1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
|
// Copyright 2025 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gl/os_compositor_tree_base.h"
#include <algorithm>
#include <vector>
#include "base/strings/stringprintf.h"
#include "base/trace_event/traced_value.h"
#include "base/values.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "ui/gfx/overlay_layer_id.h"
namespace gl {
namespace {
// Concise alias to create a test layer ID.
gfx::OverlayLayerId LayerId(uint32_t layer_id) {
return gfx::OverlayLayerId::MakeForTesting(layer_id);
}
// A mock OS compositor tree, imitating Direct Composition or Core Animation. It
// minimally implements a DAG with a root node and basic operations to
// manipulate it. It uses `gfx::OverlayLayerId` as the node type.
class MiniTree {
public:
using node_type = gfx::OverlayLayerId;
// This contains information about accesses to the `MiniTree`. It's intended
// to aid debugging test failures.
struct Change {
enum class Type {
kCreate,
kRemoveChild,
kAddChild,
kDestroy,
kCommit,
};
Type type;
node_type node;
// For `kRemoveChild`, `kAddChild`
node_type child;
// For `kAddChild`
std::optional<node_type> below;
base::Value ToValue() const {
base::Value value(base::Value::Type::DICT);
base::Value::Dict& dict = value.GetDict();
switch (type) {
case Type::kCreate:
dict.Set("_type", "Create");
dict.Set("node", node.ToString());
break;
case Type::kRemoveChild:
dict.Set("_type", "RemoveChild");
dict.Set("parent", node.ToString());
dict.Set("child", child.ToString());
break;
case Type::kAddChild:
dict.Set("_type", "AddChild");
dict.Set("parent", node.ToString());
dict.Set("child", child.ToString());
if (below) {
dict.Set("below", below->ToString());
} else {
// Nothing is below the node, so it is added below all siblings.
}
break;
case Type::kDestroy:
dict.Set("_type", "Destroy");
dict.Set("node", node.ToString());
break;
case Type::kCommit:
dict.Set("_type", "Commit");
break;
}
return value;
}
};
MiniTree()
: root_node_(
// Insert the implicit root node.
CreateNode(gfx::OverlayLayerId())) {
// We're not interested in root node changes since they are the same for all
// trees.
changes_.clear();
nodes_touched_this_frame_.clear();
}
node_type CreateNode(const node_type& node) {
CHECK(!hierarchy_.contains(node) || hierarchy_.at(node).empty());
hierarchy_.insert({node, {}});
changes_.push_back(Change{.type = Change::Type::kCreate, .node = node});
nodes_touched_this_frame_.insert(node);
return node;
}
void RemoveChild(const node_type& parent, const node_type& child) {
CHECK(hierarchy_.contains(parent)) << "parent node must exist";
CHECK(hierarchy_.contains(child)) << "child node must exist";
auto& siblings = hierarchy_[parent];
auto it = std::ranges::find(siblings, child);
CHECK(it != siblings.end())
<< "child node must have been previously added under parent";
siblings.erase(it);
changes_.push_back(Change{
.type = Change::Type::kRemoveChild, .node = parent, .child = child});
nodes_touched_this_frame_.insert(child);
}
void AddChild(const node_type& parent,
const node_type& child,
const std::optional<node_type>& below) {
CHECK(hierarchy_.contains(parent)) << "parent node must exist";
CHECK(hierarchy_.contains(child)) << "child node must exist";
CHECK(std::ranges::none_of(hierarchy_, [&](const auto& entry) {
const auto& siblings = entry.second;
return std::ranges::find(siblings, child) != siblings.end();
})) << "child node must not be attached to any node";
auto& siblings = hierarchy_[parent];
if (below) {
auto insert_after = std::ranges::find(siblings, below.value());
CHECK(insert_after != siblings.end()) << "below node must exist";
insert_after++;
