1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
|
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/views/layout/animating_layout_manager.h"
#include <algorithm>
#include <map>
#include <set>
#include <utility>
#include <vector>
#include "base/auto_reset.h"
#include "base/containers/contains.h"
#include "base/memory/raw_ptr.h"
#include "base/numerics/safe_conversions.h"
#include "base/observer_list.h"
#include "base/task/single_thread_task_runner.h"
#include "base/time/time.h"
#include "ui/compositor/layer.h"
#include "ui/gfx/animation/animation.h"
#include "ui/gfx/animation/animation_container.h"
#include "ui/gfx/animation/multi_animation.h"
#include "ui/gfx/animation/slide_animation.h"
#include "ui/views/animation/animation_delegate_views.h"
#include "ui/views/layout/normalized_geometry.h"
#include "ui/views/layout/proposed_layout.h"
#include "ui/views/view.h"
#include "ui/views/view_class_properties.h"
namespace views {
namespace {
// Returns the ChildLayout data for the child view in the proposed layout, or
// nullptr if not found.
const ChildLayout* FindChildViewInLayout(const ProposedLayout& layout,
const View* view) {
if (!view) {
return nullptr;
}
// The number of children should be small enough that this is more efficient
// than caching a lookup set.
for (auto& child_layout : layout.child_layouts) {
if (child_layout.child_view == view) {
return &child_layout;
}
}
return nullptr;
}
ChildLayout* FindChildViewInLayout(ProposedLayout* layout, const View* view) {
return const_cast<ChildLayout*>(FindChildViewInLayout(*layout, view));
}
// Describes the type of fade, used by LayoutFadeInfo (see below).
enum class LayoutFadeType {
// This view is fading in as part of the current animation.
kFadingIn,
// This view is fading out as part of the current animation.
kFadingOut,
// This view was fading as part of a previous animation that was interrupted
// and redirected. No child views in the current animation should base their
// position off of it.
kContinuingFade
};
// Makes a copy of the given layout with only visible child views (non-visible
// children are omitted).
ProposedLayout WithOnlyVisibleViews(const ProposedLayout layout) {
ProposedLayout result;
result.host_size = layout.host_size;
std::ranges::copy_if(layout.child_layouts,
std::back_inserter(result.child_layouts),
&ChildLayout::visible);
return result;
}
// Returns true if the two proposed layouts have the same visible views, with
// the same parameters, in the same order.
bool HaveSameVisibleViews(const ProposedLayout& l1, const ProposedLayout& l2) {
// There is an approach that uses nested loops and dual iterators that is more
// efficient than copying, but since this method is only currently called when
// views are added to the layout, clarity is more important than speed.
return WithOnlyVisibleViews(l1) == WithOnlyVisibleViews(l2);
}
} // namespace
// Holds data about a view that is fading in or out as part of an animation.
struct AnimatingLayoutManager::LayoutFadeInfo {
// How the child view is fading.
LayoutFadeType fade_type;
// The child view which is fading.
raw_ptr<View> child_view = nullptr;
// The view previous (leading side) to the fading view which is in both the
// starting and target layout, or null if none.
raw_ptr<View> prev_view = nullptr;
// The view next (trailing side) to the fading view which is in both the
// starting and target layout, or null if none.
raw_ptr<View> next_view = nullptr;
// The full-size bounds, normalized to the orientation of the layout manager,
// that |child_view| starts with, if fading out, or ends with, if fading in.
NormalizedRect reference_bounds;
// The offset from the end of |prev_view| and the start of |next_view|. Insets
// may be negative if the views overlap.
Inset1D offsets;
};
// Manages the animation and various callbacks from the animation system that
// are required to update the layout during animations.
class AnimatingLayoutManager::AnimationDelegate
: public AnimationDelegateViews {
public:
explicit AnimationDelegate(AnimatingLayoutManager* layout_manager);
~AnimationDelegate() override = default;
// Returns true after the host view is added to a widget or animation has been
// enabled by a unit test.
//
// Before that, animation is not possible, so all changes to the host view
// should result in the host view's layout being snapped directly to the
// target layout.
bool ready_to_animate() const { return ready_to_animate_; }
// Pushes animation configuration (tween type, duration) through to the
// animation itself.
void UpdateAnimationParameters();
// Starts the animation.
void Animate();
// Cancels and resets the current animation (if any).
void Reset();
// If the current layout is not yet ready to animate, transitions into the
// ready-to-animate state, possibly resetting the current layout and
// invalidating the host to make sure the layout is up to date.
void MakeReadyForAnimation();
// Overrides the default animation container with |container|.
void SetAnimationContainerForTesting(gfx::AnimationContainer* container) {
animation_->SetContainer(container);
}
private:
// Observer used to watch for the host view being parented to a widget.
