1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/geometry/rect_f.h"
#include <algorithm>
#include <limits>
#include "base/check.h"
#include "base/check_op.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/stringprintf.h"
#include "build/build_config.h"
#include "ui/gfx/geometry/insets_f.h"
#include "ui/gfx/geometry/outsets_f.h"
#if BUILDFLAG(IS_IOS)
#include <CoreGraphics/CoreGraphics.h>
#elif BUILDFLAG(IS_MAC)
#include <ApplicationServices/ApplicationServices.h>
#endif
namespace gfx {
static void AdjustAlongAxis(float dst_origin,
float dst_size,
float* origin,
float* size) {
*size = std::min(dst_size, *size);
if (*origin < dst_origin)
*origin = dst_origin;
else
*origin = std::min(dst_origin + dst_size, *origin + *size) - *size;
}
#if BUILDFLAG(IS_APPLE)
RectF::RectF(const CGRect& r)
: origin_(r.origin.x, r.origin.y), size_(r.size.width, r.size.height) {
}
CGRect RectF::ToCGRect() const {
return CGRectMake(x(), y(), width(), height());
}
#endif
void RectF::Inset(const InsetsF& insets) {
origin_ += Vector2dF(insets.left(), insets.top());
set_width(width() - insets.width());
set_height(height() - insets.height());
}
void RectF::Offset(float horizontal, float vertical) {
origin_ += Vector2dF(horizontal, vertical);
}
void RectF::operator+=(const Vector2dF& offset) {
origin_ += offset;
}
void RectF::operator-=(const Vector2dF& offset) {
origin_ -= offset;
}
InsetsF RectF::InsetsFrom(const RectF& inner) const {
return InsetsF::TLBR(inner.y() - y(), inner.x() - x(),
bottom() - inner.bottom(), right() - inner.right());
}
bool RectF::operator<(const RectF& other) const {
if (origin_ != other.origin_)
return origin_ < other.origin_;
if (width() == other.width())
return height() < other.height();
return width() < other.width();
}
bool RectF::Contains(float point_x, float point_y) const {
return point_x >= x() && point_x < right() && point_y >= y() &&
point_y < bottom();
}
bool RectF::InclusiveContains(float point_x, float point_y) const {
return point_x >= x() && point_x <= right() && point_y >= y() &&
point_y <= bottom();
}
bool RectF::Contains(const RectF& rect) const {
return rect.x() >= x() && rect.right() <= right() && rect.y() >= y() &&
rect.bottom() <= bottom();
}
bool RectF::Intersects(const RectF& rect) const {
return !IsEmpty() && !rect.IsEmpty() && rect.x() < right() &&
rect.right() > x() && rect.y() < bottom() && rect.bottom() > y();
}
void RectF::Intersect(const RectF& rect) {
if (IsEmpty() || rect.IsEmpty()) {
SetRect(0, 0, 0, 0);
return;
}
float rx = std::max(x(), rect.x());
float ry = std::max(y(), rect.y());
float rr = std::min(right(), rect.right());
float rb = std::min(bottom(), rect.bottom());
if (rx >= rr || ry >= rb) {
SetRect(0, 0, 0, 0);
return;
}
SetRect(rx, ry, rr - rx, rb - ry);
}
bool RectF::InclusiveIntersect(const RectF& rect) {
float rx = std::max(x(), rect.x());
float ry = std::max(y(), rect.y());
float rr = std::min(right(), rect.right());
float rb = std::min(bottom(), rect.bottom());
// Return a clean empty rectangle for non-intersecting cases.
if (rx > rr || ry > rb) {
SetRect(0, 0, 0, 0);
return false;
}
SetRect(rx, ry, rr - rx, rb - ry);
return true;
}
void RectF::Union(const RectF& rect) {
if (IsEmpty()) {
*this = rect;
return;
}
if (rect.IsEmpty())
return;
UnionEvenIfEmpty(rect);
}
void RectF::UnionEvenIfEmpty(const RectF& rect) {
float rx = std::min(x(), rect.x());
float ry = std::min(y(), rect.y());
float rr = std::max(right(), rect.right());
float rb = std::max(bottom(), rect.bottom());
SetRect(rx, ry, rr - rx, rb - ry);
// Due to floating errors and SizeF::clamp(), the new rect may not fully
// contain the original rects at the right/bottom side. Expand the rect in
// the case.
