
typedef struct CGRect CGRect;
#endif
namespace gfx {
class COMPONENT_EXPORT(GEOMETRY) Rect {
public:
constexpr Rect() = default;
constexpr Rect(int width, int height) : size_(width, height) {}
constexpr Rect(int x, int y, int width, int height)
: origin_(x, y),
size_(ClampWidthOrHeight(x, width), ClampWidthOrHeight(y, height)) {}
constexpr explicit Rect(const Size& size) : size_(size) {}
constexpr Rect(const Point& origin, const Size& size)
: origin_(origin),
size_(ClampWidthOrHeight(origin.x(), size.width()),
ClampWidthOrHeight(origin.y(), size.height())) {}
#if BUILDFLAG(IS_WIN)
explicit Rect(const RECT& r);
#elif BUILDFLAG(IS_APPLE)
explicit Rect(const CGRect& r);
#endif
#if BUILDFLAG(IS_WIN)
// Construct an equivalent Win32 RECT object.
RECT ToRECT() const;
#elif BUILDFLAG(IS_APPLE)
// Construct an equivalent CoreGraphics object.
CGRect ToCGRect() const;
#endif
constexpr int x() const { return origin_.x(); }
// Sets the X position while preserving the width.
void set_x(int x) {
origin_.set_x(x);
size_.set_width(ClampWidthOrHeight(x, width()));
}
constexpr int y() const { return origin_.y(); }
// Sets the Y position while preserving the height.
void set_y(int y) {
origin_.set_y(y);
size_.set_height(ClampWidthOrHeight(y, height()));
}
constexpr int width() const { return size_.width(); }
void set_width(int width) { size_.set_width(ClampWidthOrHeight(x(), width)); }
constexpr int height() const { return size_.height(); }
void set_height(int height) {
size_.set_height(ClampWidthOrHeight(y(), height));
}
constexpr const Point& origin() const { return origin_; }
void set_origin(const Point& origin) {
origin_ = origin;
// Ensure that width and height remain valid.
set_width(width());
set_height(height());
}
constexpr const Size& size() const { return size_; }
void set_size(const Size& size) {
set_width(size.width());
set_height(size.height());
}
constexpr int right() const { return x() + width(); }
constexpr int bottom() const { return y() + height(); }
constexpr Point top_right() const { return Point(right(), y()); }
constexpr Point bottom_left() const { return Point(x(), bottom()); }
constexpr Point bottom_right() const { return Point(right(), bottom()); }
constexpr Point left_center() const { return Point(x(), y() + height() / 2); }
constexpr Point top_center() const { return Point(x() + width() / 2, y()); }
constexpr Point right_center() const {
return Point(right(), y() + height() / 2);
}
constexpr Point bottom_center() const {
return Point(x() + width() / 2, bottom());
}
Vector2d OffsetFromOrigin() const { return Vector2d(x(), y()); }
void SetRect(int x, int y, int width, int height) {
origin_.SetPoint(x, y);
// Ensure that width and height remain valid.
set_width(width);
set_height(height);
}
// Use in place of SetRect() when you know the edges of the rectangle instead
// of the dimensions, rather than trying to determine the width/height
// yourself. This safely handles cases where the width/height would overflow.
void SetByBounds(int left, int top, int right, int bottom) {
SetHorizontalBounds(left, right);
SetVerticalBounds(top, bottom);
}
void SetHorizontalBounds(int left, int right) {
set_x(left);
set_width(base::ClampSub(right, left));
if (this->right() != right) [[unlikely]] {
AdjustForSaturatedRight(right);
}
}
void SetVerticalBounds(int top, int bottom) {
set_y(top);
set_height(base::ClampSub(bottom, top));
if (this->bottom() != bottom) [[unlikely]] {
AdjustForSaturatedBottom(bottom);
}
}
// Shrink the rectangle by |inset| on all sides.
void Inset(int inset) { Inset(Insets(inset)); }
// Shrink the rectangle by the given |insets|.
void Inset(const Insets& insets);
// Expand the rectangle by |outset| on all sides.
void Outset(int outset) { Inset(-outset); }
// Expand the rectangle by the given |outsets|.
void Outset(const Outsets& outsets) { Inset(outsets.ToInsets()); }
// Move the rectangle by a horizontal and vertical distance.
void Offset(int horizontal, int vertical) {
Offset(Vector2d(horizontal, vertical));
}
void Offset(const Vector2d& distance);
void operator+=(const Vector2d& offset) { Offset(offset); }
void operator-=(const Vector2d& offset) { Offset(-offset); }
Insets InsetsFrom(const Rect& inner) const;
// Returns true if the area of the rectangle is zero.
bool IsEmpty() const { return size_.IsEmpty(); }
// A rect is less than another rect if its origin is less than
// the other rect's origin. If the origins are equal, then the
// shortest rect is less than the other. If the origin and the
// height are equal, then the narrowest rect is less than.