class ViewWidgetObserver : public ViewObserver {
public:
explicit ViewWidgetObserver(AnimationDelegate* animation_delegate)
: animation_delegate_(animation_delegate) {}
void OnViewAddedToWidget(View* observed_view) override {
animation_delegate_->MakeReadyForAnimation();
}
void OnViewIsDeleting(View* observed_view) override {
animation_delegate_->scoped_observation_.Reset();
}
private:
const raw_ptr<AnimationDelegate> animation_delegate_;
};
friend class Observer;
// AnimationDelegateViews:
void AnimationProgressed(const gfx::Animation* animation) override;
void AnimationCanceled(const gfx::Animation* animation) override;
void AnimationEnded(const gfx::Animation* animation) override;
bool ready_to_animate_ = false;
bool resetting_animation_ = false;
const raw_ptr<AnimatingLayoutManager> target_layout_manager_;
std::unique_ptr<gfx::MultiAnimation> fade_in_opacity_animation_;
std::unique_ptr<gfx::MultiAnimation> fade_out_opacity_animation_;
std::unique_ptr<gfx::SlideAnimation> animation_;
const raw_ptr<gfx::AnimationContainer> container_;
ViewWidgetObserver view_widget_observer_{this};
base::ScopedObservation<View, ViewObserver> scoped_observation_{
&view_widget_observer_};
};
AnimatingLayoutManager::AnimationDelegate::AnimationDelegate(
AnimatingLayoutManager* layout_manager)
: AnimationDelegateViews(layout_manager->host_view()),
target_layout_manager_(layout_manager),
animation_(std::make_unique<gfx::SlideAnimation>(this)),
container_(new gfx::AnimationContainer()) {
animation_->SetContainer(container_);
View* const host_view = layout_manager->host_view();
DCHECK(host_view);
if (host_view->GetWidget()) {
MakeReadyForAnimation();
} else {
scoped_observation_.Observe(host_view);
}
UpdateAnimationParameters();
}
void AnimatingLayoutManager::AnimationDelegate::UpdateAnimationParameters() {
animation_->SetTweenType(target_layout_manager_->tween_type());
animation_->SetSlideDuration(target_layout_manager_->animation_duration());
base::TimeDelta opacity_animation_duration =
std::min(target_layout_manager_->animation_duration(),
target_layout_manager_->opacity_animation_duration());
if (!opacity_animation_duration.is_zero()) {
fade_in_opacity_animation_ =
std::make_unique<gfx::MultiAnimation>(gfx::MultiAnimation::Parts{
{target_layout_manager_->animation_duration() -
opacity_animation_duration,
gfx::Tween::Type::LINEAR, 0.0, 0.0},
{opacity_animation_duration,
target_layout_manager_->opacity_tween_type(), 0.0, 1.0}});
fade_in_opacity_animation_->SetContainer(container_);
fade_in_opacity_animation_->set_continuous(false);
const base::TimeDelta fade_out_opacity_duration =
target_layout_manager_->animation_duration() ==
opacity_animation_duration
? opacity_animation_duration
: target_layout_manager_->animation_duration() -
opacity_animation_duration;
fade_out_opacity_animation_ =
std::make_unique<gfx::MultiAnimation>(gfx::MultiAnimation::Parts{
{fade_out_opacity_duration,
target_layout_manager_->opacity_tween_type(), 1.0, 0.0},
{target_layout_manager_->animation_duration() -
fade_out_opacity_duration,
gfx::Tween::Type::LINEAR, 0.0, 0.0}});
fade_out_opacity_animation_->SetContainer(container_);
fade_out_opacity_animation_->set_continuous(false);
}
}
void AnimatingLayoutManager::AnimationDelegate::Animate() {
DCHECK(ready_to_animate_);
Reset();
animation_->Show();
if (target_layout_manager_->opacity_animation_duration() >
base::Milliseconds(0)) {
if (fade_in_opacity_animation_.get()) {
fade_in_opacity_animation_->Start();
}
if (fade_out_opacity_animation_.get()) {
fade_out_opacity_animation_->Start();
}
}
}
void AnimatingLayoutManager::AnimationDelegate::Reset() {
if (!ready_to_animate_) {
return;
}
base::AutoReset<bool> setter(&resetting_animation_, true);
animation_->Reset();
if (fade_in_opacity_animation_.get()) {
fade_in_opacity_animation_->Stop();
}
if (fade_out_opacity_animation_.get()) {
fade_out_opacity_animation_->Stop();
}
}
void AnimatingLayoutManager::AnimationDelegate::MakeReadyForAnimation() {
if (!ready_to_animate_) {
target_layout_manager_->ResetLayout();
ready_to_animate_ = true;
scoped_observation_.Reset();
}
}
void AnimatingLayoutManager::AnimationDelegate::AnimationProgressed(
const gfx::Animation* animation) {
DCHECK(animation_.get() == animation);
double fade_in_opacity = fade_in_opacity_animation_.get()
? fade_in_opacity_animation_->GetCurrentValue()
: 1.0;
double fade_out_opacity = fade_out_opacity_animation_.get()
? fade_out_opacity_animation_->GetCurrentValue()
: 0.0;
target_layout_manager_->AnimateTo(animation->GetCurrentValue(),
fade_in_opacity, fade_out_opacity);
}
void AnimatingLayoutManager::AnimationDelegate::AnimationCanceled(
const gfx::Animation* animation) {
AnimationEnded(animation);
}
void AnimatingLayoutManager::AnimationDelegate::AnimationEnded(
const gfx::Animation* animation) {
if (resetting_animation_) {
return;
}
DCHECK(animation_.get() == animation);
target_layout_manager_->AnimateTo(1.0, 1.0, 0.0);
}
// AnimatingLayoutManager:
AnimatingLayoutManager::AnimatingLayoutManager() = default;
AnimatingLayoutManager::~AnimatingLayoutManager() = default;
AnimatingLayoutManager& AnimatingLayoutManager::SetBoundsAnimationMode(
BoundsAnimationMode bounds_animation_mode) {
if (bounds_animation_mode_ != bounds_animation_mode) {
bounds_animation_mode_ = bounds_animation_mode;
ResetLayout();
}
return *this;
}
AnimatingLayoutManager& AnimatingLayoutManager::SetAnimationDuration(
base::TimeDelta animation_duration) {
DCHECK_GE(animation_duration, base::TimeDelta());
animation_duration_ = animation_duration;
if (animation_delegate_) {
animation_delegate_->UpdateAnimationParameters();
}
return *this;
}
AnimatingLayoutManager& AnimatingLayoutManager::SetTweenType(
gfx::Tween::Type tween_type) {
tween_type_ = tween_type;
if (animation_delegate_) {
animation_delegate_->UpdateAnimationParameters();
}
return *this;
}
AnimatingLayoutManager& AnimatingLayoutManager::SetOpacityAnimationDuration(
base::TimeDelta animation_duration) {
DCHECK_GE(animation_duration, base::TimeDelta());
opacity_animation_duration_ = animation_duration;
if (animation_delegate_) {
animation_delegate_->UpdateAnimationParameters();
}
return *this;
}
AnimatingLayoutManager& AnimatingLayoutManager::SetOpacityTweenType(
gfx::Tween::Type tween_type) {
opacity_tween_type_ = tween_type;
if (animation_delegate_) {
animation_delegate_->UpdateAnimationParameters();
}
return *this;
}
AnimatingLayoutManager& AnimatingLayoutManager::SetOrientation(
LayoutOrientation orientation) {
if (orientation_ != orientation) {
orientation_ = orientation;
ResetLayout();
}
return *this;
}
AnimatingLayoutManager& AnimatingLayoutManager::SetDefaultFadeMode(
FadeInOutMode default_fade_mode) {
default_fade_mode_ = default_fade_mode;
return *this;
}
void AnimatingLayoutManager::ResetLayout() {
if (!target_layout_manager()) {
return;
}
ResetLayoutToTargetSize();
InvalidateHost(false);
}
void AnimatingLayoutManager::FadeOut(View* child_view) {
DCHECK(child_view);
DCHECK(child_view->parent());
DCHECK_EQ(host_view(), child_view->parent());
// If the view in question is already incapable of being visible, either:
// 1. the view wasn't capable of being visible in the first place
// 2. the view is already invisible because the layout has chosen to hide it
// In either case, it is generally useful to recalculate the layout just in
// case the caller has made other changes that won't directly cause a layout -
// for example, the user has changed a layout-affecting class property. Worst
// case this ends up being a slightly costly no-op but we don't expect this
// method to be called very often.