constexpr auto kFloatMax = std::numeric_limits<float>::max();
if (right() < rr && width() < kFloatMax) [[unlikely]] {
size_.SetToNextWidth();
DCHECK_GE(right(), rr);
}
if (bottom() < rb && height() < kFloatMax) [[unlikely]] {
size_.SetToNextHeight();
DCHECK_GE(bottom(), rb);
}
}
void RectF::Subtract(const RectF& rect) {
if (!Intersects(rect))
return;
if (rect.Contains(*this)) {
SetRect(0, 0, 0, 0);
return;
}
float rx = x();
float ry = y();
float rr = right();
float rb = bottom();
if (rect.y() <= y() && rect.bottom() >= bottom()) {
// complete intersection in the y-direction
if (rect.x() <= x()) {
rx = rect.right();
} else if (rect.right() >= right()) {
rr = rect.x();
}
} else if (rect.x() <= x() && rect.right() >= right()) {
// complete intersection in the x-direction
if (rect.y() <= y()) {
ry = rect.bottom();
} else if (rect.bottom() >= bottom()) {
rb = rect.y();
}
}
SetRect(rx, ry, rr - rx, rb - ry);
}
void RectF::AdjustToFit(const RectF& rect) {
float new_x = x();
float new_y = y();
float new_width = width();
float new_height = height();
AdjustAlongAxis(rect.x(), rect.width(), &new_x, &new_width);
AdjustAlongAxis(rect.y(), rect.height(), &new_y, &new_height);
SetRect(new_x, new_y, new_width, new_height);
}
PointF RectF::CenterPoint() const {
return PointF(x() + width() / 2, y() + height() / 2);
}
void RectF::ClampToCenteredSize(const SizeF& size) {
float new_width = std::min(width(), size.width());
float new_height = std::min(height(), size.height());
float new_x = x() + (width() - new_width) / 2;
float new_y = y() + (height() - new_height) / 2;
SetRect(new_x, new_y, new_width, new_height);
}
void RectF::Transpose() {
SetRect(y(), x(), height(), width());
}
void RectF::SplitVertically(RectF& left_half, RectF& right_half) const {
left_half.SetRect(x(), y(), width() / 2, height());
right_half.SetRect(left_half.right(), y(), width() - left_half.width(),
height());
}
void RectF::SplitHorizontally(RectF& top_half, RectF& bottom_half) const {
top_half.SetRect(x(), y(), width(), height() / 2);
bottom_half.SetRect(x(), top_half.bottom(), width(),
height() - top_half.height());
}
bool RectF::SharesEdgeWith(const RectF& rect) const {
return (y() == rect.y() && height() == rect.height() &&
(x() == rect.right() || right() == rect.x())) ||
(x() == rect.x() && width() == rect.width() &&
(y() == rect.bottom() || bottom() == rect.y()));
}
float RectF::ManhattanDistanceToPoint(const PointF& point) const {
float x_distance =
std::max<float>(0, std::max(x() - point.x(), point.x() - right()));
float y_distance =
std::max<float>(0, std::max(y() - point.y(), point.y() - bottom()));
return x_distance + y_distance;
}
float RectF::ManhattanInternalDistance(const RectF& rect) const {
RectF c(*this);
c.Union(rect);
static constexpr float kEpsilon = std::numeric_limits<float>::epsilon();
float x = std::max(0.f, c.width() - width() - rect.width() + kEpsilon);
float y = std::max(0.f, c.height() - height() - rect.height() + kEpsilon);
return x + y;
}
PointF RectF::ClosestPoint(const PointF& point) const {
return PointF(std::min(std::max(point.x(), x()), right()),
std::min(std::max(point.y(), y()), bottom()));
}
bool RectF::IsExpressibleAsRect() const {
return base::IsValueInRangeForNumericType<int>(x()) &&
base::IsValueInRangeForNumericType<int>(y()) &&
base::IsValueInRangeForNumericType<int>(width()) &&
base::IsValueInRangeForNumericType<int>(height()) &&
base::IsValueInRangeForNumericType<int>(right()) &&
base::IsValueInRangeForNumericType<int>(bottom());
}
RectF IntersectRects(const RectF& a, const RectF& b) {
RectF result = a;
result.Intersect(b);
return result;
}
RectF UnionRects(const RectF& a, const RectF& b) {
RectF result = a;
result.Union(b);
return result;
}
RectF UnionRects(base::span<const RectF> rects) {
RectF result;
for (const RectF& rect : rects) {
result.Union(rect);
}
return result;
}
RectF UnionRectsEvenIfEmpty(const RectF& a, const RectF& b) {
RectF result = a;
result.UnionEvenIfEmpty(b);
return result;
}
RectF SubtractRects(const RectF& a, const RectF& b) {
RectF result = a;
result.Subtract(b);
return result;
}
// Construct a rectangle with top-left corner at |p1| and bottom-right corner
// at |p2|. If the exact result of top - bottom or left - right cannot be
// presented in float, then the height/width will be grown to the next
// float, so that it includes both |p1| and |p2|.
