File: rect_unittest.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (889 lines) | stat: -rw-r--r-- 32,536 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ui/gfx/geometry/rect.h"

#include <stddef.h>

#include <array>
#include <limits>

#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "ui/gfx/geometry/insets.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/test/geometry_util.h"

#if BUILDFLAG(IS_WIN)
#include <windows.h>
#endif

namespace gfx {

constexpr int kMaxInt = std::numeric_limits<int>::max();
constexpr int kMinInt = std::numeric_limits<int>::min();

TEST(RectTest, Contains) {
  struct ContainsCase {
    int rect_x;
    int rect_y;
    int rect_width;
    int rect_height;
    int point_x;
    int point_y;
    bool contained;
  };
  static const auto contains_cases = std::to_array<ContainsCase>({
      {0, 0, 10, 10, 0, 0, true},
      {0, 0, 10, 10, 5, 5, true},
      {0, 0, 10, 10, 9, 9, true},
      {0, 0, 10, 10, 5, 10, false},
      {0, 0, 10, 10, 10, 5, false},
      {0, 0, 10, 10, -1, -1, false},
      {0, 0, 10, 10, 50, 50, false},
#if defined(NDEBUG) && !defined(DCHECK_ALWAYS_ON)
      {0, 0, -10, -10, 0, 0, false},
#endif
  });
  for (size_t i = 0; i < std::size(contains_cases); ++i) {
    const ContainsCase& value = contains_cases[i];
    Rect rect(value.rect_x, value.rect_y, value.rect_width, value.rect_height);
    EXPECT_EQ(value.contained, rect.Contains(value.point_x, value.point_y));
  }
}

TEST(RectTest, Intersects) {
  struct Tests {
    int x1;  // rect 1
    int y1;
    int w1;
    int h1;
    int x2;  // rect 2
    int y2;
    int w2;
    int h2;
    bool intersects;
  };
  static const auto tests = std::to_array<Tests>({
      {0, 0, 0, 0, 0, 0, 0, 0, false},
      {0, 0, 0, 0, -10, -10, 20, 20, false},
      {-10, 0, 0, 20, 0, -10, 20, 0, false},
      {0, 0, 10, 10, 0, 0, 10, 10, true},
      {0, 0, 10, 10, 10, 10, 10, 10, false},
      {10, 10, 10, 10, 0, 0, 10, 10, false},
      {10, 10, 10, 10, 5, 5, 10, 10, true},
      {10, 10, 10, 10, 15, 15, 10, 10, true},
      {10, 10, 10, 10, 20, 15, 10, 10, false},
      {10, 10, 10, 10, 21, 15, 10, 10, false},
  });
  for (size_t i = 0; i < std::size(tests); ++i) {
    Rect r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1);
    Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2);
    EXPECT_EQ(tests[i].intersects, r1.Intersects(r2));
    EXPECT_EQ(tests[i].intersects, r2.Intersects(r1));
  }
}

TEST(RectTest, Intersect) {
  struct Tests {
    int x1;  // rect 1
    int y1;
    int w1;
    int h1;
    int x2;  // rect 2
    int y2;
    int w2;
    int h2;
    int x3;  // rect 3: the union of rects 1 and 2
    int y3;
    int w3;
    int h3;
  };
  static const auto tests = std::to_array<Tests>({
      {0, 0, 0, 0,  // zeros
       0, 0, 0, 0, 0, 0, 0, 0},
      {0, 0, 4, 4,  // equal
       0, 0, 4, 4, 0, 0, 4, 4},
      {0, 0, 4, 4,  // neighboring
       4, 4, 4, 4, 0, 0, 0, 0},
      {0, 0, 4, 4,  // overlapping corners
       2, 2, 4, 4, 2, 2, 2, 2},
      {0, 0, 4, 4,  // T junction
       3, 1, 4, 2, 3, 1, 1, 2},
      {3, 0, 2, 2,  // gap
       0, 0, 2, 2, 0, 0, 0, 0},
  });
  for (size_t i = 0; i < std::size(tests); ++i) {
    Rect r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1);
    Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2);
    Rect r3(tests[i].x3, tests[i].y3, tests[i].w3, tests[i].h3);
    EXPECT_EQ(r3, IntersectRects(r1, r2));
  }
}

TEST(RectTest, InclusiveIntersect) {
  Rect rect(11, 12, 0, 0);
  EXPECT_TRUE(rect.InclusiveIntersect(Rect(11, 12, 13, 14)));
  EXPECT_EQ(Rect(11, 12, 0, 0), rect);

  rect = Rect(11, 12, 13, 14);
  EXPECT_TRUE(rect.InclusiveIntersect(Rect(24, 8, 0, 7)));
  EXPECT_EQ(Rect(24, 12, 0, 3), rect);

  rect = Rect(11, 12, 13, 14);
  EXPECT_TRUE(rect.InclusiveIntersect(Rect(9, 15, 4, 0)));
  EXPECT_EQ(Rect(11, 15, 2, 0), rect);

  rect = Rect(11, 12, 0, 14);
  EXPECT_FALSE(rect.InclusiveIntersect(Rect(12, 13, 15, 16)));
  EXPECT_EQ(Rect(), rect);
}

