File: flex_layout.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (1215 lines) | stat: -rw-r--r-- 46,995 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ui/views/layout/flex_layout.h"

#include <algorithm>
#include <functional>
#include <numeric>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

#include "base/check_op.h"
#include "base/containers/contains.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
#include "ui/base/class_property.h"
#include "ui/events/event_target.h"
#include "ui/events/event_target_iterator.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/views/controls/tabbed_pane/tabbed_pane.h"
#include "ui/views/layout/flex_layout_types.h"
#include "ui/views/layout/normalized_geometry.h"
#include "ui/views/layout/proposed_layout.h"
#include "ui/views/view.h"
#include "ui/views/view_class_properties.h"

// Module-private declarations -------------------------------------------------

namespace views {

namespace {

// Layout information for a specific child view in a proposed layout.
struct FlexChildData {
  explicit FlexChildData(const FlexSpecification& flex) : flex(flex) {}

  // Copying this struct would be expensive and they only ever live in a vector
  // in Layout (see below) so we'll only allow move semantics.
  FlexChildData(const FlexChildData&) = delete;
  FlexChildData& operator=(const FlexChildData&) = delete;

  FlexChildData(FlexChildData&& other) = default;

  std::string ToString() const {
    std::ostringstream oss;
    oss << "{ preferred " << preferred_size.ToString() << " current "
        << current_size.ToString() << " min " << minimum_size.ToString()
        << " base " << flex_base_content_size.ToString() << " max "
        << maximum_size.ToString() << " margins " << margins.ToString()
        << (using_default_margins ? " (using default)" : "") << " padding "
        << internal_padding.ToString() << " bounds " << actual_bounds.ToString()
        << " }";
    return oss.str();
  }

  NormalizedSize preferred_size;
  NormalizedSize current_size;
  NormalizedSize pending_size;
  NormalizedSize minimum_size;
  NormalizedSize maximum_size;
  NormalizedSize flex_base_content_size;
  NormalizedInsets margins;
  bool using_default_margins = true;
  NormalizedInsets internal_padding;
  NormalizedRect actual_bounds;
  FlexSpecification flex;
};

template <typename T>
T GetViewProperty(const View* view,
                  const ui::PropertyHandler& defaults,
                  const ui::ClassProperty<T*>* property,
                  bool* is_default = nullptr) {
  T* found_value = view->GetProperty(property);
  if (found_value) {
    if (is_default) {
      *is_default = false;
    }
    return *found_value;
  }
  if (is_default) {
    *is_default = true;
  }
  found_value = defaults.GetProperty(property);
  if (found_value) {
    return *found_value;
  }
  return T();
}

template <typename T>
T MaybeReverse(const T& list, FlexAllocationOrder order) {
  return order == FlexAllocationOrder::kReverse ? T(list.rbegin(), list.rend())
                                                : list;
}

}  // anonymous namespace

// Private implementation ------------------------------------------------------

// These definitions are required due to the C++ spec.
constexpr LayoutAlignment FlexLayout::kDefaultMainAxisAlignment;
constexpr LayoutAlignment FlexLayout::kDefaultCrossAxisAlignment;

// Calculates and maintains 1D spacing between a sequence of child views.
class FlexLayout::ChildViewSpacing {
 public:
  // Given the indices of two child views, returns the amount of space that
  // should be placed between them if they were adjacent. If the first index is
  // absent, uses the left edge of the parent container. If the second index is
  // absent, uses the right edge of the parent container.
  using GetViewSpacingCallback =
      base::RepeatingCallback<int(std::optional<size_t>,
                                  std::optional<size_t>)>;

  explicit ChildViewSpacing(GetViewSpacingCallback get_view_spacing);
  ChildViewSpacing(const ChildViewSpacing& other) = default;
  ChildViewSpacing& operator=(const ChildViewSpacing& other) = default;

  bool HasViewIndex(size_t view_index) const;
  int GetLeadingInset() const;
  int GetTrailingInset() const;
  int GetLeadingSpace(size_t view_index) const;
  int GetTotalSpace() const;

  // Returns the maximum size for the child at |view_index|, given its
  // |current_size| and the amount of |available_space| for flex allocation.
  SizeBound GetMaxSize(size_t view_index,
                       int current_size,
                       const SizeBound& available_space) const;

  // Returns the change in total allocated size if the child at |view_index| is
  // resized from |current_size| to |new_size|.
  int GetTotalSizeChangeForNewSize(size_t view_index,
                                   int current_size,
                                   int new_size) const;