siblings.insert(insert_after, child);
} else {
siblings.insert(siblings.begin(), child);
}
changes_.push_back(Change{.type = Change::Type::kAddChild,
.node = parent,
.child = child,
.below = below});
nodes_touched_this_frame_.insert(child);
}
struct CommitStats {
std::vector<Change> changes;
base::flat_set<gfx::OverlayLayerId> nodes_touched_this_frame;
};
CommitStats Commit() {
changes_.push_back(Change{.type = Change::Type::kCommit});
// Trim the tree storage
{
base::flat_set<node_type> referenced_nodes{root_node()};
WalkChildrenRecursive(
root_node(), [&](const node_type& parent, const node_type& node) {
referenced_nodes.insert(node);
});
auto it = hierarchy_.begin();
while (it != hierarchy_.end()) {
if (!referenced_nodes.contains(it->first)) {
changes_.push_back(
Change{.type = Change::Type::kDestroy, .node = it->first});
it = hierarchy_.erase(it);
} else {
it++;
}
}
}
return {
.changes = std::move(changes_),
.nodes_touched_this_frame = std::move(nodes_touched_this_frame_),
};
}
node_type root_node() const { return root_node_; }
base::Value RootNodeToValue() const {
return NodeToValueRecursive(root_node());
}
private:
using RecursiveWalkCallback =
base::FunctionRef<void(const node_type& parent, const node_type& node)>;
void WalkChildrenRecursive(const node_type& node,
RecursiveWalkCallback callback) const {
for (const auto& child : hierarchy_.at(node)) {
callback(node, child);
WalkChildrenRecursive(child, callback);
}
}
base::Value NodeToValueRecursive(node_type node) const {
base::Value value(base::Value::Type::DICT);
base::Value::Dict& dict = value.GetDict();
dict.Set("_id", node == root_node() ? "root" : node.ToString());
if (!hierarchy_.at(node).empty()) {
base::Value children(base::Value::Type::LIST);
for (const auto& child : hierarchy_.at(node)) {
children.GetList().Append(NodeToValueRecursive(child));
}
dict.Set("children", std::move(children));
}
return value;
}
std::vector<Change> changes_;
base::flat_set<node_type> nodes_touched_this_frame_;
// Represents a N-ary tree where each node has ordered (back-to-front)
// children. We expect this to be acyclic.
base::flat_map<node_type, std::vector<node_type>> hierarchy_;
const node_type root_node_;
};
TEST(MiniTreeTest, EmptyTreesAreEqual) {
MiniTree tree1;
MiniTree tree2;
EXPECT_EQ(tree1.RootNodeToValue(), tree2.RootNodeToValue());
}
TEST(MiniTreeTest, SimpleTreesAreEqual) {
MiniTree tree1;
{
tree1.AddChild(tree1.root_node(), tree1.CreateNode(LayerId(1)), {});
tree1.AddChild(tree1.root_node(), tree1.CreateNode(LayerId(2)), {});
}
MiniTree tree2;
{
tree2.AddChild(tree2.root_node(), tree2.CreateNode(LayerId(1)), {});
tree2.AddChild(tree2.root_node(), tree2.CreateNode(LayerId(2)), {});
}
EXPECT_EQ(tree1.RootNodeToValue(), tree2.RootNodeToValue());
}
TEST(MiniTreeTest, SimpleTreesWithDifferentStructureAreNotEqual) {
MiniTree tree1;
{
tree1.AddChild(tree1.root_node(), tree1.CreateNode(LayerId(1)), {});
tree1.AddChild(tree1.root_node(), tree1.CreateNode(LayerId(2)), {});
}
MiniTree tree2;
{
tree2.AddChild(tree2.root_node(), tree2.CreateNode(LayerId(1)), {});
}
EXPECT_NE(tree1.RootNodeToValue(), tree2.RootNodeToValue());
}
TEST(MiniTreeTest, SimpleTreesWithSameStructureButDifferentContentAreNotEqual) {
MiniTree tree1;
{
tree1.AddChild(tree1.root_node(), tree1.CreateNode(LayerId(1)), {});
tree1.AddChild(tree1.root_node(), tree1.CreateNode(LayerId(2)), {});
}
MiniTree tree2;
{
tree2.AddChild(tree2.root_node(), tree2.CreateNode(LayerId(1)), {});
tree2.AddChild(tree2.root_node(), tree2.CreateNode(LayerId(3)), {});
}
EXPECT_NE(tree1.RootNodeToValue(), tree2.RootNodeToValue());
}
// A minimal overlay layer type. This is the minimum required by
// `OsCompositorTreeBase`.