TEST(RectTest, Union) {
  EXPECT_EQ(Rect(), UnionRects(Rect(), Rect()));
  EXPECT_EQ(Rect(1, 2, 3, 4), UnionRects(Rect(1, 2, 3, 4), Rect(1, 2, 3, 4)));
  EXPECT_EQ(Rect(0, 0, 8, 10), UnionRects(Rect(0, 0, 3, 4), Rect(3, 4, 5, 6)));
  EXPECT_EQ(Rect(0, 0, 8, 10), UnionRects(Rect(3, 4, 5, 6), Rect(0, 0, 3, 4)));
  EXPECT_EQ(Rect(0, 1, 3, 8), UnionRects(Rect(0, 1, 3, 4), Rect(0, 5, 3, 4)));
  EXPECT_EQ(Rect(0, 1, 10, 11), UnionRects(Rect(0, 1, 3, 4), Rect(4, 5, 6, 7)));
  EXPECT_EQ(Rect(0, 1, 10, 11), UnionRects(Rect(4, 5, 6, 7), Rect(0, 1, 3, 4)));
  EXPECT_EQ(Rect(2, 3, 4, 5), UnionRects(Rect(8, 9, 0, 2), Rect(2, 3, 4, 5)));
  EXPECT_EQ(Rect(2, 3, 4, 5), UnionRects(Rect(2, 3, 4, 5), Rect(8, 9, 2, 0)));
}

TEST(RectTest, UnionEvenIfEmpty) {
  EXPECT_EQ(Rect(), UnionRectsEvenIfEmpty(Rect(), Rect()));
  EXPECT_EQ(Rect(0, 0, 3, 4), UnionRectsEvenIfEmpty(Rect(), Rect(3, 4, 0, 0)));
  EXPECT_EQ(Rect(0, 0, 8, 10),
            UnionRectsEvenIfEmpty(Rect(0, 0, 3, 4), Rect(3, 4, 5, 6)));
  EXPECT_EQ(Rect(0, 0, 8, 10),
            UnionRectsEvenIfEmpty(Rect(3, 4, 5, 6), Rect(0, 0, 3, 4)));
  EXPECT_EQ(Rect(2, 3, 6, 8),
            UnionRectsEvenIfEmpty(Rect(8, 9, 0, 2), Rect(2, 3, 4, 5)));
  EXPECT_EQ(Rect(2, 3, 8, 6),
            UnionRectsEvenIfEmpty(Rect(2, 3, 4, 5), Rect(8, 9, 2, 0)));
}

TEST(RectTest, Equals) {
  ASSERT_TRUE(Rect(0, 0, 0, 0) == Rect(0, 0, 0, 0));
  ASSERT_TRUE(Rect(1, 2, 3, 4) == Rect(1, 2, 3, 4));
  ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(0, 0, 0, 1));
  ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(0, 0, 1, 0));
  ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(0, 1, 0, 0));
  ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(1, 0, 0, 0));
}

TEST(RectTest, AdjustToFit) {
  struct Test {
    int x1;  // source
    int y1;
    int w1;
    int h1;
    int x2;  // target
    int y2;
    int w2;
    int h2;
    int x3;  // rect 3: results of invoking AdjustToFit
    int y3;
    int w3;
    int h3;
  };
  static const auto tests = std::to_array<Test>({
      {0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2},
      {2, 2, 3, 3, 0, 0, 4, 4, 1, 1, 3, 3},
      {-1, -1, 5, 5, 0, 0, 4, 4, 0, 0, 4, 4},
      {2, 2, 4, 4, 0, 0, 3, 3, 0, 0, 3, 3},
      {2, 2, 1, 1, 0, 0, 3, 3, 2, 2, 1, 1},
  });
  for (size_t i = 0; i < std::size(tests); ++i) {
    Rect r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1);
    Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2);
    Rect r3(tests[i].x3, tests[i].y3, tests[i].w3, tests[i].h3);
    Rect u = r1;
    u.AdjustToFit(r2);
    EXPECT_EQ(r3, u);
  }
}

TEST(RectTest, Subtract) {
  Rect result;

  // Matching
  result = Rect(10, 10, 20, 20);
  result.Subtract(Rect(10, 10, 20, 20));
  EXPECT_EQ(Rect(0, 0, 0, 0), result);

  // Contains
  result = Rect(10, 10, 20, 20);
  result.Subtract(Rect(5, 5, 30, 30));
  EXPECT_EQ(Rect(0, 0, 0, 0), result);

  // No intersection
  result = Rect(10, 10, 20, 20);
  result.Subtract(Rect(30, 30, 30, 30));
  EXPECT_EQ(Rect(10, 10, 20, 20), result);

  // Not a complete intersection in either direction
  result = Rect(10, 10, 20, 20);
  result.Subtract(Rect(15, 15, 20, 20));
  EXPECT_EQ(Rect(10, 10, 20, 20), result);

  // Complete intersection in the x-direction, top edge is fully covered.
  result = Rect(10, 10, 20, 20);
  result.Subtract(Rect(10, 15, 20, 20));
  EXPECT_EQ(Rect(10, 10, 20, 5), result);

  // Complete intersection in the x-direction, top edge is fully covered.
  result = Rect(10, 10, 20, 20);
  result.Subtract(Rect(5, 15, 30, 20));
  EXPECT_EQ(Rect(10, 10, 20, 5), result);

  // Complete intersection in the x-direction, bottom edge is fully covered.
  result = Rect(10, 10, 20, 20);
  result.Subtract(Rect(5, 5, 30, 20));
  EXPECT_EQ(Rect(10, 25, 20, 5), result);

  // Complete intersection in the x-direction, none of the edges is fully
  // covered.
  result = Rect(10, 10, 20, 20);
  result.Subtract(Rect(5, 15, 30, 1));
  EXPECT_EQ(Rect(10, 10, 20, 20), result);

  // Complete intersection in the y-direction, left edge is fully covered.
  result = Rect(10, 10, 20, 20);
  result.Subtract(Rect(10, 10, 10, 30));
  EXPECT_EQ(Rect(20, 10, 10, 20), result);

  // Complete intersection in the y-direction, left edge is fully covered.
  result = Rect(10, 10, 20, 20);
  result.Subtract(Rect(5, 5, 20, 30));
  EXPECT_EQ(Rect(25, 10, 5, 20), result);

