1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
|
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/geometry/rect.h"
#include <stddef.h>
#include <array>
#include <limits>
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "ui/gfx/geometry/insets.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/test/geometry_util.h"
#if BUILDFLAG(IS_WIN)
#include <windows.h>
#endif
namespace gfx {
constexpr int kMaxInt = std::numeric_limits<int>::max();
constexpr int kMinInt = std::numeric_limits<int>::min();
TEST(RectTest, Contains) {
struct ContainsCase {
int rect_x;
int rect_y;
int rect_width;
int rect_height;
int point_x;
int point_y;
bool contained;
};
static const auto contains_cases = std::to_array<ContainsCase>({
{0, 0, 10, 10, 0, 0, true},
{0, 0, 10, 10, 5, 5, true},
{0, 0, 10, 10, 9, 9, true},
{0, 0, 10, 10, 5, 10, false},
{0, 0, 10, 10, 10, 5, false},
{0, 0, 10, 10, -1, -1, false},
{0, 0, 10, 10, 50, 50, false},
#if defined(NDEBUG) && !defined(DCHECK_ALWAYS_ON)
{0, 0, -10, -10, 0, 0, false},
#endif
});
for (size_t i = 0; i < std::size(contains_cases); ++i) {
const ContainsCase& value = contains_cases[i];
Rect rect(value.rect_x, value.rect_y, value.rect_width, value.rect_height);
EXPECT_EQ(value.contained, rect.Contains(value.point_x, value.point_y));
}
}
TEST(RectTest, Intersects) {
struct Tests {
int x1; // rect 1
int y1;
int w1;
int h1;
int x2; // rect 2
int y2;
int w2;
int h2;
bool intersects;
};
static const auto tests = std::to_array<Tests>({
{0, 0, 0, 0, 0, 0, 0, 0, false},
{0, 0, 0, 0, -10, -10, 20, 20, false},
{-10, 0, 0, 20, 0, -10, 20, 0, false},
{0, 0, 10, 10, 0, 0, 10, 10, true},
{0, 0, 10, 10, 10, 10, 10, 10, false},
{10, 10, 10, 10, 0, 0, 10, 10, false},
{10, 10, 10, 10, 5, 5, 10, 10, true},
{10, 10, 10, 10, 15, 15, 10, 10, true},
{10, 10, 10, 10, 20, 15, 10, 10, false},
{10, 10, 10, 10, 21, 15, 10, 10, false},
});
for (size_t i = 0; i < std::size(tests); ++i) {
Rect r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1);
Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2);
EXPECT_EQ(tests[i].intersects, r1.Intersects(r2));
EXPECT_EQ(tests[i].intersects, r2.Intersects(r1));
}
}
TEST(RectTest, Intersect) {
struct Tests {
int x1; // rect 1
int y1;
int w1;
int h1;
int x2; // rect 2
int y2;
int w2;
int h2;
int x3; // rect 3: the union of rects 1 and 2
int y3;
int w3;
int h3;
};
static const auto tests = std::to_array<Tests>({
{0, 0, 0, 0, // zeros
0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 4, 4, // equal
0, 0, 4, 4, 0, 0, 4, 4},
{0, 0, 4, 4, // neighboring
4, 4, 4, 4, 0, 0, 0, 0},
{0, 0, 4, 4, // overlapping corners
2, 2, 4, 4, 2, 2, 2, 2},
{0, 0, 4, 4, // T junction
3, 1, 4, 2, 3, 1, 1, 2},
{3, 0, 2, 2, // gap
0, 0, 2, 2, 0, 0, 0, 0},
});
for (size_t i = 0; i < std::size(tests); ++i) {
Rect r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1);
Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2);
Rect r3(tests[i].x3, tests[i].y3, tests[i].w3, tests[i].h3);
EXPECT_EQ(r3, IntersectRects(r1, r2));
}
}
TEST(RectTest, InclusiveIntersect) {
Rect rect(11, 12, 0, 0);
EXPECT_TRUE(rect.InclusiveIntersect(Rect(11, 12, 13, 14)));
EXPECT_EQ(Rect(11, 12, 0, 0), rect);
rect = Rect(11, 12, 13, 14);
EXPECT_TRUE(rect.InclusiveIntersect(Rect(24, 8, 0, 7)));
EXPECT_EQ(Rect(24, 12, 0, 3), rect);
rect = Rect(11, 12, 13, 14);
EXPECT_TRUE(rect.InclusiveIntersect(Rect(9, 15, 4, 0)));
EXPECT_EQ(Rect(11, 15, 2, 0), rect);
rect = Rect(11, 12, 0, 14);
EXPECT_FALSE(rect.InclusiveIntersect(Rect(12, 13, 15, 16)));
EXPECT_EQ(Rect(), rect);
}
TEST(RectTest, Union) {
EXPECT_EQ(Rect(), UnionRects(Rect(), Rect()));
EXPECT_EQ(Rect(1, 2, 3, 4), UnionRects(Rect(1, 2, 3, 4), Rect(1, 2, 3, 4)));
EXPECT_EQ(Rect(0, 0, 8, 10), UnionRects(Rect(0, 0, 3, 4), Rect(3, 4, 5, 6)));
EXPECT_EQ(Rect(0, 0, 8, 10), UnionRects(Rect(3, 4, 5, 6), Rect(0, 0, 3, 4)));
EXPECT_EQ(Rect(0, 1, 3, 8), UnionRects(Rect(0, 1, 3, 4), Rect(0, 5, 3, 4)));