if (!CanBeVisible(child_view)) {
InvalidateHost(true);
return;
}
// This handles a case where we are in the middle of an animation where we
// would have hidden the target view, but haven't laid out yet, so haven't
// actually hidden it yet. Because we plan fade-outs off of the current layout
// if the view the child view is visible it will not get a proper fade-out and
// will remain visible but not properly laid out. We remedy this by hiding the
// view immediately.
const ChildLayout* const current_layout =
FindChildViewInLayout(current_layout_, child_view);
if ((!current_layout || !current_layout->visible) &&
child_view->GetVisible()) {
SetViewVisibility(child_view, false);
}
// Indicate that the view should become hidden in the layout without
// immediately changing its visibility. Instead, this triggers an animation
// which results in the view being hidden.
//
// This method is typically only called from View and has a private final
// implementation in LayoutManagerBase so we have to cast to call it.
static_cast<LayoutManager*>(this)->ViewVisibilitySet(
host_view(), child_view, child_view->GetVisible(), false);
}
void AnimatingLayoutManager::FadeIn(View* child_view) {
DCHECK(child_view);
DCHECK(child_view->parent());
DCHECK_EQ(host_view(), child_view->parent());
// If the view in question is already capable of being visible, either:
// 1. the view is already visible so this is a no-op
// 2. the view is not visible because the target layout has chosen to hide it
// In either case, it is generally useful to recalculate the layout just in
// case the caller has made other changes that won't directly cause a layout -
// for example, the user has changed a layout-affecting class property. Worst
// case this ends up being a slightly costly no-op but we don't expect this
// method to be called very often.
if (CanBeVisible(child_view)) {
InvalidateHost(true);
return;
}
// Indicate that the view should become visible in the layout without
// immediately changing its visibility. Instead, this triggers an animation
// which results in the view being shown.
//
// This method is typically only called from View and has a private final
// implementation in LayoutManagerBase so we have to cast to call it.
static_cast<LayoutManager*>(this)->ViewVisibilitySet(
host_view(), child_view, child_view->GetVisible(), true);
}
void AnimatingLayoutManager::AddObserver(Observer* observer) {
if (!observers_.HasObserver(observer)) {
observers_.AddObserver(observer);
}
}
void AnimatingLayoutManager::RemoveObserver(Observer* observer) {
if (observers_.HasObserver(observer)) {
observers_.RemoveObserver(observer);
}
}
bool AnimatingLayoutManager::HasObserver(Observer* observer) const {
return observers_.HasObserver(observer);
}
gfx::Size AnimatingLayoutManager::GetPreferredSize(const View* host) const {
if (!target_layout_manager()) {
return gfx::Size();
}
// If animation is disabled, preferred size does not change with current
// animation state.
if (!gfx::Animation::ShouldRenderRichAnimation()) {
return target_layout_manager()->GetPreferredSize(host);
}
switch (bounds_animation_mode_) {
case BoundsAnimationMode::kUseHostBounds:
return target_layout_manager()->GetPreferredSize(host);
case BoundsAnimationMode::kAnimateMainAxis: {
// Animating only main axis, so cross axis is preferred size.
gfx::Size result = current_layout_.host_size;
SetCrossAxis(
&result, orientation(),
GetCrossAxis(orientation(),
target_layout_manager()->GetPreferredSize(host)));
return result;
}
case BoundsAnimationMode::kAnimateBothAxes:
return current_layout_.host_size;
}
}
gfx::Size AnimatingLayoutManager::GetPreferredSize(
const View* host,
const SizeBounds& available_size) const {
if (!target_layout_manager()) {
return gfx::Size();
}
// If animation is disabled, preferred size does not change with current
// animation state.
if (!gfx::Animation::ShouldRenderRichAnimation()) {
return target_layout_manager()->GetPreferredSize(host, available_size);
}
switch (bounds_animation_mode_) {
case BoundsAnimationMode::kUseHostBounds:
return target_layout_manager()->GetPreferredSize(host, available_size);
case BoundsAnimationMode::kAnimateMainAxis: {
// Animating only main axis, so cross axis is preferred size.
gfx::Size result = current_layout_.host_size;
SetCrossAxis(
&result, orientation(),
GetCrossAxis(orientation(), target_layout_manager()->GetPreferredSize(
host, available_size)));
return result;
}
case BoundsAnimationMode::kAnimateBothAxes:
return current_layout_.host_size;
}
}
gfx::Size AnimatingLayoutManager::GetMinimumSize(const View* host) const {
if (!target_layout_manager()) {
return gfx::Size();
}
// TODO(dfried): consider cases where the minimum size might not be just the
// minimum size of the embedded layout.
gfx::Size minimum_size = target_layout_manager()->GetMinimumSize(host);
switch (bounds_animation_mode_) {
case BoundsAnimationMode::kUseHostBounds:
// No modification required.
break;
case BoundsAnimationMode::kAnimateMainAxis:
SetMainAxis(
&minimum_size, orientation(),
std::min(GetMainAxis(orientation(), minimum_size),
GetMainAxis(orientation(), current_layout_.host_size)));
break;
case BoundsAnimationMode::kAnimateBothAxes:
minimum_size.SetToMin(current_layout_.host_size);
break;
}
return minimum_size;
}
int AnimatingLayoutManager::GetPreferredHeightForWidth(const View* host,
int width) const {
if (!target_layout_manager()) {
return 0;
}
// TODO(dfried): revisit this computation.