  // Complete intersection in the y-direction, right edge is fully covered.
  result = Rect(10, 10, 20, 20);
  result.Subtract(Rect(20, 5, 20, 30));
  EXPECT_EQ(Rect(10, 10, 10, 20), result);

  // Complete intersection in the y-direction, none of the edges is fully
  // covered.
  result = Rect(10, 10, 20, 20);
  result.Subtract(Rect(15, 5, 1, 30));
  EXPECT_EQ(Rect(10, 10, 20, 20), result);
}

TEST(RectTest, IsEmpty) {
  EXPECT_TRUE(Rect(0, 0, 0, 0).IsEmpty());
  EXPECT_TRUE(Rect(0, 0, 0, 0).size().IsEmpty());
  EXPECT_TRUE(Rect(0, 0, 10, 0).IsEmpty());
  EXPECT_TRUE(Rect(0, 0, 10, 0).size().IsEmpty());
  EXPECT_TRUE(Rect(0, 0, 0, 10).IsEmpty());
  EXPECT_TRUE(Rect(0, 0, 0, 10).size().IsEmpty());
  EXPECT_FALSE(Rect(0, 0, 10, 10).IsEmpty());
  EXPECT_FALSE(Rect(0, 0, 10, 10).size().IsEmpty());
}

TEST(RectTest, SplitVertically) {
  Rect left_half, right_half;

  // Splitting when origin is (0, 0).
  Rect(0, 0, 20, 20).SplitVertically(left_half, right_half);
  EXPECT_TRUE(left_half == Rect(0, 0, 10, 20));
  EXPECT_TRUE(right_half == Rect(10, 0, 10, 20));

  // Splitting when origin is arbitrary.
  Rect(10, 10, 20, 10).SplitVertically(left_half, right_half);
  EXPECT_TRUE(left_half == Rect(10, 10, 10, 10));
  EXPECT_TRUE(right_half == Rect(20, 10, 10, 10));

  // Splitting a rectangle of zero width.
  Rect(10, 10, 0, 10).SplitVertically(left_half, right_half);
  EXPECT_TRUE(left_half == Rect(10, 10, 0, 10));
  EXPECT_TRUE(right_half == Rect(10, 10, 0, 10));

  // Splitting a rectangle of odd width.
  Rect(10, 10, 5, 10).SplitVertically(left_half, right_half);
  EXPECT_TRUE(left_half == Rect(10, 10, 2, 10));
  EXPECT_TRUE(right_half == Rect(12, 10, 3, 10));
}

TEST(RectTest, SplitHorizontally) {
  Rect top_half, bottom_half;

  // Splitting when origin is (0, 0).
  Rect(0, 0, 10, 20).SplitHorizontally(top_half, bottom_half);
  EXPECT_EQ(Rect(0, 0, 10, 10), top_half);
  EXPECT_EQ(Rect(0, 10, 10, 10), bottom_half);

  // Splitting when origin is arbitrary.
  Rect(10, 10, 10, 20).SplitHorizontally(top_half, bottom_half);
  EXPECT_EQ(Rect(10, 10, 10, 10), top_half);
  EXPECT_EQ(Rect(10, 20, 10, 10), bottom_half);

  // Splitting a rectangle of zero height.
  Rect(10, 10, 10, 0).SplitHorizontally(top_half, bottom_half);
  EXPECT_EQ(Rect(10, 10, 10, 0), top_half);
  EXPECT_EQ(Rect(10, 10, 10, 0), bottom_half);

  // Splitting a rectangle of odd height.
  Rect(10, 10, 10, 5).SplitHorizontally(top_half, bottom_half);
  EXPECT_EQ(Rect(10, 10, 10, 2), top_half);
  EXPECT_EQ(Rect(10, 12, 10, 3), bottom_half);
}

TEST(RectTest, CenterPoint) {
  Point center;

  // When origin is (0, 0).
  center = Rect(0, 0, 20, 20).CenterPoint();
  EXPECT_TRUE(center == Point(10, 10));

  // When origin is even.
  center = Rect(10, 10, 20, 20).CenterPoint();
  EXPECT_TRUE(center == Point(20, 20));

  // When origin is odd.
  center = Rect(11, 11, 20, 20).CenterPoint();
  EXPECT_TRUE(center == Point(21, 21));

  // When 0 width or height.
  center = Rect(10, 10, 0, 20).CenterPoint();
  EXPECT_TRUE(center == Point(10, 20));
  center = Rect(10, 10, 20, 0).CenterPoint();
  EXPECT_TRUE(center == Point(20, 10));

  // When an odd size.
  center = Rect(10, 10, 21, 21).CenterPoint();
  EXPECT_TRUE(center == Point(20, 20));

  // When an odd size and position.
  center = Rect(11, 11, 21, 21).CenterPoint();
  EXPECT_TRUE(center == Point(21, 21));
}

TEST(RectTest, SharesEdgeWith) {
  Rect r(2, 3, 4, 5);

  // Must be non-overlapping
  EXPECT_FALSE(r.SharesEdgeWith(r));

  Rect just_above(2, 1, 4, 2);
  Rect just_below(2, 8, 4, 2);
  Rect just_left(0, 3, 2, 5);
  Rect just_right(6, 3, 2, 5);

  EXPECT_TRUE(r.SharesEdgeWith(just_above));
  EXPECT_TRUE(r.SharesEdgeWith(just_below));
  EXPECT_TRUE(r.SharesEdgeWith(just_left));
  EXPECT_TRUE(r.SharesEdgeWith(just_right));

  // Wrong placement
  Rect same_height_no_edge(0, 0, 1, 5);
  Rect same_width_no_edge(0, 0, 4, 1);

  EXPECT_FALSE(r.SharesEdgeWith(same_height_no_edge));
  EXPECT_FALSE(r.SharesEdgeWith(same_width_no_edge));