struct TestOverlayParams {
TestOverlayParams() = default;
TestOverlayParams(TestOverlayParams&&) = default;
TestOverlayParams& operator=(TestOverlayParams&&) = default;
int z_order;
gfx::OverlayLayerId layer_id;
gfx::OverlayLayerId parent_layer_id;
base::Value ToValue() const {
base::Value value(base::Value::Type::DICT);
base::Value::Dict& dict = value.GetDict();
dict.Set("z_order", z_order);
dict.Set("layer_id", layer_id.ToString());
dict.Set("parent_layer_id", parent_layer_id.ToString());
return value;
}
};
// Helper functions to build test input (i.e. overlay params list) and expected
// test output (i.e. `MiniTree` generated "from scratch"). This allows test to
// be written with mostly declarative input.
class TestTreeBuilder {
public:
struct Layer {
gfx::OverlayLayerId id;
// Ordered back-to-front.
std::vector<Layer> children;
Layer() = default;
Layer(uint32_t layer_id, std::vector<Layer> child_layers)
: id(gfx::OverlayLayerId::MakeForTesting(layer_id)),
children(child_layers) {}
};
static MiniTree MiniTreeFromRootLayers(std::vector<Layer> root_layers) {
MiniTree tree;
WalkRootTopologically(root_layers,
[&](const gfx::OverlayLayerId& parent,
const std::optional<gfx::OverlayLayerId>& below,
const gfx::OverlayLayerId& id, int z_order) {
tree.AddChild(parent, tree.CreateNode(id), below);
});
return tree;
}
// Returns a topologically sorted list of overlays adding the correct z-index
// relative to siblings.
static std::vector<TestOverlayParams> OverlaysFromRootLayers(
std::vector<Layer> root_layers) {
std::vector<TestOverlayParams> overlays;
WalkRootTopologically(root_layers,
[&](const gfx::OverlayLayerId& parent,
const std::optional<gfx::OverlayLayerId>& below,
const gfx::OverlayLayerId& id, int z_order) {
overlays.emplace_back();
overlays.back().layer_id = id;
overlays.back().parent_layer_id = parent;
overlays.back().z_order = z_order;
});
return overlays;
}
private:
using TopologicalWalkCallback =
base::FunctionRef<void(const gfx::OverlayLayerId& parent,
const std::optional<gfx::OverlayLayerId>& below,
const gfx::OverlayLayerId& id,
int z_order)>;
static void WalkRootTopologically(std::vector<Layer>& root_layers,
TopologicalWalkCallback callback) {
Layer root_layer;
root_layer.id = gfx::OverlayLayerId();
root_layer.children = root_layers;
WalkTopologically(root_layer, std::move(callback));
}
static void WalkTopologically(const Layer& layer,
TopologicalWalkCallback callback) {
int z_order = 1;
std::optional<gfx::OverlayLayerId> below;
for (const Layer& child_layer : layer.children) {
callback(layer.id, below, child_layer.id, z_order++);
WalkTopologically(child_layer, callback);
below = child_layer.id;
}
}
};
// Alias to make tests less verbose.
using Layer = TestTreeBuilder::Layer;
// A minimal layer type. This correctly returns `true` from `Update` if things
// have changed.
