1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
|
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/geometry/transform_operation.h"
#include <algorithm>
#include <array>
#include <limits>
#include <numbers>
#include <utility>
#include "base/check_op.h"
#include "base/containers/span.h"
#include "base/notreached.h"
#include "base/numerics/angle_conversions.h"
#include "base/numerics/ranges.h"
#include "ui/gfx/geometry/box_f.h"
#include "ui/gfx/geometry/transform_operations.h"
#include "ui/gfx/geometry/transform_util.h"
#include "ui/gfx/geometry/vector3d_f.h"
namespace {
const SkScalar kAngleEpsilon = 1e-4f;
}
namespace gfx {
bool TransformOperation::IsIdentity() const {
if (type == TRANSFORM_OPERATION_ROTATE) {
// We can't use matrix.IsIdentity() because rotate(n*360) is not identity,
// but the matrix is identity.
return rotate.angle == 0 ||
// Rotation with zero length axis is treated as identity.
(rotate.axis.x == 0 && rotate.axis.y == 0 && rotate.axis.z == 0);
}
return matrix.IsIdentity();
}
static bool IsOperationIdentity(const TransformOperation* operation) {
return !operation || operation->IsIdentity();
}
static bool ShareSameAxis(const TransformOperation* from,
bool is_identity_from,
const TransformOperation* to,
bool is_identity_to,
SkScalar* axis_x,
SkScalar* axis_y,
SkScalar* axis_z,
SkScalar* angle_from) {
DCHECK_EQ(is_identity_from, IsOperationIdentity(from));
DCHECK_EQ(is_identity_to, IsOperationIdentity(to));
DCHECK(!is_identity_from || !is_identity_to);
if (is_identity_from && !is_identity_to) {
*axis_x = to->rotate.axis.x;
*axis_y = to->rotate.axis.y;
*axis_z = to->rotate.axis.z;
*angle_from = 0;
return true;
}
if (!is_identity_from && is_identity_to) {
*axis_x = from->rotate.axis.x;
*axis_y = from->rotate.axis.y;
*axis_z = from->rotate.axis.z;
*angle_from = from->rotate.angle;
return true;
}
SkScalar length_2 = from->rotate.axis.x * from->rotate.axis.x +
from->rotate.axis.y * from->rotate.axis.y +
from->rotate.axis.z * from->rotate.axis.z;
SkScalar other_length_2 = to->rotate.axis.x * to->rotate.axis.x +
to->rotate.axis.y * to->rotate.axis.y +
to->rotate.axis.z * to->rotate.axis.z;
if (length_2 <= kAngleEpsilon || other_length_2 <= kAngleEpsilon)
return false;
SkScalar dot = to->rotate.axis.x * from->rotate.axis.x +
to->rotate.axis.y * from->rotate.axis.y +
to->rotate.axis.z * from->rotate.axis.z;
SkScalar error =
SkScalarAbs(SK_Scalar1 - (dot * dot) / (length_2 * other_length_2));
bool result = error < kAngleEpsilon;
if (result) {
*axis_x = to->rotate.axis.x;
*axis_y = to->rotate.axis.y;
*axis_z = to->rotate.axis.z;
// If the axes are pointing in opposite directions, we need to reverse
// the angle.
