1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef UI_GFX_GEOMETRY_RECT_F_H_
#define UI_GFX_GEOMETRY_RECT_F_H_
#include <iosfwd>
#include <string>
#include "base/component_export.h"
#include "base/containers/span.h"
#include "build/build_config.h"
#include "ui/gfx/geometry/insets_f.h"
#include "ui/gfx/geometry/outsets_f.h"
#include "ui/gfx/geometry/point_f.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/size.h"
#include "ui/gfx/geometry/size_f.h"
#include "ui/gfx/geometry/vector2d_f.h"
#if BUILDFLAG(IS_APPLE)
typedef struct CGRect CGRect;
#endif
namespace gfx {
// A floating version of gfx::Rect.
class COMPONENT_EXPORT(GEOMETRY) RectF {
public:
constexpr RectF() = default;
constexpr RectF(float width, float height) : size_(width, height) {}
constexpr RectF(float x, float y, float width, float height)
: origin_(x, y), size_(width, height) {}
constexpr explicit RectF(const SizeF& size) : size_(size) {}
constexpr explicit RectF(const Size& size) : size_(size) {}
constexpr RectF(const PointF& origin, const SizeF& size)
: origin_(origin), size_(size) {}
constexpr explicit RectF(const Rect& r)
: RectF(static_cast<float>(r.x()),
static_cast<float>(r.y()),
static_cast<float>(r.width()),
static_cast<float>(r.height())) {}
#if BUILDFLAG(IS_APPLE)
explicit RectF(const CGRect& r);
// Construct an equivalent CoreGraphics object.
CGRect ToCGRect() const;
#endif
constexpr float x() const { return origin_.x(); }
void set_x(float x) { origin_.set_x(x); }
constexpr float y() const { return origin_.y(); }
void set_y(float y) { origin_.set_y(y); }
constexpr float width() const { return size_.width(); }
void set_width(float width) { size_.set_width(width); }
constexpr float height() const { return size_.height(); }
void set_height(float height) { size_.set_height(height); }
constexpr const PointF& origin() const { return origin_; }
void set_origin(const PointF& origin) { origin_ = origin; }
constexpr const SizeF& size() const { return size_; }
void set_size(const SizeF& size) { size_ = size; }
constexpr float right() const { return x() + width(); }
constexpr float bottom() const { return y() + height(); }
constexpr PointF top_right() const { return PointF(right(), y()); }
constexpr PointF bottom_left() const { return PointF(x(), bottom()); }
constexpr PointF bottom_right() const { return PointF(right(), bottom()); }
constexpr PointF left_center() const {
return PointF(x(), y() + height() / 2);
}
constexpr PointF top_center() const { return PointF(x() + width() / 2, y()); }
constexpr PointF right_center() const {
return PointF(right(), y() + height() / 2);
}
constexpr PointF bottom_center() const {
return PointF(x() + width() / 2, bottom());
}
Vector2dF OffsetFromOrigin() const { return Vector2dF(x(), y()); }
void SetRect(float x, float y, float width, float height) {
origin_.SetPoint(x, y);
size_.SetSize(width, height);
}
// Shrinks the rectangle by |inset| on all sides.
void Inset(float inset) { Inset(InsetsF(inset)); }
// Shrinks the rectangle by the given |insets|.
void Inset(const InsetsF& insets);
// Expands the rectangle by |outset| on all sides.
void Outset(float outset) { Inset(-outset); }
// Expands the rectangle by the given |outsets|.
void Outset(const OutsetsF& outsets) { Inset(outsets.ToInsets()); }
// Move the rectangle by a horizontal and vertical distance.
void Offset(float horizontal, float vertical);
void Offset(const Vector2dF& distance) { Offset(distance.x(), distance.y()); }
void operator+=(const Vector2dF& offset);
void operator-=(const Vector2dF& offset);
InsetsF InsetsFrom(const RectF& inner) const;
// Returns true if the area of the rectangle is zero.
constexpr bool IsEmpty() const { return size_.IsEmpty(); }
// A rect is less than another rect if its origin is less than
// the other rect's origin. If the origins are equal, then the
// shortest rect is less than the other. If the origin and the
// height are equal, then the narrowest rect is less than.