EXPECT_EQ(Rect(0, 1, 10, 11), UnionRects(Rect(0, 1, 3, 4), Rect(4, 5, 6, 7)));
EXPECT_EQ(Rect(0, 1, 10, 11), UnionRects(Rect(4, 5, 6, 7), Rect(0, 1, 3, 4)));
EXPECT_EQ(Rect(2, 3, 4, 5), UnionRects(Rect(8, 9, 0, 2), Rect(2, 3, 4, 5)));
EXPECT_EQ(Rect(2, 3, 4, 5), UnionRects(Rect(2, 3, 4, 5), Rect(8, 9, 2, 0)));
}
TEST(RectTest, UnionEvenIfEmpty) {
EXPECT_EQ(Rect(), UnionRectsEvenIfEmpty(Rect(), Rect()));
EXPECT_EQ(Rect(0, 0, 3, 4), UnionRectsEvenIfEmpty(Rect(), Rect(3, 4, 0, 0)));
EXPECT_EQ(Rect(0, 0, 8, 10),
UnionRectsEvenIfEmpty(Rect(0, 0, 3, 4), Rect(3, 4, 5, 6)));
EXPECT_EQ(Rect(0, 0, 8, 10),
UnionRectsEvenIfEmpty(Rect(3, 4, 5, 6), Rect(0, 0, 3, 4)));
EXPECT_EQ(Rect(2, 3, 6, 8),
UnionRectsEvenIfEmpty(Rect(8, 9, 0, 2), Rect(2, 3, 4, 5)));
EXPECT_EQ(Rect(2, 3, 8, 6),
UnionRectsEvenIfEmpty(Rect(2, 3, 4, 5), Rect(8, 9, 2, 0)));
}
TEST(RectTest, Equals) {
ASSERT_TRUE(Rect(0, 0, 0, 0) == Rect(0, 0, 0, 0));
ASSERT_TRUE(Rect(1, 2, 3, 4) == Rect(1, 2, 3, 4));
ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(0, 0, 0, 1));
ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(0, 0, 1, 0));
ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(0, 1, 0, 0));
ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(1, 0, 0, 0));
}
TEST(RectTest, AdjustToFit) {
struct Test {
int x1; // source
int y1;
int w1;
int h1;
int x2; // target
int y2;
int w2;
int h2;
int x3; // rect 3: results of invoking AdjustToFit
int y3;
int w3;
int h3;
};
static const auto tests = std::to_array<Test>({
{0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2},
{2, 2, 3, 3, 0, 0, 4, 4, 1, 1, 3, 3},
{-1, -1, 5, 5, 0, 0, 4, 4, 0, 0, 4, 4},
{2, 2, 4, 4, 0, 0, 3, 3, 0, 0, 3, 3},
{2, 2, 1, 1, 0, 0, 3, 3, 2, 2, 1, 1},
});
for (size_t i = 0; i < std::size(tests); ++i) {
Rect r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1);
Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2);
Rect r3(tests[i].x3, tests[i].y3, tests[i].w3, tests[i].h3);
Rect u = r1;
u.AdjustToFit(r2);
EXPECT_EQ(r3, u);
}
}
TEST(RectTest, Subtract) {
Rect result;
// Matching
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(10, 10, 20, 20));
EXPECT_EQ(Rect(0, 0, 0, 0), result);
// Contains
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(5, 5, 30, 30));
EXPECT_EQ(Rect(0, 0, 0, 0), result);
// No intersection
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(30, 30, 30, 30));
EXPECT_EQ(Rect(10, 10, 20, 20), result);
// Not a complete intersection in either direction
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(15, 15, 20, 20));
EXPECT_EQ(Rect(10, 10, 20, 20), result);
// Complete intersection in the x-direction, top edge is fully covered.
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(10, 15, 20, 20));
EXPECT_EQ(Rect(10, 10, 20, 5), result);
// Complete intersection in the x-direction, top edge is fully covered.
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(5, 15, 30, 20));
EXPECT_EQ(Rect(10, 10, 20, 5), result);
// Complete intersection in the x-direction, bottom edge is fully covered.
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(5, 5, 30, 20));
EXPECT_EQ(Rect(10, 25, 20, 5), result);
// Complete intersection in the x-direction, none of the edges is fully
// covered.
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(5, 15, 30, 1));
EXPECT_EQ(Rect(10, 10, 20, 20), result);
// Complete intersection in the y-direction, left edge is fully covered.
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(10, 10, 10, 30));
EXPECT_EQ(Rect(20, 10, 10, 20), result);
// Complete intersection in the y-direction, left edge is fully covered.
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(5, 5, 20, 30));
EXPECT_EQ(Rect(25, 10, 5, 20), result);
// Complete intersection in the y-direction, right edge is fully covered.
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(20, 5, 20, 30));
EXPECT_EQ(Rect(10, 10, 10, 20), result);
// Complete intersection in the y-direction, none of the edges is fully
// covered.