*angle_from = dot > 0 ? from->rotate.angle : -from->rotate.angle;
}
return result;
}
static SkScalar BlendSkScalars(SkScalar from, SkScalar to, SkScalar progress) {
return from * (1 - progress) + to * progress;
}
void TransformOperation::Bake() {
matrix.MakeIdentity();
switch (type) {
case TransformOperation::TRANSFORM_OPERATION_TRANSLATE:
matrix.Translate3d(translate.x, translate.y, translate.z);
break;
case TransformOperation::TRANSFORM_OPERATION_ROTATE:
matrix.RotateAbout(
gfx::Vector3dF(rotate.axis.x, rotate.axis.y, rotate.axis.z),
rotate.angle);
break;
case TransformOperation::TRANSFORM_OPERATION_SCALE:
matrix.Scale3d(scale.x, scale.y, scale.z);
break;
case TransformOperation::TRANSFORM_OPERATION_SKEWX:
case TransformOperation::TRANSFORM_OPERATION_SKEWY:
case TransformOperation::TRANSFORM_OPERATION_SKEW:
matrix.Skew(skew.x, skew.y);
break;
case TransformOperation::TRANSFORM_OPERATION_PERSPECTIVE: {
Transform m;
m.set_rc(3, 2, perspective_m43);
matrix.PreConcat(m);
break;
}
case TransformOperation::TRANSFORM_OPERATION_MATRIX:
case TransformOperation::TRANSFORM_OPERATION_IDENTITY:
break;
}
}
bool TransformOperation::ApproximatelyEqual(const TransformOperation& other,
SkScalar tolerance) const {
DCHECK_LE(0, tolerance);
if (type != other.type)
return false;
switch (type) {
case TransformOperation::TRANSFORM_OPERATION_TRANSLATE:
return base::IsApproximatelyEqual(translate.x, other.translate.x,
tolerance) &&
base::IsApproximatelyEqual(translate.y, other.translate.y,
tolerance) &&
base::IsApproximatelyEqual(translate.z, other.translate.z,
tolerance);
case TransformOperation::TRANSFORM_OPERATION_ROTATE:
return base::IsApproximatelyEqual(rotate.axis.x, other.rotate.axis.x,
tolerance) &&
base::IsApproximatelyEqual(rotate.axis.y, other.rotate.axis.y,
tolerance) &&
base::IsApproximatelyEqual(rotate.axis.z, other.rotate.axis.z,
tolerance) &&
base::IsApproximatelyEqual(rotate.angle, other.rotate.angle,
tolerance);
case TransformOperation::TRANSFORM_OPERATION_SCALE:
return base::IsApproximatelyEqual(scale.x, other.scale.x, tolerance) &&
base::IsApproximatelyEqual(scale.y, other.scale.y, tolerance) &&
base::IsApproximatelyEqual(scale.z, other.scale.z, tolerance);
case TransformOperation::TRANSFORM_OPERATION_SKEWX:
case TransformOperation::TRANSFORM_OPERATION_SKEWY:
case TransformOperation::TRANSFORM_OPERATION_SKEW:
return base::IsApproximatelyEqual(skew.x, other.skew.x, tolerance) &&
base::IsApproximatelyEqual(skew.y, other.skew.y, tolerance);
case TransformOperation::TRANSFORM_OPERATION_PERSPECTIVE:
return base::IsApproximatelyEqual(perspective_m43, other.perspective_m43,
tolerance);
case TransformOperation::TRANSFORM_OPERATION_MATRIX:
return matrix.ApproximatelyEqual(other.matrix, tolerance);
case TransformOperation::TRANSFORM_OPERATION_IDENTITY:
return other.matrix.IsIdentity();
}
NOTREACHED();
}
bool TransformOperation::BlendTransformOperations(
const TransformOperation* from,
const TransformOperation* to,
SkScalar progress,
TransformOperation* result) {
bool is_identity_from = IsOperationIdentity(from);
bool is_identity_to = IsOperationIdentity(to);
if (is_identity_from && is_identity_to)
return true;
TransformOperation::Type interpolation_type =
TransformOperation::TRANSFORM_OPERATION_IDENTITY;
if (is_identity_to)
interpolation_type = from->type;
else
interpolation_type = to->type;
result->type = interpolation_type;
switch (interpolation_type) {
case TransformOperation::TRANSFORM_OPERATION_TRANSLATE: {
SkScalar from_x = is_identity_from ? 0 : from->translate.x;