  Rect just_above_no_edge(2, 1, 5, 2);  // too wide
  Rect just_below_no_edge(2, 8, 3, 2);  // too narrow
  Rect just_left_no_edge(0, 3, 2, 6);   // too tall
  Rect just_right_no_edge(6, 3, 2, 4);  // too short

  EXPECT_FALSE(r.SharesEdgeWith(just_above_no_edge));
  EXPECT_FALSE(r.SharesEdgeWith(just_below_no_edge));
  EXPECT_FALSE(r.SharesEdgeWith(just_left_no_edge));
  EXPECT_FALSE(r.SharesEdgeWith(just_right_no_edge));
}

static void TestScaleRectOverflowClamp(Rect (*function)(const Rect&,
                                                        float,
                                                        float)) {
  // The whole rect is scaled out of kMinInt.
  Rect xy_underflow1(-100000, -123456, 10, 20);
  EXPECT_EQ(Rect(kMinInt, kMinInt, 0, 0),
            function(xy_underflow1, 100000, 100000));

  // This rect's right/bottom is 0. The origin overflows, and is clamped to
  // -kMaxInt (instead of kMinInt) to keep width/height not overflowing.
  Rect xy_underflow2(-100000, -123456, 100000, 123456);
  EXPECT_EQ(Rect(-kMaxInt, -kMaxInt, kMaxInt, kMaxInt),
            function(xy_underflow2, 100000, 100000));

  // A location overflow means that width/right and bottom/top also
  // overflow so need to be clamped.
  Rect xy_overflow(100000, 123456, 10, 20);
  EXPECT_EQ(Rect(kMaxInt, kMaxInt, 0, 0),
            function(xy_overflow, 100000, 100000));

  // In practice all rects are clamped to 0 width / 0 height so
  // negative sizes don't matter, but try this for the sake of testing.
  Rect size_underflow(-1, -2, 100000, 100000);
  EXPECT_EQ(Rect(100000, 200000, 0, 0),
            function(size_underflow, -100000, -100000));

  Rect size_overflow(-1, -2, 123456, 234567);
  EXPECT_EQ(Rect(-100000, -200000, kMaxInt, kMaxInt),
            function(size_overflow, 100000, 100000));
  // Verify width/right gets clamped properly too if x/y positive.
  Rect size_overflow2(1, 2, 123456, 234567);
  EXPECT_EQ(Rect(100000, 200000, kMaxInt - 100000, kMaxInt - 200000),
            function(size_overflow2, 100000, 100000));

  constexpr float kMaxIntAsFloat = static_cast<float>(kMaxInt);
  Rect max_origin_rect(kMaxInt, kMaxInt, kMaxInt, kMaxInt);
  // width/height of max_origin_rect has already been clamped to 0.
  EXPECT_EQ(Rect(kMaxInt, kMaxInt, 0, 0), max_origin_rect);
  EXPECT_EQ(Rect(kMaxInt, kMaxInt, 0, 0),
            function(max_origin_rect, kMaxIntAsFloat, kMaxIntAsFloat));

  Rect max_size_rect1(0, 0, kMaxInt, kMaxInt);
  // Max sized rect can't be scaled up any further in any dimension.
  EXPECT_EQ(max_size_rect1, function(max_size_rect1, 2, 3.5));
  EXPECT_EQ(max_size_rect1,
            function(max_size_rect1, kMaxIntAsFloat, kMaxIntAsFloat));
  // Max sized ret scaled by negative scale is an empty rect.
  EXPECT_EQ(Rect(), function(max_size_rect1, kMinInt, kMinInt));

  Rect max_size_rect2(-kMaxInt, -kMaxInt, kMaxInt, kMaxInt);
  EXPECT_EQ(max_size_rect2, function(max_size_rect2, 2, 3.5));
  EXPECT_EQ(max_size_rect2,
            function(max_size_rect2, kMaxIntAsFloat, kMaxIntAsFloat));
  EXPECT_EQ(Rect(kMaxInt, kMaxInt, 0, 0),
            function(max_size_rect2, kMinInt, kMinInt));
}

TEST(RectTest, ScaleToEnclosedRect) {
  EXPECT_EQ(Rect(), ScaleToEnclosedRect(Rect(), 5.f));
  EXPECT_EQ(Rect(5, 5, 5, 5), ScaleToEnclosedRect(Rect(1, 1, 1, 1), 5.f));
  EXPECT_EQ(Rect(-5, -5, 0, 0), ScaleToEnclosedRect(Rect(-1, -1, 0, 0), 5.f));
  EXPECT_EQ(Rect(5, -5, 0, 5), ScaleToEnclosedRect(Rect(1, -1, 0, 1), 5.f));
  EXPECT_EQ(Rect(-5, 5, 5, 0), ScaleToEnclosedRect(Rect(-1, 1, 1, 0), 5.f));
  EXPECT_EQ(Rect(2, 3, 4, 6), ScaleToEnclosedRect(Rect(1, 2, 3, 4), 1.5f));
  EXPECT_EQ(Rect(-1, -3, 0, 0), ScaleToEnclosedRect(Rect(-1, -2, 0, 0), 1.5f));
  EXPECT_EQ(Rect(1, 2, 2, 1), ScaleToEnclosedRect(Rect(2, 4, 9, 8), 0.3f));
  TestScaleRectOverflowClamp(ScaleToEnclosedRect);
}