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(15, 5, 1, 30));
EXPECT_EQ(Rect(10, 10, 20, 20), result);
}
TEST(RectTest, IsEmpty) {
EXPECT_TRUE(Rect(0, 0, 0, 0).IsEmpty());
EXPECT_TRUE(Rect(0, 0, 0, 0).size().IsEmpty());
EXPECT_TRUE(Rect(0, 0, 10, 0).IsEmpty());
EXPECT_TRUE(Rect(0, 0, 10, 0).size().IsEmpty());
EXPECT_TRUE(Rect(0, 0, 0, 10).IsEmpty());
EXPECT_TRUE(Rect(0, 0, 0, 10).size().IsEmpty());
EXPECT_FALSE(Rect(0, 0, 10, 10).IsEmpty());
EXPECT_FALSE(Rect(0, 0, 10, 10).size().IsEmpty());
}
TEST(RectTest, SplitVertically) {
Rect left_half, right_half;
// Splitting when origin is (0, 0).
Rect(0, 0, 20, 20).SplitVertically(left_half, right_half);
EXPECT_TRUE(left_half == Rect(0, 0, 10, 20));
EXPECT_TRUE(right_half == Rect(10, 0, 10, 20));
// Splitting when origin is arbitrary.
Rect(10, 10, 20, 10).SplitVertically(left_half, right_half);
EXPECT_TRUE(left_half == Rect(10, 10, 10, 10));
EXPECT_TRUE(right_half == Rect(20, 10, 10, 10));
// Splitting a rectangle of zero width.
Rect(10, 10, 0, 10).SplitVertically(left_half, right_half);
EXPECT_TRUE(left_half == Rect(10, 10, 0, 10));
EXPECT_TRUE(right_half == Rect(10, 10, 0, 10));
// Splitting a rectangle of odd width.
Rect(10, 10, 5, 10).SplitVertically(left_half, right_half);
EXPECT_TRUE(left_half == Rect(10, 10, 2, 10));
EXPECT_TRUE(right_half == Rect(12, 10, 3, 10));
}
TEST(RectTest, SplitHorizontally) {
Rect top_half, bottom_half;
// Splitting when origin is (0, 0).
Rect(0, 0, 10, 20).SplitHorizontally(top_half, bottom_half);
EXPECT_EQ(Rect(0, 0, 10, 10), top_half);
EXPECT_EQ(Rect(0, 10, 10, 10), bottom_half);
// Splitting when origin is arbitrary.
Rect(10, 10, 10, 20).SplitHorizontally(top_half, bottom_half);
EXPECT_EQ(Rect(10, 10, 10, 10), top_half);
EXPECT_EQ(Rect(10, 20, 10, 10), bottom_half);
// Splitting a rectangle of zero height.
Rect(10, 10, 10, 0).SplitHorizontally(top_half, bottom_half);
EXPECT_EQ(Rect(10, 10, 10, 0), top_half);
EXPECT_EQ(Rect(10, 10, 10, 0), bottom_half);
// Splitting a rectangle of odd height.
Rect(10, 10, 10, 5).SplitHorizontally(top_half, bottom_half);
EXPECT_EQ(Rect(10, 10, 10, 2), top_half);
EXPECT_EQ(Rect(10, 12, 10, 3), bottom_half);
}
TEST(RectTest, CenterPoint) {
Point center;
// When origin is (0, 0).
center = Rect(0, 0, 20, 20).CenterPoint();
EXPECT_TRUE(center == Point(10, 10));
// When origin is even.
center = Rect(10, 10, 20, 20).CenterPoint();
EXPECT_TRUE(center == Point(20, 20));
// When origin is odd.
center = Rect(11, 11, 20, 20).CenterPoint();
EXPECT_TRUE(center == Point(21, 21));
// When 0 width or height.
center = Rect(10, 10, 0, 20).CenterPoint();
EXPECT_TRUE(center == Point(10, 20));
center = Rect(10, 10, 20, 0).CenterPoint();
EXPECT_TRUE(center == Point(20, 10));
// When an odd size.
center = Rect(10, 10, 21, 21).CenterPoint();
EXPECT_TRUE(center == Point(20, 20));
// When an odd size and position.
center = Rect(11, 11, 21, 21).CenterPoint();
EXPECT_TRUE(center == Point(21, 21));
}
TEST(RectTest, SharesEdgeWith) {
Rect r(2, 3, 4, 5);
// Must be non-overlapping
EXPECT_FALSE(r.SharesEdgeWith(r));
Rect just_above(2, 1, 4, 2);
Rect just_below(2, 8, 4, 2);
Rect just_left(0, 3, 2, 5);
Rect just_right(6, 3, 2, 5);
EXPECT_TRUE(r.SharesEdgeWith(just_above));
EXPECT_TRUE(r.SharesEdgeWith(just_below));
EXPECT_TRUE(r.SharesEdgeWith(just_left));
EXPECT_TRUE(r.SharesEdgeWith(just_right));
// Wrong placement
Rect same_height_no_edge(0, 0, 1, 5);
Rect same_width_no_edge(0, 0, 4, 1);
EXPECT_FALSE(r.SharesEdgeWith(same_height_no_edge));
EXPECT_FALSE(r.SharesEdgeWith(same_width_no_edge));
Rect just_above_no_edge(2, 1, 5, 2); // too wide
Rect just_below_no_edge(2, 8, 3, 2); // too narrow
Rect just_left_no_edge(0, 3, 2, 6); // too tall
Rect just_right_no_edge(6, 3, 2, 4); // too short
EXPECT_FALSE(r.SharesEdgeWith(just_above_no_edge));
EXPECT_FALSE(r.SharesEdgeWith(just_below_no_edge));
EXPECT_FALSE(r.SharesEdgeWith(just_left_no_edge));
EXPECT_FALSE(r.SharesEdgeWith(just_right_no_edge));
}
static void TestScaleRectOverflowClamp(Rect (*function)(const Rect&,
float,
float)) {
// The whole rect is scaled out of kMinInt.