SkScalar from_y = is_identity_from ? 0 : from->translate.y;
SkScalar from_z = is_identity_from ? 0 : from->translate.z;
SkScalar to_x = is_identity_to ? 0 : to->translate.x;
SkScalar to_y = is_identity_to ? 0 : to->translate.y;
SkScalar to_z = is_identity_to ? 0 : to->translate.z;
result->translate.x = BlendSkScalars(from_x, to_x, progress),
result->translate.y = BlendSkScalars(from_y, to_y, progress),
result->translate.z = BlendSkScalars(from_z, to_z, progress),
result->Bake();
break;
}
case TransformOperation::TRANSFORM_OPERATION_ROTATE: {
SkScalar axis_x = 0;
SkScalar axis_y = 0;
SkScalar axis_z = 1;
SkScalar from_angle = 0;
SkScalar to_angle = is_identity_to ? 0 : to->rotate.angle;
if (ShareSameAxis(from, is_identity_from, to, is_identity_to, &axis_x,
&axis_y, &axis_z, &from_angle)) {
result->rotate.axis.x = axis_x;
result->rotate.axis.y = axis_y;
result->rotate.axis.z = axis_z;
result->rotate.angle = BlendSkScalars(from_angle, to_angle, progress);
result->Bake();
} else {
if (!is_identity_to)
result->matrix = to->matrix;
gfx::Transform from_matrix;
if (!is_identity_from)
from_matrix = from->matrix;
if (!result->matrix.Blend(from_matrix, progress))
return false;
}
break;
}
case TransformOperation::TRANSFORM_OPERATION_SCALE: {
SkScalar from_x = is_identity_from ? 1 : from->scale.x;
SkScalar from_y = is_identity_from ? 1 : from->scale.y;
SkScalar from_z = is_identity_from ? 1 : from->scale.z;
SkScalar to_x = is_identity_to ? 1 : to->scale.x;
SkScalar to_y = is_identity_to ? 1 : to->scale.y;
SkScalar to_z = is_identity_to ? 1 : to->scale.z;
result->scale.x = BlendSkScalars(from_x, to_x, progress);
result->scale.y = BlendSkScalars(from_y, to_y, progress);
result->scale.z = BlendSkScalars(from_z, to_z, progress);
result->Bake();
break;
}
case TransformOperation::TRANSFORM_OPERATION_SKEWX:
case TransformOperation::TRANSFORM_OPERATION_SKEWY:
case TransformOperation::TRANSFORM_OPERATION_SKEW: {
SkScalar from_x = is_identity_from ? 0 : from->skew.x;
SkScalar from_y = is_identity_from ? 0 : from->skew.y;
SkScalar to_x = is_identity_to ? 0 : to->skew.x;
SkScalar to_y = is_identity_to ? 0 : to->skew.y;
result->skew.x = BlendSkScalars(from_x, to_x, progress);
result->skew.y = BlendSkScalars(from_y, to_y, progress);
result->Bake();
break;
}
case TransformOperation::TRANSFORM_OPERATION_PERSPECTIVE: {
SkScalar from_perspective_m43;
if (is_identity_from) {
from_perspective_m43 = 0.f;
} else {
DCHECK_LE(from->perspective_m43, 0.0f);
DCHECK_GE(from->perspective_m43, -1.0f);
from_perspective_m43 = from->perspective_m43;
}
SkScalar to_perspective_m43;
if (is_identity_to) {
to_perspective_m43 = 0.f;
} else {
DCHECK_LE(to->perspective_m43, 0.0f);
DCHECK_GE(to->perspective_m43, -1.0f);
to_perspective_m43 = to->perspective_m43;
}
result->perspective_m43 = std::clamp(
BlendSkScalars(from_perspective_m43, to_perspective_m43, progress),
-1.0f, 0.0f);
result->Bake();
break;
}
case TransformOperation::TRANSFORM_OPERATION_MATRIX: {
if (!is_identity_to)
result->matrix = to->matrix;
gfx::Transform from_matrix;
if (!is_identity_from)
from_matrix = from->matrix;
if (!result->matrix.Blend(from_matrix, progress))
return false;
break;
}
case TransformOperation::TRANSFORM_OPERATION_IDENTITY:
// Do nothing.
break;
}
return true;
}
// If p = (px, py) is a point in the plane being rotated about (0, 0, nz), this
// function computes the angles we would have to rotate from p to get to
// (length(p), 0), (-length(p), 0), (0, length(p)), (0, -length(p)). If nz is
// negative, these angles will need to be reversed.