if (bounds_animation_mode_ == BoundsAnimationMode::kAnimateBothAxes ||
(bounds_animation_mode_ == BoundsAnimationMode::kAnimateMainAxis &&
orientation() == LayoutOrientation::kVertical)) {
return current_layout_.host_size.height();
}
return target_layout_manager()->GetPreferredHeightForWidth(host, width);
}
std::vector<raw_ptr<View, VectorExperimental>>
AnimatingLayoutManager::GetChildViewsInPaintOrder(const View* host) const {
DCHECK_EQ(host_view(), host);
if (!is_animating()) {
return LayoutManagerBase::GetChildViewsInPaintOrder(host);
}
std::vector<raw_ptr<View, VectorExperimental>> result;
std::set<View*> fading;
// Put all fading views to the front of the list (back of the Z-order).
for (const LayoutFadeInfo& fade_info : fade_infos_) {
result.push_back(fade_info.child_view.get());
fading.insert(fade_info.child_view);
}
// Add the result of the views.
for (View* child : host->children()) {
if (!base::Contains(fading, child)) {
result.push_back(child);
}
}
return result;
}
bool AnimatingLayoutManager::OnViewRemoved(View* host, View* view) {
// Remove any fade infos corresponding to the removed view.
std::erase_if(fade_infos_, [view](const LayoutFadeInfo& fade_info) {
return fade_info.child_view == view;
});
// Also delete any references from other fade infos. This prevents dangling
// partition pointers when the layout is invariably invalidated later.
for (auto& fade_info : fade_infos_) {
if (fade_info.next_view == view) {
fade_info.next_view = nullptr;
}
if (fade_info.prev_view == view) {
fade_info.prev_view = nullptr;
}
}
// Remove any elements in the current layout corresponding to the removed
// view.
std::erase_if(current_layout_.child_layouts,
[view](const ChildLayout& child_layout) {
return child_layout.child_view == view;
});
return LayoutManagerBase::OnViewRemoved(host, view);
}
void AnimatingLayoutManager::PostOrQueueAction(base::OnceClosure action) {
queued_actions_.push_back(std::move(action));
if (!is_animating() && !hold_queued_actions_for_layout_) {
PostQueuedActions();
}
}
FlexRule AnimatingLayoutManager::GetDefaultFlexRule() const {
return base::BindRepeating(&AnimatingLayoutManager::DefaultFlexRuleImpl,
base::Unretained(this));
}
gfx::AnimationContainer*
AnimatingLayoutManager::GetAnimationContainerForTesting() {
DCHECK(animation_delegate_);
animation_delegate_->MakeReadyForAnimation();
DCHECK(animation_delegate_->ready_to_animate());
return animation_delegate_->container();
}
void AnimatingLayoutManager::EnableAnimationForTesting() {
DCHECK(animation_delegate_);
animation_delegate_->MakeReadyForAnimation();
DCHECK(animation_delegate_->ready_to_animate());
}
ProposedLayout AnimatingLayoutManager::CalculateProposedLayout(
const SizeBounds& size_bounds) const {
// This class directly overrides Layout() so GetProposedLayout() and
// CalculateProposedLayout() are not called.
NOTREACHED();
}
void AnimatingLayoutManager::OnInstalled(View* host) {
DCHECK(!animation_delegate_);
animation_delegate_ = std::make_unique<AnimationDelegate>(this);
}
bool AnimatingLayoutManager::OnViewAdded(View* host, View* view) {
// Handle a case where we add a visible view that shouldn't be visible in the
// layout. In this case, there is no animation, no invalidation, and we just
// set the view to not be visible.
if (IsChildIncludedInLayout(view) && cached_layout_size() && !is_animating_) {
const gfx::Size target_size = GetAvailableTargetLayoutSize();
ProposedLayout proposed_layout =
target_layout_manager()->GetProposedLayout(target_size);
if (HaveSameVisibleViews(current_layout_, proposed_layout)) {
SetViewVisibility(view, false);
current_layout_ = target_layout_ = proposed_layout;
return false;
}
}
return RecalculateTarget();
}
void AnimatingLayoutManager::OnLayoutChanged() {
// This replaces the normal behavior of clearing cached layouts.
RecalculateTarget();
}
void AnimatingLayoutManager::LayoutImpl() {
// Changing the size of a view directly will lead to a layout call rather
// than an invalidation. This should reset the layout (but see the note in
// RecalculateTarget() below).
const gfx::Size host_size = host_view()->size();
if (bounds_animation_mode_ == BoundsAnimationMode::kUseHostBounds) {
if (!cached_layout_size()) {
// No previous layout, so snap to the target.
ResetLayoutToTargetSize();
} else if (host_size != *cached_layout_size()) {
// Host size changed, so animate.
RecalculateTarget();
}
} else {
const SizeBounds available_size = GetAvailableHostSize();
if (bounds_animation_mode_ == BoundsAnimationMode::kAnimateMainAxis &&
(!cached_layout_size() ||
GetCrossAxis(orientation(), host_size) !=
GetCrossAxis(orientation(), *cached_layout_size()))) {
// If we're fixed to the cross-axis size of the host and that size
// changes, we need to reset the layout.
last_available_host_size_ = available_size;
ResetLayoutToSize(host_size);
} else {
// Either both axes are animating or only the main axis is animating or
// the cross axis hasn't changed (because otherwise the previous condition
// would have executed instead).
const SizeBound bounds_main = GetMainAxis(orientation(), available_size);
const int host_main = GetMainAxis(orientation(), host_size);
const int current_main =
GetMainAxis(orientation(), current_layout_.host_size);
if ((current_main > host_main) || (current_main > bounds_main)) {
// Reset the layout immediately if the current layout exceeds the host
// size or the available space.
last_available_host_size_ = available_size;
ResetLayoutToSize(host_size);
} else if (available_size != last_available_host_size_) {
// May need to re-trigger animation if our bounds were relaxed; let us
// expand into the new available space.
RecalculateTarget();
}
}
// Verify that the last available size has been updated.