Rect xy_underflow1(-100000, -123456, 10, 20);
EXPECT_EQ(Rect(kMinInt, kMinInt, 0, 0),
function(xy_underflow1, 100000, 100000));
// This rect's right/bottom is 0. The origin overflows, and is clamped to
// -kMaxInt (instead of kMinInt) to keep width/height not overflowing.
Rect xy_underflow2(-100000, -123456, 100000, 123456);
EXPECT_EQ(Rect(-kMaxInt, -kMaxInt, kMaxInt, kMaxInt),
function(xy_underflow2, 100000, 100000));
// A location overflow means that width/right and bottom/top also
// overflow so need to be clamped.
Rect xy_overflow(100000, 123456, 10, 20);
EXPECT_EQ(Rect(kMaxInt, kMaxInt, 0, 0),
function(xy_overflow, 100000, 100000));
// In practice all rects are clamped to 0 width / 0 height so
// negative sizes don't matter, but try this for the sake of testing.
Rect size_underflow(-1, -2, 100000, 100000);
EXPECT_EQ(Rect(100000, 200000, 0, 0),
function(size_underflow, -100000, -100000));
Rect size_overflow(-1, -2, 123456, 234567);
EXPECT_EQ(Rect(-100000, -200000, kMaxInt, kMaxInt),
function(size_overflow, 100000, 100000));
// Verify width/right gets clamped properly too if x/y positive.
Rect size_overflow2(1, 2, 123456, 234567);
EXPECT_EQ(Rect(100000, 200000, kMaxInt - 100000, kMaxInt - 200000),
function(size_overflow2, 100000, 100000));
constexpr float kMaxIntAsFloat = static_cast<float>(kMaxInt);
Rect max_origin_rect(kMaxInt, kMaxInt, kMaxInt, kMaxInt);
// width/height of max_origin_rect has already been clamped to 0.
EXPECT_EQ(Rect(kMaxInt, kMaxInt, 0, 0), max_origin_rect);
EXPECT_EQ(Rect(kMaxInt, kMaxInt, 0, 0),
function(max_origin_rect, kMaxIntAsFloat, kMaxIntAsFloat));
Rect max_size_rect1(0, 0, kMaxInt, kMaxInt);
// Max sized rect can't be scaled up any further in any dimension.
EXPECT_EQ(max_size_rect1, function(max_size_rect1, 2, 3.5));
EXPECT_EQ(max_size_rect1,
function(max_size_rect1, kMaxIntAsFloat, kMaxIntAsFloat));
// Max sized ret scaled by negative scale is an empty rect.
EXPECT_EQ(Rect(), function(max_size_rect1, kMinInt, kMinInt));
Rect max_size_rect2(-kMaxInt, -kMaxInt, kMaxInt, kMaxInt);
EXPECT_EQ(max_size_rect2, function(max_size_rect2, 2, 3.5));
EXPECT_EQ(max_size_rect2,
function(max_size_rect2, kMaxIntAsFloat, kMaxIntAsFloat));
EXPECT_EQ(Rect(kMaxInt, kMaxInt, 0, 0),
function(max_size_rect2, kMinInt, kMinInt));
}
TEST(RectTest, ScaleToEnclosedRect) {
EXPECT_EQ(Rect(), ScaleToEnclosedRect(Rect(), 5.f));
EXPECT_EQ(Rect(5, 5, 5, 5), ScaleToEnclosedRect(Rect(1, 1, 1, 1), 5.f));
EXPECT_EQ(Rect(-5, -5, 0, 0), ScaleToEnclosedRect(Rect(-1, -1, 0, 0), 5.f));
EXPECT_EQ(Rect(5, -5, 0, 5), ScaleToEnclosedRect(Rect(1, -1, 0, 1), 5.f));
EXPECT_EQ(Rect(-5, 5, 5, 0), ScaleToEnclosedRect(Rect(-1, 1, 1, 0), 5.f));
EXPECT_EQ(Rect(2, 3, 4, 6), ScaleToEnclosedRect(Rect(1, 2, 3, 4), 1.5f));
EXPECT_EQ(Rect(-1, -3, 0, 0), ScaleToEnclosedRect(Rect(-1, -2, 0, 0), 1.5f));
EXPECT_EQ(Rect(1, 2, 2, 1), ScaleToEnclosedRect(Rect(2, 4, 9, 8), 0.3f));
TestScaleRectOverflowClamp(ScaleToEnclosedRect);
}
TEST(RectTest, ScaleToEnclosingRect) {
EXPECT_EQ(Rect(), ScaleToEnclosingRect(Rect(), 5.f));
EXPECT_EQ(Rect(5, 5, 5, 5), ScaleToEnclosingRect(Rect(1, 1, 1, 1), 5.f));
EXPECT_EQ(Rect(-5, -5, 0, 0), ScaleToEnclosingRect(Rect(-1, -1, 0, 0), 5.f));
EXPECT_EQ(Rect(5, -5, 0, 5), ScaleToEnclosingRect(Rect(1, -1, 0, 1), 5.f));
EXPECT_EQ(Rect(-5, 5, 5, 0), ScaleToEnclosingRect(Rect(-1, 1, 1, 0), 5.f));
EXPECT_EQ(Rect(1, 3, 5, 6), ScaleToEnclosingRect(Rect(1, 2, 3, 4), 1.5f));
EXPECT_EQ(Rect(-2, -3, 0, 0), ScaleToEnclosingRect(Rect(-1, -2, 0, 0), 1.5f));