class MiniTreeNodeWrapper {
public:
MiniTreeNodeWrapper() = default;
MiniTreeNodeWrapper(const MiniTreeNodeWrapper&) = delete;
MiniTreeNodeWrapper& operator=(const MiniTreeNodeWrapper&) = delete;
void unsafe_set_below_layer(const MiniTreeNodeWrapper* below_layer) {
below_node_ = below_layer ? below_layer->container_node() : std::nullopt;
}
bool Update(MiniTree& tree,
const gfx::OverlayLayerId& layer_id,
MiniTree::node_type parent_node,
std::optional<MiniTree::node_type> below_node) {
bool did_change = false;
std::optional<MiniTree::node_type> old_parent_node = parent_node_;
auto SetField = [&did_change](auto& field, auto& parameter) -> bool {
const bool changed = field != parameter;
if (changed) {
field = std::move(parameter);
did_change = true;
}
return changed;
};
const bool parent_node_changed = SetField(parent_node_, parent_node);
const bool below_node_changed = SetField(below_node_, below_node);
if (!container_node()) {
container_node_ = tree.CreateNode(layer_id);
}
if (parent_node_changed || below_node_changed) {
if (old_parent_node) {
tree.RemoveChild(old_parent_node.value(), container_node().value());
}
tree.AddChild(parent_node_.value(), container_node().value(),
below_node_);
}
return did_change;
}
std::optional<MiniTree::node_type> container_node() const {
return container_node_;
}
std::optional<MiniTree::node_type> parent_node() const {
return parent_node_;
}
private:
std::optional<MiniTree::node_type> container_node_;
std::optional<MiniTree::node_type> parent_node_;
std::optional<MiniTree::node_type> below_node_;
};
class TestCompositorTree
: public OsCompositorTreeBase<TestOverlayParams, MiniTreeNodeWrapper> {
public:
explicit TestCompositorTree(TestCompositorTree::UpdateMode update_mode)
: OsCompositorTreeBase(update_mode) {}
~TestCompositorTree() override = default;
const MiniTree& mini_tree() const { return mini_tree_; }
const MiniTree::CommitStats& last_frame_commit_stats() const {
return last_frame_commit_stats_;
}
protected:
bool UpdateLayer(const TestOverlayParams& overlay,
const MiniTreeNodeWrapper* parent_layer,
const MiniTreeNodeWrapper* below_layer,
MiniTreeNodeWrapper& layer) override {
// This test layer is logically a single node (not a stack of several nodes
// that apply transform, clipping, etc). We can consider the top-level
// container node to be the same node that contains the children.
const MiniTree::node_type parent_node =
parent_layer ? parent_layer->container_node().value()
: mini_tree_.root_node();
return layer.Update(
mini_tree_, overlay.layer_id, parent_node,
below_layer ? below_layer->container_node() : std::nullopt);
}
void DestroyLayer(std::unique_ptr<MiniTreeNodeWrapper> layer) override {
mini_tree_.RemoveChild(layer->parent_node().value(),
layer->container_node().value());
}
bool CommitTree() override {
last_frame_commit_stats_ = mini_tree_.Commit();
return true;
}
private:
MiniTree mini_tree_;
MiniTree::CommitStats last_frame_commit_stats_;
};
class OsCompositorTreeBaseTest
: public testing::TestWithParam<TestCompositorTree::UpdateMode> {
public:
static std::string GetParamName(
const testing::TestParamInfo<ParamType>& info) {
switch (info.param) {
case TestCompositorTree::UpdateMode::kFromScratch:
return "FromScratch";
case TestCompositorTree::UpdateMode::
kIncrementalNoPatchSiblingsOptimization:
return "IncrementalNoPatchSiblingsOptimization";
case TestCompositorTree::UpdateMode::kIncremental:
return "Incremental";
}
NOTREACHED();
}
OsCompositorTreeBaseTest() : tree_(GetParam()) {}
// This function creates an overlay list from `layers`, passes it to `tree_`
// and compares `tree_`'s incremental output with `layers`.