DCHECK_EQ(available_size, last_available_host_size_);
}
ApplyLayout(current_layout_);
// Send animating stopped events on layout so the current layout during the
// event represents the final state instead of an intermediate state.
if (is_animating_ && current_offset_ == 1.0) {
EndAnimation();
}
if (hold_queued_actions_for_layout_ && !is_animating_) {
hold_queued_actions_for_layout_ = false;
PostQueuedActions();
}
}
void AnimatingLayoutManager::EndAnimation() {
// Make sure an opacity animation is in the correct state before clearing
// |fade_infos_|.
for (auto fade_info : fade_infos_) {
if (fade_info.fade_type != LayoutFadeType::kFadingOut &&
fade_info.child_view->layer()) {
fade_info.child_view->layer()->SetOpacity(1);
}
}
fade_infos_.clear();
hold_queued_actions_for_layout_ = true;
if (std::exchange(is_animating_, false)) {
NotifyIsAnimatingChanged();
}
}
void AnimatingLayoutManager::ResetLayoutToTargetSize() {
ResetLayoutToSize(GetAvailableTargetLayoutSize());
}
void AnimatingLayoutManager::ResetLayoutToSize(const gfx::Size& target_size) {
if (animation_delegate_) {
animation_delegate_->Reset();
}
ResolveFades();
target_layout_ = target_layout_manager()->GetProposedLayout(target_size);
current_layout_ = target_layout_;
starting_layout_ = current_layout_;
current_offset_ = 1.0;
set_cached_layout_size(target_size);
EndAnimation();
}
bool AnimatingLayoutManager::RecalculateTarget() {
constexpr double kResetAnimationThreshold = 0.8;
if (!target_layout_manager()) {
return false;
}
if (!cached_layout_size() || !animation_delegate_ ||
!animation_delegate_->ready_to_animate()) {
ResetLayoutToTargetSize();
return true;
}
const gfx::Size target_size = GetAvailableTargetLayoutSize();
set_cached_layout_size(target_size);
// If there has been no appreciable change in layout, there's no reason to
// start or update an animation.
const ProposedLayout proposed_layout =
target_layout_manager()->GetProposedLayout(target_size);
if (target_layout_ == proposed_layout) {
return false;
}
target_layout_ = proposed_layout;
if (current_offset_ > kResetAnimationThreshold) {
starting_layout_ = current_layout_;
starting_offset_ = 0.0;
current_offset_ = 0.0;
animation_delegate_->Animate();
if (!is_animating_) {
is_animating_ = true;
NotifyIsAnimatingChanged();
}
} else if (current_offset_ > starting_offset_) {
// Only update the starting layout if the animation has progressed. This has
// the effect of "batching up" changes that all happen on the same frame,
// keeping the same starting point. (A common example of this is multiple
// child views' visibility changing.)
starting_layout_ = current_layout_;
starting_offset_ = current_offset_;
} else if (starting_layout_ == target_layout_) {
// If we initiated but did not show any frames of an animation, and we are
// redirected to our starting layout then just reset the layout.
ResetLayoutToSize(target_size);
return false;
}
CalculateFadeInfos();
// We've calculated all of the targets and fades. Start the layout process if
// we are animating, but if animations are disabled, snap to the final
// layout.
if (gfx::Animation::ShouldRenderRichAnimation()) {
UpdateCurrentLayout(0.0, 0.0, 1.0);
} else {
ResetLayoutToSize(target_size);
}
return true;
}
void AnimatingLayoutManager::AnimateTo(double value,
double fade_in_opacity,
double fade_out_opacity) {
DCHECK_GE(value, 0.0);
DCHECK_LE(value, 1.0);
DCHECK_GE(value, starting_offset_);
DCHECK_GE(value, current_offset_);
if (current_offset_ == value) {
return;
}
current_offset_ = value;
const double percent =
(current_offset_ - starting_offset_) / (1.0 - starting_offset_);
UpdateCurrentLayout(percent, fade_in_opacity, fade_out_opacity);
InvalidateHost(false);
}
void AnimatingLayoutManager::NotifyIsAnimatingChanged() {
observers_.Notify(&Observer::OnLayoutIsAnimatingChanged, this,
is_animating());
}
void AnimatingLayoutManager::RunQueuedActions() {
run_queued_actions_is_pending_ = false;
std::vector<base::OnceClosure> actions = std::move(queued_actions_to_run_);
for (auto& action : actions) {
std::move(action).Run();
}
}
void AnimatingLayoutManager::PostQueuedActions() {
// Move queued actions over to actions that should run during the next
// PostTask(). This prevents a race between old PostTask() calls and new
// delayed actions. See the header for more detail.
for (auto& action : queued_actions_) {
queued_actions_to_run_.push_back(std::move(action));
}
queued_actions_.clear();
// Early return to prevent multiple RunQueuedAction() tasks.
if (run_queued_actions_is_pending_) {
return;
}
// Post to self (instead of posting the queued actions directly) which lets
// us:
// * Keep "AnimatingLayoutManager::RunQueuedActions" in the stack frame.
// * Tie the task lifetimes to AnimatingLayoutManager.
run_queued_actions_is_pending_ =
base::SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, base::BindOnce(&AnimatingLayoutManager::RunQueuedActions,
weak_ptr_factory_.GetWeakPtr()));
}
void AnimatingLayoutManager::UpdateCurrentLayout(double percent,
double fade_in_opacity,
double fade_out_opacity) {
// This drops out any child view elements that don't exist in the target
// layout. We'll add them back in later.
current_layout_ =
ProposedLayoutBetween(percent, starting_layout_, target_layout_);
for (const LayoutFadeInfo& fade_info : fade_infos_) {
// This shouldn't happen but we should ensure that with a check.