static void FindCandidatesInPlane(float px,
float py,
float nz,
base::span<double> candidates,
int* num_candidates) {
double phi = atan2(px, py);
*num_candidates = 4;
candidates[0] = phi;
for (int i = 1; i < *num_candidates; ++i)
candidates[i] = candidates[i - 1] + std::numbers::pi / 2;
if (nz < 0.f) {
for (int i = 0; i < *num_candidates; ++i)
candidates[i] *= -1.f;
}
}
static void BoundingBoxForArc(const gfx::Point3F& point,
const TransformOperation* from,
const TransformOperation* to,
SkScalar min_progress,
SkScalar max_progress,
gfx::BoxF* box) {
const TransformOperation* exemplar = from ? from : to;
gfx::Vector3dF axis(exemplar->rotate.axis.x, exemplar->rotate.axis.y,
exemplar->rotate.axis.z);
const bool x_is_zero = axis.x() == 0.f;
const bool y_is_zero = axis.y() == 0.f;
const bool z_is_zero = axis.z() == 0.f;
// We will have at most 6 angles to test (excluding from->angle and
// to->angle).
static const int kMaxNumCandidates = 6;
std::array<double, kMaxNumCandidates> candidates;
int num_candidates = kMaxNumCandidates;
if (x_is_zero && y_is_zero && z_is_zero)
return;
SkScalar from_angle = from ? from->rotate.angle : 0.f;
SkScalar to_angle = to ? to->rotate.angle : 0.f;
// If the axes of rotation are pointing in opposite directions, we need to
// flip one of the angles. Note, if both |from| and |to| exist, then axis will
// correspond to |from|.
if (from && to) {
gfx::Vector3dF other_axis(to->rotate.axis.x, to->rotate.axis.y,
to->rotate.axis.z);
if (gfx::DotProduct(axis, other_axis) < 0.f)
to_angle *= -1.f;
}
float min_degrees =
SkScalarToFloat(BlendSkScalars(from_angle, to_angle, min_progress));
float max_degrees =
SkScalarToFloat(BlendSkScalars(from_angle, to_angle, max_progress));
if (max_degrees < min_degrees)
std::swap(min_degrees, max_degrees);
gfx::Transform from_transform;
from_transform.RotateAbout(axis, min_degrees);
gfx::Transform to_transform;
to_transform.RotateAbout(axis, max_degrees);
*box = gfx::BoxF();
gfx::Point3F point_rotated_from = from_transform.MapPoint(point);
gfx::Point3F point_rotated_to = to_transform.MapPoint(point);
box->set_origin(point_rotated_from);
box->ExpandTo(point_rotated_to);
if (x_is_zero && y_is_zero) {
FindCandidatesInPlane(point.x(), point.y(), axis.z(), candidates,
&num_candidates);
} else if (x_is_zero && z_is_zero) {
FindCandidatesInPlane(point.z(), point.x(), axis.y(), candidates,
&num_candidates);
} else if (y_is_zero && z_is_zero) {
FindCandidatesInPlane(point.y(), point.z(), axis.x(), candidates,
&num_candidates);
} else {
gfx::Vector3dF normal = axis;
normal.InvScale(normal.Length());
// First, find center of rotation.
gfx::Point3F origin;
gfx::Vector3dF to_point = point - origin;
gfx::Point3F center =
origin + gfx::ScaleVector3d(normal, gfx::DotProduct(to_point, normal));
// Now we need to find two vectors in the plane of rotation. One pointing
// towards point and another, perpendicular vector in the plane.
gfx::Vector3dF v1 = point - center;
float v1_length = v1.Length();
if (v1_length == 0.f)
return;
v1.InvScale(v1_length);
gfx::Vector3dF v2 = gfx::CrossProduct(normal, v1);
// v1 is the basis vector in the direction of the point.
// i.e. with a rotation of 0, v1 is our +x vector.
// v2 is a perpenticular basis vector of our plane (+y).
// Take the parametric equation of a circle.
// x = r*cos(t); y = r*sin(t);
// We can treat that as a circle on the plane v1xv2.