//
// - `layers` defines a tree where they are the children of an implicit root
// layer.
// - `expected_num_layers_modified` is the expected number of layers
// touched in the fully incremental mode. This function will adjust the
// expectation for other modes.
void UpdateTree(std::vector<Layer> layers, int expected_num_layers_modified) {
const base::Value prev_tree = tree_.mini_tree().RootNodeToValue();
std::vector<TestOverlayParams> overlays =
TestTreeBuilder::OverlaysFromRootLayers(layers);
// Dump the generated overlay candidates to help understand the input tree.
base::Value overlays_list(base::Value::Type::LIST);
for (const auto& overlay : overlays) {
overlays_list.GetList().Append(overlay.ToValue());
}
SCOPED_TRACE(base::StringPrintf("Generated overlay candidates = %s",
overlays_list.DebugString()));
EXPECT_TRUE(tree_.UpdateTree(overlays));
const base::Value actual_tree = tree_.mini_tree().RootNodeToValue();
const base::Value expected_tree =
TestTreeBuilder::MiniTreeFromRootLayers(layers).RootNodeToValue();
// Dump the previous tree and the set of changes that happened to help
// understand why.
const auto& commit_stats = tree_.last_frame_commit_stats();
base::Value changes_list(base::Value::Type::LIST);
for (const auto& change : commit_stats.changes) {
changes_list.GetList().Append(change.ToValue());
}
base::Value touched_layer_ids_list(base::Value::Type::LIST);
for (const auto& touched_layer_id : commit_stats.nodes_touched_this_frame) {
touched_layer_ids_list.GetList().Append(touched_layer_id.ToString());
}
SCOPED_TRACE(base::StringPrintf(
"Incremental update info:\n"
"Prev tree: %s\n"
"Changes from this update: %s\n"
"Layers directly touched: %s\n"
"Current tree: %s\n"
"Run with `--vmodule=os_compositor_tree_base=3` for more output.",
prev_tree.DebugString(), changes_list.DebugString(),
touched_layer_ids_list.DebugString(), actual_tree.DebugString()));
// The output tree should always be the same, regardless of how we update.
EXPECT_EQ(actual_tree, expected_tree);
switch (GetParam()) {
case TestCompositorTree::UpdateMode::kFromScratch:
EXPECT_EQ(static_cast<size_t>(
tree_.num_layers_modified_last_frame_for_testing()),
overlays.size());
break;
case TestCompositorTree::UpdateMode::
kIncrementalNoPatchSiblingsOptimization:
// We only really care about the fully optimized incremental case, but
// if the patch optimization is causing us to touch more trees, we
// should know about it.
EXPECT_GE(tree_.num_layers_modified_last_frame_for_testing(),
expected_num_layers_modified);
break;
case TestCompositorTree::UpdateMode::kIncremental:
EXPECT_EQ(tree_.num_layers_modified_last_frame_for_testing(),
expected_num_layers_modified);
break;
}
}
// Same as `UpdateTree(layers, size(layers))`. Expected to be called from the
// default empty initialized state. Intended for initializing a test state,
// but can be skipped if the empty state is desired.
void InitializeTree(std::vector<Layer> layers) {
UpdateTree(layers, TestTreeBuilder::OverlaysFromRootLayers(layers).size());
}
TestCompositorTree tree_;
};
INSTANTIATE_TEST_SUITE_P(
,
OsCompositorTreeBaseTest,
testing::ValuesIn({
TestCompositorTree::UpdateMode::kFromScratch,
TestCompositorTree::UpdateMode::kIncrementalNoPatchSiblingsOptimization,
TestCompositorTree::UpdateMode::kIncremental,
}),
&OsCompositorTreeBaseTest::GetParamName);
TEST_P(OsCompositorTreeBaseTest, CommitEmpty) {
UpdateTree({}, 0);
}
TEST_P(OsCompositorTreeBaseTest, InsertOneIntoEmpty) {
UpdateTree(
{
Layer(1, {}),
},
1);
}
TEST_P(OsCompositorTreeBaseTest, LayerNotReused) {
InitializeTree({
Layer(1, {}),
});
// We expect layer 1 to be removed (and destroyed) and a new layer 2 added.