TEST(RectTest, ScaleToEnclosingRect) {
  EXPECT_EQ(Rect(), ScaleToEnclosingRect(Rect(), 5.f));
  EXPECT_EQ(Rect(5, 5, 5, 5), ScaleToEnclosingRect(Rect(1, 1, 1, 1), 5.f));
  EXPECT_EQ(Rect(-5, -5, 0, 0), ScaleToEnclosingRect(Rect(-1, -1, 0, 0), 5.f));
  EXPECT_EQ(Rect(5, -5, 0, 5), ScaleToEnclosingRect(Rect(1, -1, 0, 1), 5.f));
  EXPECT_EQ(Rect(-5, 5, 5, 0), ScaleToEnclosingRect(Rect(-1, 1, 1, 0), 5.f));
  EXPECT_EQ(Rect(1, 3, 5, 6), ScaleToEnclosingRect(Rect(1, 2, 3, 4), 1.5f));
  EXPECT_EQ(Rect(-2, -3, 0, 0), ScaleToEnclosingRect(Rect(-1, -2, 0, 0), 1.5f));
  EXPECT_EQ(Rect(0, 1, 4, 3), ScaleToEnclosingRect(Rect(2, 4, 9, 8), 0.3f));
  TestScaleRectOverflowClamp(ScaleToEnclosingRect);
}

TEST(RectTest, ScaleToRoundedRect) {
  EXPECT_EQ(Rect(), ScaleToRoundedRect(Rect(), 5.f));
  EXPECT_EQ(Rect(5, 5, 5, 5), ScaleToRoundedRect(Rect(1, 1, 1, 1), 5.f));
  EXPECT_EQ(Rect(-5, -5, 0, 0), ScaleToRoundedRect(Rect(-1, -1, 0, 0), 5.f));
  EXPECT_EQ(Rect(5, -5, 0, 5), ScaleToRoundedRect(Rect(1, -1, 0, 1), 5.f));
  EXPECT_EQ(Rect(-5, 5, 5, 0), ScaleToRoundedRect(Rect(-1, 1, 1, 0), 5.f));
  EXPECT_EQ(Rect(2, 3, 4, 6), ScaleToRoundedRect(Rect(1, 2, 3, 4), 1.5f));
  EXPECT_EQ(Rect(-2, -3, 0, 0), ScaleToRoundedRect(Rect(-1, -2, 0, 0), 1.5f));
  EXPECT_EQ(Rect(1, 1, 2, 3), ScaleToRoundedRect(Rect(2, 4, 9, 8), 0.3f));
  TestScaleRectOverflowClamp(ScaleToRoundedRect);
}

#if BUILDFLAG(IS_WIN)
TEST(RectTest, ConstructAndAssign) {
  const RECT rect_1 = { 0, 0, 10, 10 };
  const RECT rect_2 = { 0, 0, -10, -10 };
  Rect test1(rect_1);
  Rect test2(rect_2);
}
#endif

TEST(RectTest, BoundingRect) {
  struct IntTests {
    Point a;
    Point b;
    Rect expected;
  };
  auto int_tests = std::to_array<IntTests>({
      // If point B dominates A, then A should be the origin.
      {Point(4, 6), Point(4, 6), Rect(4, 6, 0, 0)},
      {Point(4, 6), Point(8, 6), Rect(4, 6, 4, 0)},
      {Point(4, 6), Point(4, 9), Rect(4, 6, 0, 3)},
      {Point(4, 6), Point(8, 9), Rect(4, 6, 4, 3)},
      // If point A dominates B, then B should be the origin.
      {Point(4, 6), Point(4, 6), Rect(4, 6, 0, 0)},
      {Point(8, 6), Point(4, 6), Rect(4, 6, 4, 0)},
      {Point(4, 9), Point(4, 6), Rect(4, 6, 0, 3)},
      {Point(8, 9), Point(4, 6), Rect(4, 6, 4, 3)},
      // If neither point dominates, then the origin is a combination of the
      // two.
      {Point(4, 6), Point(6, 4), Rect(4, 4, 2, 2)},
      {Point(-4, -6), Point(-6, -4), Rect(-6, -6, 2, 2)},
      {Point(-4, 6), Point(6, -4), Rect(-4, -4, 10, 10)},
  });

  for (size_t i = 0; i < std::size(int_tests); ++i) {
    Rect actual = BoundingRect(int_tests[i].a, int_tests[i].b);
    EXPECT_EQ(int_tests[i].expected, actual);
  }
}

TEST(RectTest, Offset) {
  Rect i(1, 2, 3, 4);

  EXPECT_EQ(Rect(2, 1, 3, 4), (i + Vector2d(1, -1)));
  EXPECT_EQ(Rect(2, 1, 3, 4), (Vector2d(1, -1) + i));
  i += Vector2d(1, -1);
  EXPECT_EQ(Rect(2, 1, 3, 4), i);
  EXPECT_EQ(Rect(1, 2, 3, 4), (i - Vector2d(1, -1)));
  i -= Vector2d(1, -1);
  EXPECT_EQ(Rect(1, 2, 3, 4), i);

  i.Offset(2, -2);
  EXPECT_EQ(Rect(3, 0, 3, 4), i);

  EXPECT_EQ(Rect(kMaxInt - 2, kMaxInt - 2, 2, 2),
            (Rect(0, 0, kMaxInt - 2, kMaxInt - 2) +
             Vector2d(kMaxInt - 2, kMaxInt - 2)));
  EXPECT_EQ(Rect(kMaxInt - 2, kMaxInt - 2, 2, 2),
            (Rect(0, 0, kMaxInt - 2, kMaxInt - 2) -
             Vector2d(2 - kMaxInt, 2 - kMaxInt)));
}

TEST(RectTest, Corners) {
  Rect i(1, 2, 3, 4);
  EXPECT_EQ(Point(1, 2), i.origin());
  EXPECT_EQ(Point(4, 2), i.top_right());
  EXPECT_EQ(Point(1, 6), i.bottom_left());
  EXPECT_EQ(Point(4, 6), i.bottom_right());
}