// This comparison is required to use Rects in sets, or sorted
// vectors.
bool operator<(const Rect& other) const;
// Returns true if the point identified by point_x and point_y falls inside
// this rectangle. The point (x, y) is inside the rectangle, but the
// point (x + width, y + height) is not.
bool Contains(int point_x, int point_y) const;
// Returns true if the specified point is contained by this rectangle.
bool Contains(const Point& point) const {
return Contains(point.x(), point.y());
}
// Returns true if this rectangle contains the specified rectangle.
bool Contains(const Rect& rect) const;
// Returns true if this rectangle intersects the specified rectangle.
// An empty rectangle doesn't intersect any rectangle.
bool Intersects(const Rect& rect) const;
// Sets this rect to be the intersection of this rectangle with the given
// rectangle.
void Intersect(const Rect& rect);
// Sets this rect to be the intersection of itself and |rect| using
// edge-inclusive geometry. If the two rectangles overlap but the overlap
// region is zero-area (either because one of the two rectangles is zero-area,
// or because the rectangles overlap at an edge or a corner), the result is
// the zero-area intersection. The return value indicates whether the two
// rectangle actually have an intersection, since checking the result for
// isEmpty() is not conclusive.
bool InclusiveIntersect(const Rect& rect);
// Sets this rect to be the union of this rectangle with the given rectangle.
// The union is the smallest rectangle containing both rectangles if not
// empty. If both rects are empty, this rect will become |rect|.
void Union(const Rect& rect);
// Similar to Union(), but the result will contain both rectangles even if
// either of them is empty. For example, union of (100, 100, 0x0) and
// (200, 200, 50x0) is (100, 100, 150x100).
void UnionEvenIfEmpty(const Rect& rect);
// Sets this rect to be the rectangle resulting from subtracting |rect| from
// |*this|, i.e. the bounding rect of |Region(*this) - Region(rect)|.
void Subtract(const Rect& rect);
// Fits as much of the receiving rectangle into the supplied rectangle as
// possible, becoming the result. For example, if the receiver had
// a x-location of 2 and a width of 4, and the supplied rectangle had
// an x-location of 0 with a width of 5, the returned rectangle would have
// an x-location of 1 with a width of 4.
void AdjustToFit(const Rect& rect);
// Returns the center of this rectangle.
Point CenterPoint() const;
// Becomes a rectangle that has the same center point but with a |size|.
void ToCenteredSize(const Size& size);
// Becomes a rectangle that has the same center point but with a size capped
// at given |size|.
void ClampToCenteredSize(const Size& size);
// Transpose x and y axis.
void Transpose();
// Splits `this` in two halves, `left_half` and `right_half`.
void SplitVertically(Rect& left_half, Rect& right_half) const;
// Splits `this` in two halves, `top_half` and `bottom_half`.
void SplitHorizontally(Rect& top_half, Rect& bottom_half) const;
// Returns true if this rectangle shares an entire edge (i.e., same width or
// same height) with the given rectangle, and the rectangles do not overlap.
bool SharesEdgeWith(const Rect& rect) const;
// Returns the manhattan distance from the rect to the point. If the point is
// inside the rect, returns 0.
int ManhattanDistanceToPoint(const Point& point) const;
// Returns the manhattan distance between the contents of this rect and the
// contents of the given rect. That is, if the intersection of the two rects
// is non-empty then the function returns 0. If the rects share a side, it
// returns the smallest non-zero value appropriate for int.
int ManhattanInternalDistance(const Rect& rect) const;
std::string ToString() const;
bool ApproximatelyEqual(const Rect& rect, int tolerance) const;
friend bool operator==(const Rect&, const Rect&) = default;
private:
// Clamp the width/height to avoid integer overflow in bottom() and right().