UpdateTree(
{
Layer(2, {}),
},
2);
}
TEST_P(OsCompositorTreeBaseTest, DeleteOne) {
InitializeTree({
Layer(1, {}),
});
UpdateTree({}, 1);
}
TEST_P(OsCompositorTreeBaseTest, DeleteOneAndReAddIt) {
InitializeTree({
Layer(1, {}),
});
UpdateTree({}, 1);
UpdateTree(
{
Layer(1, {}),
},
1);
}
TEST_P(OsCompositorTreeBaseTest, DeleteTwo) {
InitializeTree({
Layer(1, {}),
Layer(2, {}),
});
UpdateTree({}, 2);
}
TEST_P(OsCompositorTreeBaseTest, DeleteLayer) {
InitializeTree({
Layer(1,
{
Layer(2, {}),
}),
});
UpdateTree({}, 2);
}
TEST_P(OsCompositorTreeBaseTest, InsertTwoIntoEmpty) {
UpdateTree(
{
Layer(1, {}),
Layer(2, {}),
},
2);
}
TEST_P(OsCompositorTreeBaseTest, InsertLayerIntoEmpty) {
UpdateTree(
{
Layer(1,
{
Layer(2, {}),
}),
},
2);
}
TEST_P(OsCompositorTreeBaseTest, SwitchOrderOfTwo) {
InitializeTree({
Layer(1, {}),
Layer(2, {}),
});
UpdateTree(
{
Layer(2, {}),
Layer(1, {}),
},
1);
}
TEST_P(OsCompositorTreeBaseTest, ThreeSwapFirstTwo) {
InitializeTree({
Layer(1, {}),
Layer(2, {}),
Layer(3, {}),
});
// Swap index 0 and 1
UpdateTree(
{
Layer(2, {}),
Layer(1, {}),
Layer(3, {}),
},
1);
}
TEST_P(OsCompositorTreeBaseTest, ThreeSwapLastTwo) {
InitializeTree({
Layer(1, {}),
Layer(2, {}),
Layer(3, {}),
});
// Swap index 1 and 2
UpdateTree(
{
Layer(1, {}),
Layer(3, {}),
Layer(2, {}),
},
1);
}
TEST_P(OsCompositorTreeBaseTest, ThreeSwapOuter) {
InitializeTree({
Layer(1, {}),
Layer(2, {}),
Layer(3, {}),
});
// Swap index 0 and 2
// This requires touching two layers.
UpdateTree(
{
Layer(3, {}),
Layer(2, {}),
Layer(1, {}),
},
2);
}
TEST_P(OsCompositorTreeBaseTest, ThreeRotateToBelow) {
InitializeTree({
Layer(1, {}),
Layer(2, {}),
Layer(3, {}),
});
UpdateTree(
{
Layer(3, {}),
Layer(1, {}),
Layer(2, {}),
},
1);
}
TEST_P(OsCompositorTreeBaseTest, ThreeRotateToAbove) {
InitializeTree({
Layer(1, {}),
Layer(2, {}),
Layer(3, {}),
});
// This requires touching two layers, due to the fact we walk the tree in
// overlay candidate order.