TEST(RectTest, Centers) {
  Rect i(10, 20, 30, 40);
  EXPECT_EQ(Point(10, 40), i.left_center());
  EXPECT_EQ(Point(25, 20), i.top_center());
  EXPECT_EQ(Point(40, 40), i.right_center());
  EXPECT_EQ(Point(25, 60), i.bottom_center());
}

TEST(RectTest, Transpose) {
  Rect i(10, 20, 30, 40);
  i.Transpose();
  EXPECT_EQ(Rect(20, 10, 40, 30), i);
}

TEST(RectTest, ManhattanDistanceToPoint) {
  Rect i(1, 2, 3, 4);
  EXPECT_EQ(0, i.ManhattanDistanceToPoint(Point(1, 2)));
  EXPECT_EQ(0, i.ManhattanDistanceToPoint(Point(4, 6)));
  EXPECT_EQ(0, i.ManhattanDistanceToPoint(Point(2, 4)));
  EXPECT_EQ(3, i.ManhattanDistanceToPoint(Point(0, 0)));
  EXPECT_EQ(2, i.ManhattanDistanceToPoint(Point(2, 0)));
  EXPECT_EQ(3, i.ManhattanDistanceToPoint(Point(5, 0)));
  EXPECT_EQ(1, i.ManhattanDistanceToPoint(Point(5, 4)));
  EXPECT_EQ(3, i.ManhattanDistanceToPoint(Point(5, 8)));
  EXPECT_EQ(2, i.ManhattanDistanceToPoint(Point(3, 8)));
  EXPECT_EQ(2, i.ManhattanDistanceToPoint(Point(0, 7)));
  EXPECT_EQ(1, i.ManhattanDistanceToPoint(Point(0, 3)));
}

TEST(RectTest, ManhattanInternalDistance) {
  Rect i(0, 0, 400, 400);
  EXPECT_EQ(0, i.ManhattanInternalDistance(Rect(-1, 0, 2, 1)));
  EXPECT_EQ(1, i.ManhattanInternalDistance(Rect(400, 0, 1, 400)));
  EXPECT_EQ(2, i.ManhattanInternalDistance(Rect(-100, -100, 100, 100)));
  EXPECT_EQ(2, i.ManhattanInternalDistance(Rect(-101, 100, 100, 100)));
  EXPECT_EQ(4, i.ManhattanInternalDistance(Rect(-101, -101, 100, 100)));
  EXPECT_EQ(435, i.ManhattanInternalDistance(Rect(630, 603, 100, 100)));
}

TEST(RectTest, IntegerOverflow) {
  int limit = std::numeric_limits<int>::max();
  int min_limit = std::numeric_limits<int>::min();
  int expected_thickness = 10;
  int large_number = limit - expected_thickness;

  Rect height_overflow(0, large_number, 100, 100);
  EXPECT_EQ(large_number, height_overflow.y());
  EXPECT_EQ(expected_thickness, height_overflow.height());

  Rect width_overflow(large_number, 0, 100, 100);
  EXPECT_EQ(large_number, width_overflow.x());
  EXPECT_EQ(expected_thickness, width_overflow.width());

  Rect size_height_overflow(Point(0, large_number), Size(100, 100));
  EXPECT_EQ(large_number, size_height_overflow.y());
  EXPECT_EQ(expected_thickness, size_height_overflow.height());

  Rect size_width_overflow(Point(large_number, 0), Size(100, 100));
  EXPECT_EQ(large_number, size_width_overflow.x());
  EXPECT_EQ(expected_thickness, size_width_overflow.width());

  Rect set_height_overflow(0, large_number, 100, 5);
  EXPECT_EQ(5, set_height_overflow.height());
  set_height_overflow.set_height(100);
  EXPECT_EQ(expected_thickness, set_height_overflow.height());

  Rect set_y_overflow(100, 100, 100, 100);
  EXPECT_EQ(100, set_y_overflow.height());
  set_y_overflow.set_y(large_number);
  EXPECT_EQ(expected_thickness, set_y_overflow.height());

  Rect set_width_overflow(large_number, 0, 5, 100);
  EXPECT_EQ(5, set_width_overflow.width());
  set_width_overflow.set_width(100);
  EXPECT_EQ(expected_thickness, set_width_overflow.width());

  Rect set_x_overflow(100, 100, 100, 100);
  EXPECT_EQ(100, set_x_overflow.width());
  set_x_overflow.set_x(large_number);
  EXPECT_EQ(expected_thickness, set_x_overflow.width());

  Point large_offset(large_number, large_number);
  Size size(100, 100);
  Size expected_size(10, 10);

  Rect set_origin_overflow(100, 100, 100, 100);
  EXPECT_EQ(size, set_origin_overflow.size());
  set_origin_overflow.set_origin(large_offset);
  EXPECT_EQ(large_offset, set_origin_overflow.origin());
  EXPECT_EQ(expected_size, set_origin_overflow.size());

  Rect set_size_overflow(large_number, large_number, 5, 5);
  EXPECT_EQ(Size(5, 5), set_size_overflow.size());
  set_size_overflow.set_size(size);
  EXPECT_EQ(large_offset, set_size_overflow.origin());
  EXPECT_EQ(expected_size, set_size_overflow.size());

  Rect set_rect_overflow;
  set_rect_overflow.SetRect(large_number, large_number, 100, 100);
  EXPECT_EQ(large_offset, set_rect_overflow.origin());
  EXPECT_EQ(expected_size, set_rect_overflow.size());

  // Insetting an empty rect, but the total inset (left + right) could overflow.
  Rect inset_overflow;
  inset_overflow.Inset(Insets::TLBR(large_number, large_number, 100, 100));
  EXPECT_EQ(large_offset, inset_overflow.origin());
  EXPECT_EQ(Size(), inset_overflow.size());