EXPECT_EQ(Rect(0, 1, 4, 3), ScaleToEnclosingRect(Rect(2, 4, 9, 8), 0.3f));
TestScaleRectOverflowClamp(ScaleToEnclosingRect);
}
TEST(RectTest, ScaleToRoundedRect) {
EXPECT_EQ(Rect(), ScaleToRoundedRect(Rect(), 5.f));
EXPECT_EQ(Rect(5, 5, 5, 5), ScaleToRoundedRect(Rect(1, 1, 1, 1), 5.f));
EXPECT_EQ(Rect(-5, -5, 0, 0), ScaleToRoundedRect(Rect(-1, -1, 0, 0), 5.f));
EXPECT_EQ(Rect(5, -5, 0, 5), ScaleToRoundedRect(Rect(1, -1, 0, 1), 5.f));
EXPECT_EQ(Rect(-5, 5, 5, 0), ScaleToRoundedRect(Rect(-1, 1, 1, 0), 5.f));
EXPECT_EQ(Rect(2, 3, 4, 6), ScaleToRoundedRect(Rect(1, 2, 3, 4), 1.5f));
EXPECT_EQ(Rect(-2, -3, 0, 0), ScaleToRoundedRect(Rect(-1, -2, 0, 0), 1.5f));
EXPECT_EQ(Rect(1, 1, 2, 3), ScaleToRoundedRect(Rect(2, 4, 9, 8), 0.3f));
TestScaleRectOverflowClamp(ScaleToRoundedRect);
}
#if BUILDFLAG(IS_WIN)
TEST(RectTest, ConstructAndAssign) {
const RECT rect_1 = { 0, 0, 10, 10 };
const RECT rect_2 = { 0, 0, -10, -10 };
Rect test1(rect_1);
Rect test2(rect_2);
}
#endif
TEST(RectTest, BoundingRect) {
struct IntTests {
Point a;
Point b;
Rect expected;
};
auto int_tests = std::to_array<IntTests>({
// If point B dominates A, then A should be the origin.
{Point(4, 6), Point(4, 6), Rect(4, 6, 0, 0)},
{Point(4, 6), Point(8, 6), Rect(4, 6, 4, 0)},
{Point(4, 6), Point(4, 9), Rect(4, 6, 0, 3)},
{Point(4, 6), Point(8, 9), Rect(4, 6, 4, 3)},
// If point A dominates B, then B should be the origin.
{Point(4, 6), Point(4, 6), Rect(4, 6, 0, 0)},
{Point(8, 6), Point(4, 6), Rect(4, 6, 4, 0)},
{Point(4, 9), Point(4, 6), Rect(4, 6, 0, 3)},
{Point(8, 9), Point(4, 6), Rect(4, 6, 4, 3)},
// If neither point dominates, then the origin is a combination of the
// two.
{Point(4, 6), Point(6, 4), Rect(4, 4, 2, 2)},
{Point(-4, -6), Point(-6, -4), Rect(-6, -6, 2, 2)},
{Point(-4, 6), Point(6, -4), Rect(-4, -4, 10, 10)},
});
for (size_t i = 0; i < std::size(int_tests); ++i) {
Rect actual = BoundingRect(int_tests[i].a, int_tests[i].b);
EXPECT_EQ(int_tests[i].expected, actual);
}
}
TEST(RectTest, Offset) {
Rect i(1, 2, 3, 4);
EXPECT_EQ(Rect(2, 1, 3, 4), (i + Vector2d(1, -1)));
EXPECT_EQ(Rect(2, 1, 3, 4), (Vector2d(1, -1) + i));
i += Vector2d(1, -1);
EXPECT_EQ(Rect(2, 1, 3, 4), i);
EXPECT_EQ(Rect(1, 2, 3, 4), (i - Vector2d(1, -1)));
i -= Vector2d(1, -1);
EXPECT_EQ(Rect(1, 2, 3, 4), i);
i.Offset(2, -2);
EXPECT_EQ(Rect(3, 0, 3, 4), i);
EXPECT_EQ(Rect(kMaxInt - 2, kMaxInt - 2, 2, 2),
(Rect(0, 0, kMaxInt - 2, kMaxInt - 2) +
Vector2d(kMaxInt - 2, kMaxInt - 2)));
EXPECT_EQ(Rect(kMaxInt - 2, kMaxInt - 2, 2, 2),
(Rect(0, 0, kMaxInt - 2, kMaxInt - 2) -
Vector2d(2 - kMaxInt, 2 - kMaxInt)));
}
TEST(RectTest, Corners) {
Rect i(1, 2, 3, 4);
EXPECT_EQ(Point(1, 2), i.origin());
EXPECT_EQ(Point(4, 2), i.top_right());
EXPECT_EQ(Point(1, 6), i.bottom_left());
EXPECT_EQ(Point(4, 6), i.bottom_right());
}
TEST(RectTest, Centers) {
Rect i(10, 20, 30, 40);
EXPECT_EQ(Point(10, 40), i.left_center());
EXPECT_EQ(Point(25, 20), i.top_center());
EXPECT_EQ(Point(40, 40), i.right_center());
EXPECT_EQ(Point(25, 60), i.bottom_center());
}
TEST(RectTest, Transpose) {
Rect i(10, 20, 30, 40);
i.Transpose();
EXPECT_EQ(Rect(20, 10, 40, 30), i);
}
TEST(RectTest, ManhattanDistanceToPoint) {
Rect i(1, 2, 3, 4);
EXPECT_EQ(0, i.ManhattanDistanceToPoint(Point(1, 2)));
EXPECT_EQ(0, i.ManhattanDistanceToPoint(Point(4, 6)));
EXPECT_EQ(0, i.ManhattanDistanceToPoint(Point(2, 4)));
EXPECT_EQ(3, i.ManhattanDistanceToPoint(Point(0, 0)));
EXPECT_EQ(2, i.ManhattanDistanceToPoint(Point(2, 0)));
EXPECT_EQ(3, i.ManhattanDistanceToPoint(Point(5, 0)));
EXPECT_EQ(1, i.ManhattanDistanceToPoint(Point(5, 4)));