UpdateTree(
{
Layer(2, {}),
Layer(3, {}),
Layer(1, {}),
},
2);
}
TEST_P(OsCompositorTreeBaseTest, MoveChildToSiblingOfParent) {
InitializeTree({
Layer(1,
{
Layer(3, {}),
}),
Layer(2, {}),
});
UpdateTree(
{
Layer(1, {}),
Layer(2, {}),
Layer(3, {}),
},
1);
}
TEST_P(OsCompositorTreeBaseTest, MoveMultipleSiblingsToNewParent) {
InitializeTree({
Layer(1, {}),
Layer(2, {}),
Layer(3, {}),
});
UpdateTree(
{
Layer(1,
{
Layer(2, {}),
Layer(3, {}),
}),
},
2);
}
TEST_P(OsCompositorTreeBaseTest, ReparentSiblingsToChain) {
InitializeTree({
Layer(1, {}),
Layer(2, {}),
Layer(3, {}),
});
UpdateTree(
{
Layer(1,
{
Layer(2,
{
Layer(3, {}),
}),
}),
},
2);
}
TEST_P(OsCompositorTreeBaseTest, ReparentLayer) {
InitializeTree({
Layer(1,
{
Layer(3,
{
Layer(2, {}),
}),
}),
});
// We move layer 3 while layer 2 is a child of it. Layer 2 does not need to be
// updated in this case.
UpdateTree(
{
Layer(3,
{
Layer(2, {}),
}),
Layer(1, {}),
},
1);
}
TEST_P(OsCompositorTreeBaseTest, RemoveAndAddAtStart) {
InitializeTree({
Layer(1, {}),
Layer(2, {}),
Layer(3, {}),
});
UpdateTree(
{
Layer(10, {}),
Layer(2, {}),
Layer(3, {}),
},
2);
}
TEST_P(OsCompositorTreeBaseTest, RemoveAndAddAtMiddle) {
InitializeTree({
Layer(1, {}),
Layer(2, {}),
Layer(3, {}),
});
UpdateTree(
{
Layer(1, {}),
Layer(10, {}),
Layer(3, {}),
},
2);
}
TEST_P(OsCompositorTreeBaseTest, RemoveAndAddAtEnd) {
InitializeTree({
Layer(1, {}),
Layer(2, {}),
Layer(3, {}),
});
UpdateTree(
{
Layer(1, {}),
Layer(2, {}),
Layer(10, {}),
},
2);
}
#if EXPENSIVE_DCHECKS_ARE_ON() && defined(GTEST_HAS_DEATH_TEST)
// Check that `OsCompositorTreeBase` rejects invalid input since invalid input
// can invalidate its assumptions.
class OsCompositorTreeBaseTestInvalidInput : public OsCompositorTreeBaseTest {};
INSTANTIATE_TEST_SUITE_P(
,
OsCompositorTreeBaseTestInvalidInput,
testing::Values(TestCompositorTree::UpdateMode::kIncremental),
&OsCompositorTreeBaseTest::GetParamName);
constexpr std::string_view kZOrderCheckMessage = "Siblings must be sorted.";
constexpr std::string_view kMustHaveLayerIdMessage =
"Overlay must have non-default layer ID.";
constexpr std::string_view kHierarchyCheckMessage =
"Overlays must be topologically sorted.";
constexpr std::string_view kLayerIdUniquenessCheckMessage =
"Overlay layer IDs must all be unique.";
TEST_P(OsCompositorTreeBaseTestInvalidInput, UnsortedSiblings) {
std::vector<TestOverlayParams> overlays;
overlays.emplace_back();
overlays.back().z_order = 2;
overlays.back().layer_id = LayerId(2);
overlays.emplace_back();
overlays.back().z_order = 1;
overlays.back().layer_id = LayerId(1);
EXPECT_DEATH(tree_.UpdateTree(overlays), kZOrderCheckMessage);
}
TEST_P(OsCompositorTreeBaseTestInvalidInput, UnsortedSiblingsInLayer) {
std::vector<TestOverlayParams> overlays;
overlays.emplace_back();
overlays.back().z_order = 1;
overlays.back().layer_id = LayerId(1);
overlays.emplace_back();
overlays.back().z_order = 2;
overlays.back().layer_id = LayerId(2);
overlays.back().parent_layer_id = LayerId(1);