DCHECK(host_view()->GetIndexOf(fade_info.child_view).has_value());
// Views that were previously fading are animated as normal, so nothing to
// do here.
if (fade_info.fade_type == LayoutFadeType::kContinuingFade) {
continue;
}
ChildLayout child_layout;
if (percent == 1.0) {
// At the end of the animation snap to the final state of the child view.
child_layout.child_view = fade_info.child_view;
switch (fade_info.fade_type) {
case LayoutFadeType::kFadingIn:
child_layout.visible = true;
child_layout.bounds =
Denormalize(orientation(), fade_info.reference_bounds);
if (fade_info.child_view->layer()) {
fade_info.child_view->layer()->SetOpacity(1);
}
break;
case LayoutFadeType::kFadingOut:
child_layout.visible = false;
if (child_layout.child_view->layer()) {
child_layout.child_view->layer()->SetOpacity(0);
}
break;
case LayoutFadeType::kContinuingFade:
NOTREACHED();
}
} else if (default_fade_mode_ == FadeInOutMode::kHide) {
child_layout.child_view = fade_info.child_view;
child_layout.visible = false;
} else {
const double scale_percent =
fade_info.fade_type == LayoutFadeType::kFadingIn ? percent
: 1.0 - percent;
double opacity_value = fade_info.fade_type == LayoutFadeType::kFadingIn
? fade_in_opacity
: fade_out_opacity;
switch (default_fade_mode_) {
case FadeInOutMode::kHide:
NOTREACHED();
case FadeInOutMode::kScaleFromMinimum:
child_layout = CalculateScaleFade(fade_info, scale_percent,
/* scale_from_zero */ false);
break;
case FadeInOutMode::kScaleFromZero:
child_layout = CalculateScaleFade(fade_info, scale_percent,
/* scale_from_zero */ true);
break;
case FadeInOutMode::kSlideFromLeadingEdge:
child_layout = CalculateSlideFade(fade_info, scale_percent,
/* slide_from_leading */ true);
break;
case FadeInOutMode::kSlideFromTrailingEdge:
child_layout = CalculateSlideFade(fade_info, scale_percent,
/* slide_from_leading */ false);
break;
case FadeInOutMode::kFadeAndSlideFromTrailingEdge:
child_layout = CalculateFadeAndSlideFade(fade_info, scale_percent,
opacity_value, false);
break;
}
}
ChildLayout* const to_overwrite =
FindChildViewInLayout(¤t_layout_, fade_info.child_view);
if (to_overwrite) {
*to_overwrite = child_layout;
} else {
current_layout_.child_layouts.push_back(child_layout);
}
}
}
void AnimatingLayoutManager::CalculateFadeInfos() {
// Save any views that were previously fading so we don't try to key off of
// them when calculating leading/trailing edge.
std::set<const View*> previously_fading;
for (const auto& fade_info : fade_infos_) {
previously_fading.insert(fade_info.child_view);
}
fade_infos_.clear();
struct ChildInfo {
std::optional<size_t> start;
NormalizedRect start_bounds;
bool start_visible = false;
std::optional<size_t> target;
NormalizedRect target_bounds;
bool target_visible = false;
};
std::map<View*, ChildInfo> child_to_info;
std::map<int, View*> start_leading_edges;
std::map<int, View*> target_leading_edges;
// Collect some bookkeping info to prevent linear searches later.
for (View* child : host_view()->children()) {
if (IsChildIncludedInLayout(child, /* include hidden */ true)) {
child_to_info.emplace(child, ChildInfo());
}
}
for (size_t i = 0; i < starting_layout_.child_layouts.size(); ++i) {
const auto& child_layout = starting_layout_.child_layouts[i];
auto it = child_to_info.find(child_layout.child_view);
if (it != child_to_info.end()) {
it->second.start = i;
it->second.start_bounds = Normalize(orientation(), child_layout.bounds);
it->second.start_visible = child_layout.visible;
}
}
for (size_t i = 0; i < target_layout_.child_layouts.size(); ++i) {
const auto& child_layout = target_layout_.child_layouts[i];
auto it = child_to_info.find(child_layout.child_view);
if (it != child_to_info.end()) {
it->second.target = i;
it->second.target_bounds = Normalize(orientation(), child_layout.bounds);
it->second.target_visible = child_layout.visible;
}
}
for (View* child : host_view()->children()) {
const auto& index = child_to_info[child];
if (index.start_visible && index.target_visible &&
!base::Contains(previously_fading, child)) {
start_leading_edges.emplace(index.start_bounds.origin_main(), child);
target_leading_edges.emplace(index.target_bounds.origin_main(), child);
}
}
// Build the LayoutFadeInfo data.
const NormalizedSize start_host_size =
Normalize(orientation(), starting_layout_.host_size);
const NormalizedSize target_host_size =
Normalize(orientation(), target_layout_.host_size);
for (View* child : host_view()->children()) {
const auto& current = child_to_info[child];
if (current.start_visible && !current.target_visible) {
LayoutFadeInfo fade_info;
fade_info.fade_type = LayoutFadeType::kFadingOut;
fade_info.child_view = child;
fade_info.reference_bounds = current.start_bounds;
auto next =
start_leading_edges.upper_bound(current.start_bounds.origin_main());
if (next == start_leading_edges.end()) {
fade_info.next_view = nullptr;
fade_info.offsets.set_trailing(start_host_size.main() -
current.start_bounds.max_main());
} else {
fade_info.next_view = next->second;
fade_info.offsets.set_trailing(next->first -
current.start_bounds.max_main());
}
if (next == start_leading_edges.begin()) {
fade_info.prev_view = nullptr;
fade_info.offsets.set_leading(current.start_bounds.origin_main());
} else {
auto prev = next;
--prev;
const auto& prev_info = child_to_info[prev->second];
fade_info.prev_view = prev->second;
fade_info.offsets.set_leading(current.start_bounds.origin_main() -
prev_info.start_bounds.max_main());
}
fade_infos_.push_back(fade_info);
} else if (!current.start_visible && current.target_visible) {
LayoutFadeInfo fade_info;
fade_info.fade_type = LayoutFadeType::kFadingIn;
fade_info.child_view = child;
fade_info.reference_bounds = current.target_bounds;
auto next =
target_leading_edges.upper_bound(current.target_bounds.origin_main());
if (next == target_leading_edges.end()) {
fade_info.next_view = nullptr;
fade_info.offsets.set_trailing(target_host_size.main() -
current.target_bounds.max_main());
} else {
fade_info.next_view = next->second;
fade_info.offsets.set_trailing(next->first -
current.target_bounds.max_main());
}
if (next == target_leading_edges.begin()) {
fade_info.prev_view = nullptr;
fade_info.offsets.set_leading(current.target_bounds.origin_main());
} else {
auto prev = next;
--prev;
const auto& prev_info = child_to_info[prev->second];
fade_info.prev_view = prev->second;
fade_info.offsets.set_leading(current.target_bounds.origin_main() -
prev_info.target_bounds.max_main());
}
fade_infos_.push_back(fade_info);
} else if (base::Contains(previously_fading, child)) {
// Capture the fact that this view was fading as part of an animation that
// was interrupted. (It is therefore technically still fading.) This
// status goes away when the animation ends.