EXPECT_EQ(3, i.ManhattanDistanceToPoint(Point(5, 8)));
EXPECT_EQ(2, i.ManhattanDistanceToPoint(Point(3, 8)));
EXPECT_EQ(2, i.ManhattanDistanceToPoint(Point(0, 7)));
EXPECT_EQ(1, i.ManhattanDistanceToPoint(Point(0, 3)));
}
TEST(RectTest, ManhattanInternalDistance) {
Rect i(0, 0, 400, 400);
EXPECT_EQ(0, i.ManhattanInternalDistance(Rect(-1, 0, 2, 1)));
EXPECT_EQ(1, i.ManhattanInternalDistance(Rect(400, 0, 1, 400)));
EXPECT_EQ(2, i.ManhattanInternalDistance(Rect(-100, -100, 100, 100)));
EXPECT_EQ(2, i.ManhattanInternalDistance(Rect(-101, 100, 100, 100)));
EXPECT_EQ(4, i.ManhattanInternalDistance(Rect(-101, -101, 100, 100)));
EXPECT_EQ(435, i.ManhattanInternalDistance(Rect(630, 603, 100, 100)));
}
TEST(RectTest, IntegerOverflow) {
int limit = std::numeric_limits<int>::max();
int min_limit = std::numeric_limits<int>::min();
int expected_thickness = 10;
int large_number = limit - expected_thickness;
Rect height_overflow(0, large_number, 100, 100);
EXPECT_EQ(large_number, height_overflow.y());
EXPECT_EQ(expected_thickness, height_overflow.height());
Rect width_overflow(large_number, 0, 100, 100);
EXPECT_EQ(large_number, width_overflow.x());
EXPECT_EQ(expected_thickness, width_overflow.width());
Rect size_height_overflow(Point(0, large_number), Size(100, 100));
EXPECT_EQ(large_number, size_height_overflow.y());
EXPECT_EQ(expected_thickness, size_height_overflow.height());
Rect size_width_overflow(Point(large_number, 0), Size(100, 100));
EXPECT_EQ(large_number, size_width_overflow.x());
EXPECT_EQ(expected_thickness, size_width_overflow.width());
Rect set_height_overflow(0, large_number, 100, 5);
EXPECT_EQ(5, set_height_overflow.height());
set_height_overflow.set_height(100);
EXPECT_EQ(expected_thickness, set_height_overflow.height());
Rect set_y_overflow(100, 100, 100, 100);
EXPECT_EQ(100, set_y_overflow.height());
set_y_overflow.set_y(large_number);
EXPECT_EQ(expected_thickness, set_y_overflow.height());
Rect set_width_overflow(large_number, 0, 5, 100);
EXPECT_EQ(5, set_width_overflow.width());
set_width_overflow.set_width(100);
EXPECT_EQ(expected_thickness, set_width_overflow.width());
Rect set_x_overflow(100, 100, 100, 100);
EXPECT_EQ(100, set_x_overflow.width());
set_x_overflow.set_x(large_number);
EXPECT_EQ(expected_thickness, set_x_overflow.width());
Point large_offset(large_number, large_number);
Size size(100, 100);
Size expected_size(10, 10);
Rect set_origin_overflow(100, 100, 100, 100);
EXPECT_EQ(size, set_origin_overflow.size());
set_origin_overflow.set_origin(large_offset);
EXPECT_EQ(large_offset, set_origin_overflow.origin());
EXPECT_EQ(expected_size, set_origin_overflow.size());
Rect set_size_overflow(large_number, large_number, 5, 5);
EXPECT_EQ(Size(5, 5), set_size_overflow.size());
set_size_overflow.set_size(size);
EXPECT_EQ(large_offset, set_size_overflow.origin());
EXPECT_EQ(expected_size, set_size_overflow.size());
Rect set_rect_overflow;
set_rect_overflow.SetRect(large_number, large_number, 100, 100);
EXPECT_EQ(large_offset, set_rect_overflow.origin());
EXPECT_EQ(expected_size, set_rect_overflow.size());
// Insetting an empty rect, but the total inset (left + right) could overflow.
Rect inset_overflow;
inset_overflow.Inset(Insets::TLBR(large_number, large_number, 100, 100));
EXPECT_EQ(large_offset, inset_overflow.origin());
EXPECT_EQ(Size(), inset_overflow.size());
// Insetting where the total inset (width - left - right) could overflow.
// Also, this insetting by the min limit in all directions cannot
// represent width() without overflow, so that will also clamp.