overlays.emplace_back();
overlays.back().z_order = 1;
overlays.back().layer_id = LayerId(3);
overlays.back().parent_layer_id = LayerId(1);
EXPECT_DEATH(tree_.UpdateTree(overlays), kZOrderCheckMessage);
}
TEST_P(OsCompositorTreeBaseTestInvalidInput, NoSameZOrder) {
std::vector<TestOverlayParams> overlays;
overlays.emplace_back();
overlays.back().z_order = 1;
overlays.back().layer_id = LayerId(1);
overlays.emplace_back();
overlays.back().z_order = 1;
overlays.back().layer_id = LayerId(2);
EXPECT_DEATH(tree_.UpdateTree(overlays), kZOrderCheckMessage);
}
TEST_P(OsCompositorTreeBaseTestInvalidInput, NotTopologicallySorted) {
std::vector<TestOverlayParams> overlays;
overlays.emplace_back();
overlays.back().z_order = 1;
overlays.back().layer_id = LayerId(2);
overlays.back().parent_layer_id = LayerId(1),
overlays.emplace_back();
overlays.back().z_order = 1;
overlays.back().layer_id = LayerId(1);
EXPECT_DEATH(tree_.UpdateTree(overlays), kHierarchyCheckMessage);
}
TEST_P(OsCompositorTreeBaseTestInvalidInput, NeedsExplicitLayerId) {
std::vector<TestOverlayParams> overlays;
overlays.emplace_back();
overlays.back().z_order = 1;
EXPECT_DEATH(tree_.UpdateTree(overlays), kMustHaveLayerIdMessage);
}
TEST_P(OsCompositorTreeBaseTestInvalidInput, NoDuplicateLayerId) {
std::vector<TestOverlayParams> overlays;
overlays.emplace_back();
overlays.back().z_order = 1;
overlays.back().layer_id = LayerId(1);
overlays.emplace_back();
overlays.back().z_order = 2;
overlays.back().layer_id = LayerId(1);
EXPECT_DEATH(tree_.UpdateTree(overlays), kLayerIdUniquenessCheckMessage);
}
#endif
class MockTestCompositorTree : public TestCompositorTree {
public:
MockTestCompositorTree()
: TestCompositorTree(TestCompositorTree::UpdateMode::kIncremental) {}
MOCK_METHOD(bool, CommitTree, (), (override));
};
TEST(OsCompositorTreeBaseTestCommit, NoUpdatesSkipCommit) {
MockTestCompositorTree tree;
EXPECT_CALL(tree, CommitTree()).Times(0);
EXPECT_TRUE(tree.UpdateTree({}));
}
TEST(OsCompositorTreeBaseTestCommit, Commit) {
MockTestCompositorTree tree;
EXPECT_CALL(tree, CommitTree()).WillOnce(testing::Return(true));
const auto overlays = TestTreeBuilder::OverlaysFromRootLayers({
Layer(1, {}),
});
EXPECT_TRUE(tree.UpdateTree(overlays));
}
TEST(OsCompositorTreeBaseTestCommit, NoUpdatesOnSubsequentFrameSkipCommit) {
MockTestCompositorTree tree;
{
EXPECT_CALL(tree, CommitTree()).WillOnce(testing::Return(true));
const auto overlays = TestTreeBuilder::OverlaysFromRootLayers({
Layer(1, {}),
});
EXPECT_TRUE(tree.UpdateTree(overlays));
}
{
EXPECT_CALL(tree, CommitTree()).Times(0);
const auto overlays = TestTreeBuilder::OverlaysFromRootLayers({
Layer(1, {}),
});
EXPECT_TRUE(tree.UpdateTree(overlays));
}
}
TEST(OsCompositorTreeBaseTestCommit, FailedCommit) {
MockTestCompositorTree tree;
EXPECT_CALL(tree, CommitTree()).WillOnce(testing::Return(false));
const auto overlays = TestTreeBuilder::OverlaysFromRootLayers({
Layer(1, {}),
});
EXPECT_FALSE(tree.UpdateTree(overlays));
}
} // namespace
} // namespace gl
|