LayoutFadeInfo fade_info;
fade_info.fade_type = LayoutFadeType::kContinuingFade;
fade_info.child_view = child;
// No reference bounds or offsets since we'll use the normal animation
// pathway for this view.
fade_infos_.push_back(fade_info);
}
}
}
void AnimatingLayoutManager::ResolveFades() {
// Views that need faded out are views which were were fading out previously
// because they were set to not be visible, either by calling SetVisible() or
// FadeOut(). Those views will not be included in the new layout but may not
// have been allowed to become invisible yet because of the fade-out
// animation. Even in the case of FadeInOutMode::kHide, if no frames of the
// animation have run, the relevant view may still be visible.
for (const LayoutFadeInfo& fade_info : fade_infos_) {
View* const child = fade_info.child_view;
if (fade_info.fade_type == LayoutFadeType::kFadingOut &&
host_view()->GetIndexOf(child).has_value() &&
!child->GetProperty(kViewIgnoredByLayoutKey) &&
!IsChildIncludedInLayout(child)) {
SetViewVisibility(child, false);
}
if (default_fade_mode_ == FadeInOutMode::kFadeAndSlideFromTrailingEdge &&
fade_info.fade_type == LayoutFadeType::kFadingIn &&
host_view()->GetIndexOf(child).has_value() && child->layer()) {
child->layer()->SetOpacity(1);
}
}
}
ChildLayout AnimatingLayoutManager::CalculateScaleFade(
const LayoutFadeInfo& fade_info,
double scale_percent,
bool scale_from_zero) const {
ChildLayout child_layout;
int leading_reference_point = 0;
if (fade_info.prev_view) {
// Since prev/next view is always a view in the start and target layouts, it
// should also be in the current layout. Therefore this should never return
// null.
const ChildLayout* const prev_layout =
FindChildViewInLayout(current_layout_, fade_info.prev_view);
leading_reference_point =
Normalize(orientation(), prev_layout->bounds).max_main();
}
leading_reference_point += fade_info.offsets.leading();
int trailing_reference_point;
if (fade_info.next_view) {
// Since prev/next view is always a view in the start and target layouts, it
// should also be in the current layout. Therefore this should never return
// null.
const ChildLayout* const next_layout =
FindChildViewInLayout(current_layout_, fade_info.next_view);
trailing_reference_point =
Normalize(orientation(), next_layout->bounds).origin_main();
} else {
trailing_reference_point =
Normalize(orientation(), current_layout_.host_size).main();
}
trailing_reference_point -= fade_info.offsets.trailing();
const int new_size = std::min(
base::ClampRound(scale_percent * fade_info.reference_bounds.size_main()),
trailing_reference_point - leading_reference_point);
child_layout.child_view = fade_info.child_view;
if (new_size > 0 &&
(scale_from_zero ||
new_size >=
Normalize(orientation(), fade_info.child_view->GetMinimumSize())
.main())) {
child_layout.visible = true;
NormalizedRect new_bounds = fade_info.reference_bounds;
switch (fade_info.fade_type) {
case LayoutFadeType::kFadingIn:
new_bounds.set_origin_main(leading_reference_point);
break;
case LayoutFadeType::kFadingOut:
new_bounds.set_origin_main(trailing_reference_point - new_size);
break;
case LayoutFadeType::kContinuingFade:
NOTREACHED();
}
new_bounds.set_size_main(new_size);
child_layout.bounds = Denormalize(orientation(), new_bounds);
}
return child_layout;
}
ChildLayout AnimatingLayoutManager::CalculateSlideFade(
const LayoutFadeInfo& fade_info,
double scale_percent,
bool slide_from_leading) const {
// Fall back to kScaleFromMinimum if there is no edge to slide out from.
if (!fade_info.prev_view && !fade_info.next_view) {
return CalculateScaleFade(fade_info, scale_percent, false);
}
// Slide from the other direction if against the edge of the host view.
if (slide_from_leading && !fade_info.prev_view) {
slide_from_leading = false;
} else if (!slide_from_leading && !fade_info.next_view) {
slide_from_leading = true;
}
NormalizedRect new_bounds = fade_info.reference_bounds;
// Determine which layout the sliding view will be completely faded in.
const ProposedLayout* fully_faded_layout;
switch (fade_info.fade_type) {
case LayoutFadeType::kFadingIn:
fully_faded_layout = &starting_layout_;
break;
case LayoutFadeType::kFadingOut:
fully_faded_layout = &target_layout_;
break;
case LayoutFadeType::kContinuingFade:
NOTREACHED();
}
if (slide_from_leading) {
// Get the layout info for the leading child.
const ChildLayout* const leading_child =
FindChildViewInLayout(*fully_faded_layout, fade_info.prev_view);
// This is the right side of the leading control that will eclipse the
// sliding view at the start/end of the animation.
const int initial_trailing =
Normalize(orientation(), leading_child->bounds).max_main();
// Interpolate between initial and final trailing edge.
const int new_trailing = gfx::Tween::IntValueBetween(
scale_percent, initial_trailing, new_bounds.max_main());
// Adjust the bounding rectangle of the view.
new_bounds.Offset(new_trailing - new_bounds.max_main(), 0);
} else {
// Get the layout info for the trailing child.
const ChildLayout* const trailing_child =
FindChildViewInLayout(*fully_faded_layout, fade_info.next_view);
// This is the left side of the trailing control that will eclipse the
// sliding view at the start/end of the animation.
const int initial_leading =
Normalize(orientation(), trailing_child->bounds).origin_main();
// Interpolate between initial and final leading edge.
const int new_leading = gfx::Tween::IntValueBetween(
scale_percent, initial_leading, new_bounds.origin_main());
// Adjust the bounding rectangle of the view.
new_bounds.Offset(new_leading - new_bounds.origin_main(), 0);
}
// Actual bounds are a linear interpolation between starting and reference
// bounds.