  // Add the view at the specified index.
  //
  // If |new_leading| or |new_trailing| is specified, it will be set to the new
  // leading/trailing space for the view at the index that was added.
  void AddViewIndex(size_t view_index,
                    int* new_leading = nullptr,
                    int* new_trailing = nullptr);

 private:
  std::optional<size_t> GetPreviousViewIndex(size_t view_index) const;
  std::optional<size_t> GetNextViewIndex(size_t view_index) const;

  // Returns the change in space required if the specified view index were
  // added. The view must not already be present.
  int GetAddDelta(size_t view_index) const;

  GetViewSpacingCallback get_view_spacing_;
  // Maps from view index to the leading spacing for that index.
  std::map<size_t, int> leading_spacings_;
  // The trailing space (space preceding the trailing margin).
  int trailing_space_;
};

FlexLayout::ChildViewSpacing::ChildViewSpacing(
    GetViewSpacingCallback get_view_spacing)
    : get_view_spacing_(std::move(get_view_spacing)),
      trailing_space_(get_view_spacing_.Run(std::nullopt, std::nullopt)) {}

bool FlexLayout::ChildViewSpacing::HasViewIndex(size_t view_index) const {
  return leading_spacings_.find(view_index) != leading_spacings_.end();
}

int FlexLayout::ChildViewSpacing::GetLeadingInset() const {
  if (leading_spacings_.empty()) {
    return 0;
  }
  return leading_spacings_.begin()->second;
}

int FlexLayout::ChildViewSpacing::GetTrailingInset() const {
  return trailing_space_;
}

int FlexLayout::ChildViewSpacing::GetLeadingSpace(size_t view_index) const {
  auto it = leading_spacings_.find(view_index);
  CHECK(it != leading_spacings_.end());
  return it->second;
}

int FlexLayout::ChildViewSpacing::GetTotalSpace() const {
  return std::accumulate(
      leading_spacings_.cbegin(), leading_spacings_.cend(), trailing_space_,
      [](int total, const auto& value) { return total + value.second; });
}

SizeBound FlexLayout::ChildViewSpacing::GetMaxSize(
    size_t view_index,
    int current_size,
    const SizeBound& available_space) const {
  DCHECK_GE(available_space, 0);

  if (HasViewIndex(view_index)) {
    return current_size + available_space;
  }

  DCHECK_EQ(0, current_size);
  // Making the child visible may result in the addition of margin space, which
  // counts against the child view's flex space allocation.
  //
  // Note: In cases where the layout's internal margins and/or the child views'
  // margins are wildly different sizes, subtracting the full delta out of the
  // available space can cause the first view to be smaller than we would expect
  // (see TODOs in unit tests for examples). We should look into ways to make
  // this "feel" better (but in the meantime, specify reasonable margins).
  return std::max<SizeBound>(available_space - GetAddDelta(view_index), 0);
}

int FlexLayout::ChildViewSpacing::GetTotalSizeChangeForNewSize(
    size_t view_index,
    int current_size,
    int new_size) const {
  return HasViewIndex(view_index) ? new_size - current_size
                                  : new_size + GetAddDelta(view_index);
}

void FlexLayout::ChildViewSpacing::AddViewIndex(size_t view_index,
                                                int* new_leading,
                                                int* new_trailing) {
  DCHECK(!HasViewIndex(view_index));
  std::optional<size_t> prev = GetPreviousViewIndex(view_index);
  std::optional<size_t> next = GetNextViewIndex(view_index);

  const int leading_space = get_view_spacing_.Run(prev, view_index);
  const int trailing_space = get_view_spacing_.Run(view_index, next);
  leading_spacings_[view_index] = leading_space;
  if (next) {
    leading_spacings_[*next] = trailing_space;
  } else {
    trailing_space_ = trailing_space;
  }

  if (new_leading) {
    *new_leading = leading_space;
  }
  if (new_trailing) {
    *new_trailing = trailing_space;
  }
}

std::optional<size_t> FlexLayout::ChildViewSpacing::GetPreviousViewIndex(
    size_t view_index) const {
  const auto it = leading_spacings_.lower_bound(view_index);
  if (it == leading_spacings_.begin()) {
    return std::nullopt;
  }
  return std::prev(it)->first;
}

std::optional<size_t> FlexLayout::ChildViewSpacing::GetNextViewIndex(
    size_t view_index) const {
  const auto it = leading_spacings_.upper_bound(view_index);
  if (it == leading_spacings_.end()) {
    return std::nullopt;
  }
  return it->first;
}

int FlexLayout::ChildViewSpacing::GetAddDelta(size_t view_index) const {
  DCHECK(!HasViewIndex(view_index));
  std::optional<size_t> prev = GetPreviousViewIndex(view_index);
  std::optional<size_t> next = GetNextViewIndex(view_index);
  const int old_spacing = next ? GetLeadingSpace(*next) : GetTrailingInset();
  const int new_spacing = get_view_spacing_.Run(prev, view_index) +
                          get_view_spacing_.Run(view_index, next);
  return new_spacing - old_spacing;
}