  // Insetting where the total inset (width - left - right) could overflow.
  // Also, this insetting by the min limit in all directions cannot
  // represent width() without overflow, so that will also clamp.
  Rect inset_overflow2;
  inset_overflow2.Inset(min_limit);
  EXPECT_EQ(inset_overflow2, Rect(min_limit, min_limit, limit, limit));

  // Insetting where the width shouldn't change, but if the insets operations
  // clamped in the wrong order, e.g. ((width - left) - right) vs (width - (left
  // + right)) then this will not work properly.  This is the proper order,
  // as if left + right overflows, the width cannot be decreased by more than
  // max int anyway.  Additionally, if left + right underflows, it cannot be
  // increased by more then max int.
  Rect inset_overflow3(0, 0, limit, limit);
  inset_overflow3.Inset(Insets::TLBR(-100, -100, 100, 100));
  EXPECT_EQ(inset_overflow3, Rect(-100, -100, limit, limit));

  Rect inset_overflow4(-1000, -1000, limit, limit);
  inset_overflow4.Inset(Insets::TLBR(100, 100, -100, -100));
  EXPECT_EQ(inset_overflow4, Rect(-900, -900, limit, limit));

  Rect offset_overflow(0, 0, 100, 100);
  offset_overflow.Offset(large_number, large_number);
  EXPECT_EQ(large_offset, offset_overflow.origin());
  EXPECT_EQ(expected_size, offset_overflow.size());

  Rect operator_overflow(0, 0, 100, 100);
  operator_overflow += Vector2d(large_number, large_number);
  EXPECT_EQ(large_offset, operator_overflow.origin());
  EXPECT_EQ(expected_size, operator_overflow.size());

  Rect origin_maxint(limit, limit, limit, limit);
  EXPECT_EQ(origin_maxint, Rect(Point(limit, limit), Size()));

  // Expect a rect at the origin and a rect whose right/bottom is maxint
  // create a rect that extends from 0..maxint in both extents.
  {
    Rect origin_small(0, 0, 100, 100);
    Rect big_clamped(50, 50, limit, limit);
    EXPECT_EQ(big_clamped.right(), limit);

    Rect unioned = UnionRects(origin_small, big_clamped);
    Rect rect_limit(0, 0, limit, limit);
    EXPECT_EQ(unioned, rect_limit);
  }

  // Expect a rect that would overflow width (but not right) to be clamped
  // and to have maxint extents after unioning.
  {
    Rect small(-500, -400, 100, 100);
    Rect big(-400, -500, limit, limit);
    // Technically, this should be limit + 100 width, but will clamp to maxint.
    EXPECT_EQ(UnionRects(small, big), Rect(-500, -500, limit, limit));
  }

  // Expect a rect that would overflow right *and* width to be clamped.
  {
    Rect clamped(500, 500, limit, limit);
    Rect positive_origin(100, 100, 500, 500);

    // Ideally, this should be (100, 100, limit + 400, limit + 400).
    // However, width overflows and would be clamped to limit, but right
    // overflows too and so will be clamped to limit - 100.
    Rect expected_rect(100, 100, limit - 100, limit - 100);
    EXPECT_EQ(UnionRects(clamped, positive_origin), expected_rect);
  }

  // Unioning a left=minint rect with a right=maxint rect.
  // We can't represent both ends of the spectrum in the same rect.
  // Make sure we keep the most useful area.
  {
    int part_limit = min_limit / 3;
    Rect left_minint(min_limit, min_limit, 1, 1);
    Rect right_maxint(limit - 1, limit - 1, limit, limit);
    Rect expected_rect(part_limit, part_limit, 2 * part_limit, 2 * part_limit);
    Rect result = UnionRects(left_minint, right_maxint);

    // The result should be maximally big.
    EXPECT_EQ(limit, result.height());
    EXPECT_EQ(limit, result.width());

    // The result should include the area near the origin.
    EXPECT_GT(-part_limit, result.x());
    EXPECT_LT(part_limit, result.right());
    EXPECT_GT(-part_limit, result.y());
    EXPECT_LT(part_limit, result.bottom());

    // More succinctly, but harder to read in the results.
    EXPECT_TRUE(UnionRects(left_minint, right_maxint).Contains(expected_rect));
  }
}

TEST(RectTest, Inset) {
  Rect r(10, 20, 30, 40);
  r.Inset(0);
  EXPECT_EQ(Rect(10, 20, 30, 40), r);
  r.Inset(1);
  EXPECT_EQ(Rect(11, 21, 28, 38), r);
  r.Inset(-1);
  EXPECT_EQ(Rect(10, 20, 30, 40), r);

  r.Inset(Insets::VH(2, 1));
  EXPECT_EQ(Rect(11, 22, 28, 36), r);
  r.Inset(Insets::VH(-2, -1));
  EXPECT_EQ(Rect(10, 20, 30, 40), r);

  // The parameters are left, top, right, bottom.
  r.Inset(Insets::TLBR(2, 1, 4, 3));
  EXPECT_EQ(Rect(11, 22, 26, 34), r);
  r.Inset(Insets::TLBR(-2, -1, -4, -3));
  EXPECT_EQ(Rect(10, 20, 30, 40), r);

  r.Inset(Insets::TLBR(1, 2, 3, 4));
  EXPECT_EQ(Rect(12, 21, 24, 36), r);
  r.Inset(Insets::TLBR(-1, -2, -3, -4));
  EXPECT_EQ(Rect(10, 20, 30, 40), r);
}