ChildLayout child_layout;
child_layout.child_view = fade_info.child_view;
child_layout.visible = true;
child_layout.bounds = Denormalize(orientation(), new_bounds);
return child_layout;
}
ChildLayout AnimatingLayoutManager::CalculateFadeAndSlideFade(
const LayoutFadeInfo& fade_info,
double scale_percent,
double opacity_value,
bool slide_from_leading) const {
// If not painting to a layer we cannot perform an opacity animation on the
// view, fall back to just doing a slide animation.
if (!fade_info.child_view->layer()) {
return CalculateSlideFade(fade_info, scale_percent, slide_from_leading);
}
NormalizedRect new_bounds = fade_info.reference_bounds;
// Determine which layout the sliding view will be completely faded in.
const ProposedLayout* fully_faded_layout;
switch (fade_info.fade_type) {
case LayoutFadeType::kFadingIn:
fully_faded_layout = &starting_layout_;
break;
case LayoutFadeType::kFadingOut:
fully_faded_layout = &target_layout_;
break;
case LayoutFadeType::kContinuingFade:
NOTREACHED();
}
if (!slide_from_leading) {
// Find the leading edge of the next child, if there is no next child we use
// the edge of the host view.
const ChildLayout* const trailing_child =
FindChildViewInLayout(*fully_faded_layout, fade_info.next_view);
const int host_trailing =
Normalize(orientation(), fully_faded_layout->host_size).main();
int leading_bound =
!trailing_child
? host_trailing
: Normalize(orientation(), trailing_child->bounds).origin_main();
// Interpolate between initial and final leading edge.
const int new_leading = gfx::Tween::IntValueBetween(
scale_percent, leading_bound, new_bounds.origin_main());
new_bounds.Offset(new_leading - new_bounds.origin_main(), 0);
}
ChildLayout child_layout;
child_layout.child_view = fade_info.child_view;
child_layout.visible = true;
child_layout.bounds = Denormalize(orientation(), new_bounds);
fade_info.child_view->layer()->SetOpacity(opacity_value);
return child_layout;
}
// Returns the space in which to calculate the target layout.
gfx::Size AnimatingLayoutManager::GetAvailableTargetLayoutSize() {
if (bounds_animation_mode_ == BoundsAnimationMode::kUseHostBounds) {
return host_view()->size();
}
const SizeBounds bounds = GetAvailableHostSize();
last_available_host_size_ = bounds;
const gfx::Size preferred_size =
target_layout_manager()->GetPreferredSize(host_view());
int width;
if (orientation() == LayoutOrientation::kVertical &&
bounds_animation_mode_ == BoundsAnimationMode::kAnimateMainAxis) {
width = host_view()->width();
} else {
width = bounds.width().min_of(preferred_size.width());
}
int height;
if (orientation() == LayoutOrientation::kHorizontal &&
bounds_animation_mode_ == BoundsAnimationMode::kAnimateMainAxis) {
height = host_view()->height();
} else {
height = width < preferred_size.width()
? target_layout_manager()->GetPreferredHeightForWidth(
host_view(), width)
: preferred_size.height();
height = bounds.height().min_of(height);
}
return gfx::Size(width, height);
}
// static
gfx::Size AnimatingLayoutManager::DefaultFlexRuleImpl(
const AnimatingLayoutManager* animating_layout,
const View* view,
const SizeBounds& size_bounds) {
DCHECK_EQ(view->GetLayoutManager(), animating_layout);
// This is the current preferred size, which takes animation into account.
const gfx::Size preferred_size = animating_layout->GetPreferredSize(view);
// Does the preferred size fit in the bounds? If so, return the preferred
// size. Note that the *target* size might not fit in the bounds, but we'll
// recalculate that the next time we lay out.
//
// The one exception is if the current preferred size is empty. If that's the
// case, then this check becomes trivial and the layout can get stuck at zero
// size (which is bad). See crbug.com/1506607 for an example of an empty
// layout causing issues.
if (!preferred_size.IsEmpty() &&
CanFitInBounds(preferred_size, size_bounds)) {
return preferred_size;
}
// Special case - if we're being asked for a zero-size layout we'll return the
// minimum size of the layout. This is because we're being probed for how
// small we can get, not being asked for an actual size.
if (GetMainAxis(animating_layout->orientation(), size_bounds) <= 0) {
return animating_layout->GetMinimumSize(view);
}
// We know our current size does not fit into the bounds being given to us.
// This is going to force a snap to a new size, which will be the ideal size
// of the target layout in the provided space.
const LayoutManagerBase* const target_layout =
animating_layout->target_layout_manager();
// Easiest case is that the target layout's preferred size *does* fit, in
// which case we can use that.
const gfx::Size target_preferred = target_layout->GetPreferredSize(view);
if (CanFitInBounds(target_preferred, size_bounds)) {
return target_preferred;
}
// We know that at least one of the width and height are constrained, so we
// need to ask the target layout how large it wants to be in the space
// provided.
gfx::Size size;
if (size_bounds.width().is_bounded() && size_bounds.height().is_bounded()) {
// Both width and height are specified. Constraining the width may change
// the desired height, so we can't just blindly return the minimum in both
// dimensions. Instead, query the target layout in the constrained space
// and return its size.
size = gfx::Size(size_bounds.width().value(), size_bounds.height().value());
} else if (size_bounds.width().is_bounded()) {
// The width is specified and too small. Use the height-for-width
// calculation.
// TODO(dfried): This should be rare, but it is also inefficient. See if we
// can't add an alternative to GetPreferredHeightForWidth() that actually
// calculates the layout in this space so we don't have to do it twice.
const int width = size_bounds.width().value();
size = gfx::Size(width,
target_layout->GetPreferredHeightForWidth(view, width));
} else {
DCHECK(size_bounds.height().is_bounded());
// The height is specified and too small. Fortunately the height of a
// layout can't (shouldn't?) affect its width.
size = gfx::Size(target_preferred.width(), size_bounds.height().value());
}
return target_layout->GetProposedLayout(size).host_size;
}
} // namespace views
|