// This comparison is required to use Rects in sets, or sorted
// vectors.
bool operator<(const RectF& other) const;
// Returns true if the point identified by point_x and point_y falls inside
// this rectangle (including the left and the top edges, excluding the right
// and the bottom edges). If this rectangle is empty, this method returns
// false regardless of the point.
bool Contains(float point_x, float point_y) const;
// Returns true if the specified point is contained by this rectangle.
bool Contains(const PointF& point) const {
return Contains(point.x(), point.y());
}
// Similar to Contains(), but uses edge-inclusive geometry, i.e. also returns
// true if the point is on the right or the bottom edge. If this rectangle
// is empty, this method returns true only if the point is at the origin of
// this rectangle.
bool InclusiveContains(float point_x, float point_y) const;
bool InclusiveContains(const PointF& point) const {
return InclusiveContains(point.x(), point.y());
}
// Returns true if this rectangle contains the specified rectangle.
bool Contains(const RectF& rect) const;
// Returns true if this rectangle intersects the specified rectangle.
// An empty rectangle doesn't intersect any rectangle.
bool Intersects(const RectF& rect) const;
// Sets this rect to be the intersection of this rectangle with the given
// rectangle.
void Intersect(const RectF& rect);
// Sets this rect to be the intersection of itself and |rect| using
// edge-inclusive geometry. If the two rectangles overlap but the overlap
// region is zero-area (either because one of the two rectangles is zero-area,
// or because the rectangles overlap at an edge or a corner), the result is
// the zero-area intersection. The return value indicates whether the two
// rectangle actually have an intersection, since checking the result for
// isEmpty() is not conclusive.
bool InclusiveIntersect(const RectF& rect);
// Sets this rect to be the union of this rectangle with the given rectangle.
// The union is the smallest rectangle containing both rectangles if not
// empty. If both rects are empty, this rect will become |rect|.
void Union(const RectF& rect);
// Similar to Union(), but the result will contain both rectangles even if
// either of them is empty. For example, union of (100, 100, 0x0) and
// (200, 200, 50x0) is (100, 100, 150x100).
void UnionEvenIfEmpty(const RectF& rect);
// Sets this rect to be the rectangle resulting from subtracting |rect| from
// |*this|, i.e. the bounding rect of |Region(*this) - Region(rect)|.
void Subtract(const RectF& rect);
// Fits as much of the receiving rectangle into the supplied rectangle as
// possible, becoming the result. For example, if the receiver had
// a x-location of 2 and a width of 4, and the supplied rectangle had
// an x-location of 0 with a width of 5, the returned rectangle would have
// an x-location of 1 with a width of 4.
void AdjustToFit(const RectF& rect);
// Returns the center of this rectangle.
PointF CenterPoint() const;
// Becomes a rectangle that has the same center point but with a size capped
// at given |size|.
void ClampToCenteredSize(const SizeF& size);
// Transpose x and y axis.
void Transpose();
// Splits `this` in two halves, `left_half` and `right_half`.
void SplitVertically(RectF& left_half, RectF& right_half) const;
// Splits `this` in two halves, `top_half` and `bottom_half`.
void SplitHorizontally(RectF& top_half, RectF& bottom_half) const;
// Returns true if this rectangle shares an entire edge (i.e., same width or
// same height) with the given rectangle, and the rectangles do not overlap.
bool SharesEdgeWith(const RectF& rect) const;
// Returns the manhattan distance from the rect to the point. If the point is
// inside the rect, returns 0.
float ManhattanDistanceToPoint(const PointF& point) const;
// Returns the manhattan distance between the contents of this rect and the
// contents of the given rect. That is, if the intersection of the two rects
// is non-empty then the function returns 0. If the rects share a side, it
// returns the smallest non-zero value appropriate for float.
float ManhattanInternalDistance(const RectF& rect) const;
// Returns the closest point in or on an edge of this rect to the given point.