TEST(RectTest, Outset) {
  Rect r(10, 20, 30, 40);
  r.Outset(0);
  EXPECT_EQ(Rect(10, 20, 30, 40), r);
  r.Outset(1);
  EXPECT_EQ(Rect(9, 19, 32, 42), r);
  r.Outset(-1);
  EXPECT_EQ(Rect(10, 20, 30, 40), r);

  r.Outset(Outsets::VH(2, 1));
  EXPECT_EQ(Rect(9, 18, 32, 44), r);
  r.Outset(Outsets::VH(-2, -1));
  EXPECT_EQ(Rect(10, 20, 30, 40), r);

  r.Outset(Outsets::TLBR(2, 1, 4, 3));
  EXPECT_EQ(Rect(9, 18, 34, 46), r);
  r.Outset(Outsets::TLBR(-2, -1, -4, -3));
  EXPECT_EQ(Rect(10, 20, 30, 40), r);
}

TEST(RectTest, InsetOutsetClamped) {
  Rect r(10, 20, 30, 40);
  r.Inset(18);
  EXPECT_EQ(Rect(28, 38, 0, 4), r);
  r.Inset(-18);
  EXPECT_EQ(Rect(10, 20, 36, 40), r);

  r.Inset(Insets::VH(30, 15));
  EXPECT_EQ(Rect(25, 50, 6, 0), r);
  r.Inset(Insets::VH(-30, -15));
  EXPECT_EQ(Rect(10, 20, 36, 60), r);

  r.Inset(Insets::TLBR(30, 20, 50, 40));
  EXPECT_EQ(Rect(30, 50, 0, 0), r);
  r.Inset(Insets::TLBR(-30, -20, -50, -40));
  EXPECT_EQ(Rect(10, 20, 60, 80), r);

  r.Outset(kMaxInt);
  EXPECT_EQ(Rect(10 - kMaxInt, 20 - kMaxInt, kMaxInt, kMaxInt), r);
  r.Outset(Outsets().set_top_bottom(kMaxInt, kMaxInt));
  EXPECT_EQ(Rect(10 - kMaxInt, kMinInt, kMaxInt, kMaxInt), r);
  r.Outset(Outsets().set_right(kMaxInt).set_top(kMaxInt));
  EXPECT_EQ(Rect(10 - kMaxInt, kMinInt, kMaxInt, kMaxInt), r);
  r.Outset(Outsets().set_left_right(kMaxInt, kMaxInt));
  EXPECT_EQ(Rect(kMinInt, kMinInt, kMaxInt, kMaxInt), r);
}

TEST(RectTest, SetByBounds) {
  Rect r;
  r.SetByBounds(1, 2, 30, 40);
  EXPECT_EQ(Rect(1, 2, 29, 38), r);
  r.SetByBounds(30, 40, 1, 2);
  EXPECT_EQ(Rect(30, 40, 0, 0), r);

  r.SetByBounds(0, 0, kMaxInt, kMaxInt);
  EXPECT_EQ(Rect(0, 0, kMaxInt, kMaxInt), r);
  r.SetByBounds(-1, -1, kMaxInt, kMaxInt);
  EXPECT_EQ(Rect(-1, -1, kMaxInt, kMaxInt), r);
  r.SetByBounds(1, 1, kMaxInt, kMaxInt);
  EXPECT_EQ(Rect(1, 1, kMaxInt - 1, kMaxInt - 1), r);
  r.SetByBounds(kMinInt, kMinInt, 0, 0);
  EXPECT_EQ(Rect(kMinInt + 1, kMinInt + 1, kMaxInt, kMaxInt), r);
  r.SetByBounds(kMinInt, kMinInt, 1, 1);
  EXPECT_EQ(Rect(kMinInt + 2, kMinInt + 2, kMaxInt, kMaxInt), r);
  r.SetByBounds(kMinInt, kMinInt, -1, -1);
  EXPECT_EQ(Rect(kMinInt, kMinInt, kMaxInt, kMaxInt), r);
  r.SetByBounds(kMinInt, kMinInt, kMaxInt, kMaxInt);
  EXPECT_EQ(Rect(kMinInt / 2 - 1, kMinInt / 2 - 1, kMaxInt, kMaxInt), r);
}

TEST(RectTest, MaximumCoveredRect) {
  // X aligned and intersect: unite.
  EXPECT_EQ(Rect(10, 20, 30, 60),
            MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(10, 30, 30, 50)));
  // X aligned and adjacent: unite.
  EXPECT_EQ(Rect(10, 20, 30, 90),
            MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(10, 60, 30, 50)));
  // X aligned and separate: choose the bigger one.
  EXPECT_EQ(Rect(10, 61, 30, 50),
            MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(10, 61, 30, 50)));
  // Y aligned and intersect: unite.
  EXPECT_EQ(Rect(10, 20, 60, 40),
            MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(30, 20, 40, 40)));
  // Y aligned and adjacent: unite.
  EXPECT_EQ(Rect(10, 20, 70, 40),
            MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(40, 20, 40, 40)));
  // Y aligned and separate: choose the bigger one.
  EXPECT_EQ(Rect(41, 20, 40, 40),
            MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(41, 20, 40, 40)));
  // Get the biggest expanded intersection.
  EXPECT_EQ(Rect(0, 0, 9, 19),
            MaximumCoveredRect(Rect(0, 0, 10, 10), Rect(0, 9, 9, 10)));
  EXPECT_EQ(Rect(0, 0, 19, 9),
            MaximumCoveredRect(Rect(0, 0, 10, 10), Rect(9, 0, 10, 9)));
  // Otherwise choose the bigger one.
  EXPECT_EQ(Rect(20, 30, 40, 50),
            MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(20, 30, 40, 50)));
  EXPECT_EQ(Rect(10, 20, 40, 50),
            MaximumCoveredRect(Rect(10, 20, 40, 50), Rect(20, 30, 30, 40)));
  EXPECT_EQ(Rect(10, 20, 40, 50),
            MaximumCoveredRect(Rect(10, 20, 40, 50), Rect(20, 30, 40, 50)));
}

}  // namespace gfx