// From that we get the parametric equations for a circle on the
// plane in 3d space of:
// x(t) = r*cos(t)*v1.x + r*sin(t)*v2.x + cx
// y(t) = r*cos(t)*v1.y + r*sin(t)*v2.y + cy
// z(t) = r*cos(t)*v1.z + r*sin(t)*v2.z + cz
// Taking the derivative of (x, y, z) and solving for 0 gives us our
// maximum/minimum x, y, z values.
// x'(t) = r*cos(t)*v2.x - r*sin(t)*v1.x = 0
// tan(t) = v2.x/v1.x
// t = atan2(v2.x, v1.x) + n*pi;
candidates[0] = atan2(v2.x(), v1.x());
candidates[1] = candidates[0] + std::numbers::pi;
candidates[2] = atan2(v2.y(), v1.y());
candidates[3] = candidates[2] + std::numbers::pi;
candidates[4] = atan2(v2.z(), v1.z());
candidates[5] = candidates[4] + std::numbers::pi;
}
double min_radians = base::DegToRad(min_degrees);
double max_radians = base::DegToRad(max_degrees);
for (int i = 0; i < num_candidates; ++i) {
double radians = candidates[i];
while (radians < min_radians)
radians += 2.0 * std::numbers::pi;
while (radians > max_radians)
radians -= 2.0 * std::numbers::pi;
if (radians < min_radians)
continue;
gfx::Transform rotation;
rotation.RotateAbout(axis, base::RadToDeg(radians));
gfx::Point3F rotated = rotation.MapPoint(point);
box->ExpandTo(rotated);
}
}
bool TransformOperation::BlendedBoundsForBox(const gfx::BoxF& box,
const TransformOperation* from,
const TransformOperation* to,
SkScalar min_progress,
SkScalar max_progress,
gfx::BoxF* bounds) {
bool is_identity_from = IsOperationIdentity(from);
bool is_identity_to = IsOperationIdentity(to);
if (is_identity_from && is_identity_to) {
*bounds = box;
return true;
}
TransformOperation::Type interpolation_type =
TransformOperation::TRANSFORM_OPERATION_IDENTITY;
if (is_identity_to)
interpolation_type = from->type;
else
interpolation_type = to->type;
switch (interpolation_type) {
case TransformOperation::TRANSFORM_OPERATION_IDENTITY:
*bounds = box;
return true;
case TransformOperation::TRANSFORM_OPERATION_TRANSLATE:
case TransformOperation::TRANSFORM_OPERATION_SKEWX:
case TransformOperation::TRANSFORM_OPERATION_SKEWY:
case TransformOperation::TRANSFORM_OPERATION_SKEW:
case TransformOperation::TRANSFORM_OPERATION_PERSPECTIVE:
case TransformOperation::TRANSFORM_OPERATION_SCALE: {
TransformOperation from_operation;
TransformOperation to_operation;
if (!BlendTransformOperations(from, to, min_progress, &from_operation) ||
!BlendTransformOperations(from, to, max_progress, &to_operation))
return false;
*bounds = from_operation.matrix.MapBox(box);
BoxF to_box = to_operation.matrix.MapBox(box);
bounds->ExpandTo(to_box);
return true;
}
case TransformOperation::TRANSFORM_OPERATION_ROTATE: {
SkScalar axis_x = 0;
SkScalar axis_y = 0;
SkScalar axis_z = 1;
SkScalar from_angle = 0;
if (!ShareSameAxis(from, is_identity_from, to, is_identity_to, &axis_x,
&axis_y, &axis_z, &from_angle)) {
return false;
}
bool first_point = true;
for (int i = 0; i < 8; ++i) {
gfx::Point3F corner = box.origin();
corner += gfx::Vector3dF(i & 1 ? box.width() : 0.f,
i & 2 ? box.height() : 0.f,
i & 4 ? box.depth() : 0.f);
gfx::BoxF box_for_arc;
BoundingBoxForArc(corner, from, to, min_progress, max_progress,
&box_for_arc);
if (first_point)
*bounds = box_for_arc;
else
bounds->Union(box_for_arc);
first_point = false;
}
return true;
}
case TransformOperation::TRANSFORM_OPERATION_MATRIX:
return false;
}
NOTREACHED();
}
} // namespace gfx
|