// This returns the clamped width/height given an |x_or_y| and a
// |width_or_height|.
static constexpr int ClampWidthOrHeight(int x_or_y, int width_or_height) {
return base::ClampAdd(x_or_y, width_or_height) - x_or_y;
}
void AdjustForSaturatedRight(int right);
void AdjustForSaturatedBottom(int bottom);
gfx::Point origin_;
gfx::Size size_;
};
COMPONENT_EXPORT(GEOMETRY) Rect operator+(const Rect& lhs, const Vector2d& rhs);
COMPONENT_EXPORT(GEOMETRY) Rect operator-(const Rect& lhs, const Vector2d& rhs);
inline Rect operator+(const Vector2d& lhs, const Rect& rhs) {
return rhs + lhs;
}
COMPONENT_EXPORT(GEOMETRY) Rect IntersectRects(const Rect& a, const Rect& b);
COMPONENT_EXPORT(GEOMETRY) Rect UnionRects(const Rect& a, const Rect& b);
COMPONENT_EXPORT(GEOMETRY) Rect UnionRects(base::span<const Rect> rects);
COMPONENT_EXPORT(GEOMETRY)
Rect UnionRectsEvenIfEmpty(const Rect& a, const Rect& b);
COMPONENT_EXPORT(GEOMETRY) Rect SubtractRects(const Rect& a, const Rect& b);
// Constructs a rectangle with |p1| and |p2| as opposite corners.
//
// This could also be thought of as "the smallest rect that contains both
// points", except that we consider points on the right/bottom edges of the
// rect to be outside the rect. So technically one or both points will not be
// contained within the rect, because they will appear on one of these edges.
COMPONENT_EXPORT(GEOMETRY) Rect BoundingRect(const Point& p1, const Point& p2);
// Scales the rect and returns the enclosing rect. The components are clamped
// if they would overflow.
inline Rect ScaleToEnclosingRect(const Rect& rect,
float x_scale,
float y_scale) {
if (x_scale == 1.f && y_scale == 1.f)
return rect;
int x = base::ClampFloor(rect.x() * x_scale);
int y = base::ClampFloor(rect.y() * y_scale);
int r = rect.width() == 0 ? x : base::ClampCeil(rect.right() * x_scale);
int b = rect.height() == 0 ? y : base::ClampCeil(rect.bottom() * y_scale);
Rect result;
result.SetByBounds(x, y, r, b);
return result;
}
inline Rect ScaleToEnclosingRect(const Rect& rect, float scale) {
return ScaleToEnclosingRect(rect, scale, scale);
}
inline Rect ScaleToEnclosedRect(const Rect& rect,
float x_scale,
float y_scale) {
if (x_scale == 1.f && y_scale == 1.f)
return rect;
int x = base::ClampCeil(rect.x() * x_scale);
int y = base::ClampCeil(rect.y() * y_scale);
int r = rect.width() == 0 ? x : base::ClampFloor(rect.right() * x_scale);
int b = rect.height() == 0 ? y : base::ClampFloor(rect.bottom() * y_scale);
Rect result;
result.SetByBounds(x, y, r, b);
return result;
}
inline Rect ScaleToEnclosedRect(const Rect& rect, float scale) {
return ScaleToEnclosedRect(rect, scale, scale);
}
// Scales |rect| by scaling its four corner points. If the corner points lie on
// non-integral coordinate after scaling, their values are rounded to the
// nearest integer. The components are clamped if they would overflow.
// This is helpful during layout when relative positions of multiple gfx::Rect
// in a given coordinate space needs to be same after scaling as it was before
// scaling. ie. this gives a lossless relative positioning of rects.
inline Rect ScaleToRoundedRect(const Rect& rect, float x_scale, float y_scale) {
if (x_scale == 1.f && y_scale == 1.f)
return rect;
int x = base::ClampRound(rect.x() * x_scale);
int y = base::ClampRound(rect.y() * y_scale);
int r = rect.width() == 0 ? x : base::ClampRound(rect.right() * x_scale);
int b = rect.height() == 0 ? y : base::ClampRound(rect.bottom() * y_scale);
Rect result;
result.SetByBounds(x, y, r, b);
return result;
}
inline Rect ScaleToRoundedRect(const Rect& rect, float scale) {
return ScaleToRoundedRect(rect, scale, scale);
}
// Scales `rect` by `scale` and rounds to enclosing rect, but for each edge, if
// the distance between the edge and the nearest integer grid is smaller than
// `error`, the edge is snapped to the integer grid. The default error is 0.001
// , which is used by cc/viz. Use this when scaling the window/layer size.
COMPONENT_EXPORT(GEOMETRY)
Rect ScaleToEnclosingRectIgnoringError(const Rect& rect,
float scale,
float error = 0.001f);
// Return a maximum rectangle that is covered by the a or b.
COMPONENT_EXPORT(GEOMETRY)
Rect MaximumCoveredRect(const Rect& a, const Rect& b);
// This is declared here for use in gtest-based unit tests but is defined in
// the //ui/gfx:test_support target. Depend on that to use this in your unit
// test. This should not be used in production code - call ToString() instead.
void PrintTo(const Rect& rect, ::std::ostream* os);
} // namespace gfx
#endif // UI_GFX_GEOMETRY_RECT_H_
|