Rect inset_overflow2;
inset_overflow2.Inset(min_limit);
EXPECT_EQ(inset_overflow2, Rect(min_limit, min_limit, limit, limit));
// Insetting where the width shouldn't change, but if the insets operations
// clamped in the wrong order, e.g. ((width - left) - right) vs (width - (left
// + right)) then this will not work properly. This is the proper order,
// as if left + right overflows, the width cannot be decreased by more than
// max int anyway. Additionally, if left + right underflows, it cannot be
// increased by more then max int.
Rect inset_overflow3(0, 0, limit, limit);
inset_overflow3.Inset(Insets::TLBR(-100, -100, 100, 100));
EXPECT_EQ(inset_overflow3, Rect(-100, -100, limit, limit));
Rect inset_overflow4(-1000, -1000, limit, limit);
inset_overflow4.Inset(Insets::TLBR(100, 100, -100, -100));
EXPECT_EQ(inset_overflow4, Rect(-900, -900, limit, limit));
Rect offset_overflow(0, 0, 100, 100);
offset_overflow.Offset(large_number, large_number);
EXPECT_EQ(large_offset, offset_overflow.origin());
EXPECT_EQ(expected_size, offset_overflow.size());
Rect operator_overflow(0, 0, 100, 100);
operator_overflow += Vector2d(large_number, large_number);
EXPECT_EQ(large_offset, operator_overflow.origin());
EXPECT_EQ(expected_size, operator_overflow.size());
Rect origin_maxint(limit, limit, limit, limit);
EXPECT_EQ(origin_maxint, Rect(Point(limit, limit), Size()));
// Expect a rect at the origin and a rect whose right/bottom is maxint
// create a rect that extends from 0..maxint in both extents.
{
Rect origin_small(0, 0, 100, 100);
Rect big_clamped(50, 50, limit, limit);
EXPECT_EQ(big_clamped.right(), limit);
Rect unioned = UnionRects(origin_small, big_clamped);
Rect rect_limit(0, 0, limit, limit);
EXPECT_EQ(unioned, rect_limit);
}
// Expect a rect that would overflow width (but not right) to be clamped
// and to have maxint extents after unioning.
{
Rect small(-500, -400, 100, 100);
Rect big(-400, -500, limit, limit);
// Technically, this should be limit + 100 width, but will clamp to maxint.
EXPECT_EQ(UnionRects(small, big), Rect(-500, -500, limit, limit));
}
// Expect a rect that would overflow right *and* width to be clamped.
{
Rect clamped(500, 500, limit, limit);
Rect positive_origin(100, 100, 500, 500);
// Ideally, this should be (100, 100, limit + 400, limit + 400).
// However, width overflows and would be clamped to limit, but right
// overflows too and so will be clamped to limit - 100.
Rect expected_rect(100, 100, limit - 100, limit - 100);
EXPECT_EQ(UnionRects(clamped, positive_origin), expected_rect);
}
// Unioning a left=minint rect with a right=maxint rect.
// We can't represent both ends of the spectrum in the same rect.
// Make sure we keep the most useful area.
{
int part_limit = min_limit / 3;
Rect left_minint(min_limit, min_limit, 1, 1);
Rect right_maxint(limit - 1, limit - 1, limit, limit);
Rect expected_rect(part_limit, part_limit, 2 * part_limit, 2 * part_limit);
Rect result = UnionRects(left_minint, right_maxint);
// The result should be maximally big.
EXPECT_EQ(limit, result.height());
EXPECT_EQ(limit, result.width());
// The result should include the area near the origin.
EXPECT_GT(-part_limit, result.x());
EXPECT_LT(part_limit, result.right());
EXPECT_GT(-part_limit, result.y());
EXPECT_LT(part_limit, result.bottom());
// More succinctly, but harder to read in the results.
EXPECT_TRUE(UnionRects(left_minint, right_maxint).Contains(expected_rect));
}
}
TEST(RectTest, Inset) {
Rect r(10, 20, 30, 40);
r.Inset(0);
EXPECT_EQ(Rect(10, 20, 30, 40), r);
r.Inset(1);
EXPECT_EQ(Rect(11, 21, 28, 38), r);
r.Inset(-1);
EXPECT_EQ(Rect(10, 20, 30, 40), r);
r.Inset(Insets::VH(2, 1));
EXPECT_EQ(Rect(11, 22, 28, 36), r);
r.Inset(Insets::VH(-2, -1));
EXPECT_EQ(Rect(10, 20, 30, 40), r);
// The parameters are left, top, right, bottom.