PointF ClosestPoint(const PointF& point) const;
// Scales the rectangle by |scale|.
void Scale(float scale) {
Scale(scale, scale);
}
void Scale(float x_scale, float y_scale) {
set_origin(ScalePoint(origin(), x_scale, y_scale));
set_size(ScaleSize(size(), x_scale, y_scale));
}
// Divides the rectangle by |inv_scale|.
void InvScale(float inv_scale) { InvScale(inv_scale, inv_scale); }
void InvScale(float x_scale, float y_scale) {
origin_.InvScale(x_scale, y_scale);
size_.InvScale(x_scale, y_scale);
}
// This method reports if the RectF can be safely converted to an integer
// Rect. When it is false, some dimension of the RectF is outside the bounds
// of what an integer can represent, and converting it to a Rect will require
// clamping.
bool IsExpressibleAsRect() const;
std::string ToString() const;
bool ApproximatelyEqual(const RectF& rect,
float tolerance_x,
float tolerance_y) const;
friend constexpr bool operator==(const RectF&, const RectF&) = default;
private:
PointF origin_;
SizeF size_;
};
inline RectF operator+(const RectF& lhs, const Vector2dF& rhs) {
return RectF(lhs.x() + rhs.x(), lhs.y() + rhs.y(),
lhs.width(), lhs.height());
}
inline RectF operator-(const RectF& lhs, const Vector2dF& rhs) {
return RectF(lhs.x() - rhs.x(), lhs.y() - rhs.y(),
lhs.width(), lhs.height());
}
inline RectF operator+(const Vector2dF& lhs, const RectF& rhs) {
return rhs + lhs;
}
COMPONENT_EXPORT(GEOMETRY) RectF IntersectRects(const RectF& a, const RectF& b);
COMPONENT_EXPORT(GEOMETRY) RectF UnionRects(const RectF& a, const RectF& b);
COMPONENT_EXPORT(GEOMETRY) RectF UnionRects(base::span<const RectF> rects);
COMPONENT_EXPORT(GEOMETRY)
RectF UnionRectsEvenIfEmpty(const RectF& a, const RectF& b);
COMPONENT_EXPORT(GEOMETRY) RectF SubtractRects(const RectF& a, const RectF& b);
inline RectF ScaleRect(const RectF& r, float x_scale, float y_scale) {
return RectF(r.x() * x_scale, r.y() * y_scale,
r.width() * x_scale, r.height() * y_scale);
}
inline RectF ScaleRect(const RectF& r, const SizeF& size) {
return ScaleRect(r, size.width(), size.height());
}
inline RectF ScaleRect(const RectF& r, const Size& size) {
return ScaleRect(r, SizeF(size));
}
inline RectF ScaleRect(const RectF& r, float scale) {
return ScaleRect(r, scale, scale);
}
inline RectF TransposeRect(const RectF& r) {
return RectF(r.y(), r.x(), r.height(), r.width());
}
// Constructs a rectangle with |p1| and |p2| as opposite corners.
//
// This could also be thought of as "the smallest rect that contains both
// points", except that we consider points on the right/bottom edges of the
// rect to be outside the rect. So technically one or both points will not be
// contained within the rect, because they will appear on one of these edges.
COMPONENT_EXPORT(GEOMETRY)
RectF BoundingRect(const PointF& p1, const PointF& p2);
// Return a maximum rectangle in which any point is covered by either a or b.
COMPONENT_EXPORT(GEOMETRY)
RectF MaximumCoveredRect(const RectF& a, const RectF& b);
// Returns the rect in |dest_rect| corresponding to |r] in |src_rect| when
// |src_rect| is mapped to |dest_rect|.
COMPONENT_EXPORT(GEOMETRY)
RectF MapRect(const RectF& r, const RectF& src_rect, const RectF& dest_rect);
// This is declared here for use in gtest-based unit tests but is defined in
// the //ui/gfx:test_support target. Depend on that to use this in your unit
// test. This should not be used in production code - call ToString() instead.
void PrintTo(const RectF& rect, ::std::ostream* os);
} // namespace gfx
#endif // UI_GFX_GEOMETRY_RECT_F_H_
|