RectF BoundingRect(const PointF& p1, const PointF& p2) {
float left = std::min(p1.x(), p2.x());
float top = std::min(p1.y(), p2.y());
float right = std::max(p1.x(), p2.x());
float bottom = std::max(p1.y(), p2.y());
float width = right - left;
float height = bottom - top;
// If the precision is lost during the calculation, always grow to the next
// value to include both ends.
if (left + width != right) {
width = std::nextafter((width), std::numeric_limits<float>::infinity());
if (std::isinf(width)) {
width = std::numeric_limits<float>::max();
}
}
if (top + height != bottom) {
height = std::nextafter((height), std::numeric_limits<float>::infinity());
if (std::isinf(height)) {
height = std::numeric_limits<float>::max();
}
}
return RectF(left, top, width, height);
}
RectF MaximumCoveredRect(const RectF& a, const RectF& b) {
// Check a or b by itself.
RectF maximum = a;
float maximum_area = a.size().GetArea();
if (b.size().GetArea() > maximum_area) {
maximum = b;
maximum_area = b.size().GetArea();
}
// Check the regions that include the intersection of a and b. This can be
// done by taking the intersection and expanding it vertically and
// horizontally. These expanded intersections will both still be covered by
// a or b.
RectF intersection = a;
intersection.InclusiveIntersect(b);
if (!intersection.size().IsZero()) {
RectF vert_expanded_intersection = intersection;
vert_expanded_intersection.set_y(std::min(a.y(), b.y()));
vert_expanded_intersection.set_height(std::max(a.bottom(), b.bottom()) -
vert_expanded_intersection.y());
if (vert_expanded_intersection.size().GetArea() > maximum_area) {
maximum = vert_expanded_intersection;
maximum_area = vert_expanded_intersection.size().GetArea();
}
RectF horiz_expanded_intersection(intersection);
horiz_expanded_intersection.set_x(std::min(a.x(), b.x()));
horiz_expanded_intersection.set_width(std::max(a.right(), b.right()) -
horiz_expanded_intersection.x());
if (horiz_expanded_intersection.size().GetArea() > maximum_area) {
maximum = horiz_expanded_intersection;
maximum_area = horiz_expanded_intersection.size().GetArea();
}
}
return maximum;
}
RectF MapRect(const RectF& r, const RectF& src_rect, const RectF& dest_rect) {
if (src_rect.IsEmpty())
return RectF();
float width_scale = dest_rect.width() / src_rect.width();
float height_scale = dest_rect.height() / src_rect.height();
return RectF(dest_rect.x() + (r.x() - src_rect.x()) * width_scale,
dest_rect.y() + (r.y() - src_rect.y()) * height_scale,
r.width() * width_scale, r.height() * height_scale);
}
std::string RectF::ToString() const {
return base::StringPrintf("%s %s", origin().ToString().c_str(),
size().ToString().c_str());
}
bool RectF::ApproximatelyEqual(const RectF& rect,
float tolerance_x,
float tolerance_y) const {
return std::abs(x() - rect.x()) <= tolerance_x &&
std::abs(y() - rect.y()) <= tolerance_y &&
std::abs(right() - rect.right()) <= tolerance_x &&
std::abs(bottom() - rect.bottom()) <= tolerance_y;
}
} // namespace gfx
|