r.Inset(Insets::TLBR(2, 1, 4, 3));
EXPECT_EQ(Rect(11, 22, 26, 34), r);
r.Inset(Insets::TLBR(-2, -1, -4, -3));
EXPECT_EQ(Rect(10, 20, 30, 40), r);
r.Inset(Insets::TLBR(1, 2, 3, 4));
EXPECT_EQ(Rect(12, 21, 24, 36), r);
r.Inset(Insets::TLBR(-1, -2, -3, -4));
EXPECT_EQ(Rect(10, 20, 30, 40), r);
}
TEST(RectTest, Outset) {
Rect r(10, 20, 30, 40);
r.Outset(0);
EXPECT_EQ(Rect(10, 20, 30, 40), r);
r.Outset(1);
EXPECT_EQ(Rect(9, 19, 32, 42), r);
r.Outset(-1);
EXPECT_EQ(Rect(10, 20, 30, 40), r);
r.Outset(Outsets::VH(2, 1));
EXPECT_EQ(Rect(9, 18, 32, 44), r);
r.Outset(Outsets::VH(-2, -1));
EXPECT_EQ(Rect(10, 20, 30, 40), r);
r.Outset(Outsets::TLBR(2, 1, 4, 3));
EXPECT_EQ(Rect(9, 18, 34, 46), r);
r.Outset(Outsets::TLBR(-2, -1, -4, -3));
EXPECT_EQ(Rect(10, 20, 30, 40), r);
}
TEST(RectTest, InsetOutsetClamped) {
Rect r(10, 20, 30, 40);
r.Inset(18);
EXPECT_EQ(Rect(28, 38, 0, 4), r);
r.Inset(-18);
EXPECT_EQ(Rect(10, 20, 36, 40), r);
r.Inset(Insets::VH(30, 15));
EXPECT_EQ(Rect(25, 50, 6, 0), r);
r.Inset(Insets::VH(-30, -15));
EXPECT_EQ(Rect(10, 20, 36, 60), r);
r.Inset(Insets::TLBR(30, 20, 50, 40));
EXPECT_EQ(Rect(30, 50, 0, 0), r);
r.Inset(Insets::TLBR(-30, -20, -50, -40));
EXPECT_EQ(Rect(10, 20, 60, 80), r);
r.Outset(kMaxInt);
EXPECT_EQ(Rect(10 - kMaxInt, 20 - kMaxInt, kMaxInt, kMaxInt), r);
r.Outset(Outsets().set_top_bottom(kMaxInt, kMaxInt));
EXPECT_EQ(Rect(10 - kMaxInt, kMinInt, kMaxInt, kMaxInt), r);
r.Outset(Outsets().set_right(kMaxInt).set_top(kMaxInt));
EXPECT_EQ(Rect(10 - kMaxInt, kMinInt, kMaxInt, kMaxInt), r);
r.Outset(Outsets().set_left_right(kMaxInt, kMaxInt));
EXPECT_EQ(Rect(kMinInt, kMinInt, kMaxInt, kMaxInt), r);
}
TEST(RectTest, SetByBounds) {
Rect r;
r.SetByBounds(1, 2, 30, 40);
EXPECT_EQ(Rect(1, 2, 29, 38), r);
r.SetByBounds(30, 40, 1, 2);
EXPECT_EQ(Rect(30, 40, 0, 0), r);
r.SetByBounds(0, 0, kMaxInt, kMaxInt);
EXPECT_EQ(Rect(0, 0, kMaxInt, kMaxInt), r);
r.SetByBounds(-1, -1, kMaxInt, kMaxInt);
EXPECT_EQ(Rect(-1, -1, kMaxInt, kMaxInt), r);
r.SetByBounds(1, 1, kMaxInt, kMaxInt);
EXPECT_EQ(Rect(1, 1, kMaxInt - 1, kMaxInt - 1), r);
r.SetByBounds(kMinInt, kMinInt, 0, 0);
EXPECT_EQ(Rect(kMinInt + 1, kMinInt + 1, kMaxInt, kMaxInt), r);
r.SetByBounds(kMinInt, kMinInt, 1, 1);
EXPECT_EQ(Rect(kMinInt + 2, kMinInt + 2, kMaxInt, kMaxInt), r);
r.SetByBounds(kMinInt, kMinInt, -1, -1);
EXPECT_EQ(Rect(kMinInt, kMinInt, kMaxInt, kMaxInt), r);
r.SetByBounds(kMinInt, kMinInt, kMaxInt, kMaxInt);
EXPECT_EQ(Rect(kMinInt / 2 - 1, kMinInt / 2 - 1, kMaxInt, kMaxInt), r);
}
TEST(RectTest, MaximumCoveredRect) {
// X aligned and intersect: unite.
EXPECT_EQ(Rect(10, 20, 30, 60),
MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(10, 30, 30, 50)));
// X aligned and adjacent: unite.
EXPECT_EQ(Rect(10, 20, 30, 90),
MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(10, 60, 30, 50)));
// X aligned and separate: choose the bigger one.
EXPECT_EQ(Rect(10, 61, 30, 50),
MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(10, 61, 30, 50)));
// Y aligned and intersect: unite.
EXPECT_EQ(Rect(10, 20, 60, 40),
MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(30, 20, 40, 40)));
// Y aligned and adjacent: unite.
EXPECT_EQ(Rect(10, 20, 70, 40),
MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(40, 20, 40, 40)));
// Y aligned and separate: choose the bigger one.
EXPECT_EQ(Rect(41, 20, 40, 40),
MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(41, 20, 40, 40)));
// Get the biggest expanded intersection.
EXPECT_EQ(Rect(0, 0, 9, 19),
MaximumCoveredRect(Rect(0, 0, 10, 10), Rect(0, 9, 9, 10)));
EXPECT_EQ(Rect(0, 0, 19, 9),
MaximumCoveredRect(Rect(0, 0, 10, 10), Rect(9, 0, 10, 9)));
// Otherwise choose the bigger one.
EXPECT_EQ(Rect(20, 30, 40, 50),
MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(20, 30, 40, 50)));
EXPECT_EQ(Rect(10, 20, 40, 50),
MaximumCoveredRect(Rect(10, 20, 40, 50), Rect(20, 30, 30, 40)));
EXPECT_EQ(Rect(10, 20, 40, 50),
MaximumCoveredRect(Rect(10, 20, 40, 50), Rect(20, 30, 40, 50)));
}
} // namespace gfx
|