// Represents a specific stored layout given a set of size bounds.
struct FlexLayout::FlexLayoutData {
  FlexLayoutData() = default;

  FlexLayoutData(const FlexLayoutData&) = delete;
  FlexLayoutData& operator=(const FlexLayoutData&) = delete;

  ~FlexLayoutData() = default;

  size_t num_children() const { return child_data.size(); }

  std::string ToString() const {
    std::ostringstream oss;
    oss << "{ " << total_size.ToString() << "\n" << layout.ToString() << " {\n";
    bool first = true;
    for (const FlexChildData& flex_child : child_data) {
      if (first) {
        first = false;
      } else {
        oss << ",\n";
      }
      oss << flex_child.ToString();
    }
    oss << "}\nmargin " << interior_margin.ToString() << " insets "
        << host_insets.ToString() << "\n}";
    return oss.str();
  }

  void SetCurrentSize(size_t view_index, NormalizedSize size) {
    child_data[view_index].current_size = size;
    layout.child_layouts[view_index].visible = size.main() > 0;
  }

  ProposedLayout layout;

  // Holds additional information about the child views of this layout.
  std::vector<FlexChildData> child_data;

  // The total size of the layout (minus parent insets).
  NormalizedSize total_size;
  NormalizedInsets interior_margin;
  NormalizedInsets host_insets;
};

FlexLayout::PropertyHandler::PropertyHandler(FlexLayout* layout)
    : layout_(layout) {}

void FlexLayout::PropertyHandler::AfterPropertyChange(const void* key,
                                                      int64_t old_value) {
  layout_->InvalidateHost(true);
}

// FlexLayout
// -------------------------------------------------------------------

FlexLayout::FlexLayout() {
  // Ensure this property is always set and is never null.
  SetDefault(kCrossAxisAlignmentKey, kDefaultCrossAxisAlignment);
}

FlexLayout::~FlexLayout() = default;

FlexLayout& FlexLayout::SetOrientation(LayoutOrientation orientation) {
  if (orientation != orientation_) {
    orientation_ = orientation;
    InvalidateHost(true);
  }
  return *this;
}

FlexLayout& FlexLayout::SetIncludeHostInsetsInLayout(
    bool include_host_insets_in_layout) {
  if (include_host_insets_in_layout != include_host_insets_in_layout_) {
    include_host_insets_in_layout_ = include_host_insets_in_layout;
    InvalidateHost(true);
  }
  return *this;
}

FlexLayout& FlexLayout::SetCollapseMargins(bool collapse_margins) {
  if (collapse_margins != collapse_margins_) {
    collapse_margins_ = collapse_margins;
    InvalidateHost(true);
  }
  return *this;
}

FlexLayout& FlexLayout::SetMainAxisAlignment(
    LayoutAlignment main_axis_alignment) {
  DCHECK_NE(main_axis_alignment, LayoutAlignment::kStretch)
      << "Main axis stretch/justify is not yet supported.";
  if (main_axis_alignment_ != main_axis_alignment) {
    main_axis_alignment_ = main_axis_alignment;
    InvalidateHost(true);
  }
  return *this;
}

FlexLayout& FlexLayout::SetCrossAxisAlignment(
    LayoutAlignment cross_axis_alignment) {
  return SetDefault(kCrossAxisAlignmentKey, cross_axis_alignment);
}

FlexLayout& FlexLayout::SetInteriorMargin(const gfx::Insets& interior_margin) {
  if (interior_margin_ != interior_margin) {
    interior_margin_ = interior_margin;
    InvalidateHost(true);
  }
  return *this;
}

FlexLayout& FlexLayout::SetIgnoreDefaultMainAxisMargins(
    bool ignore_default_main_axis_margins) {
  if (ignore_default_main_axis_margins_ != ignore_default_main_axis_margins) {
    ignore_default_main_axis_margins_ = ignore_default_main_axis_margins;
    InvalidateHost(true);
  }
  return *this;
}

FlexLayout& FlexLayout::SetMinimumCrossAxisSize(int size) {
  if (minimum_cross_axis_size_ != size) {
    minimum_cross_axis_size_ = size;
    InvalidateHost(true);
  }
  return *this;
}

FlexLayout& FlexLayout::SetFlexAllocationOrder(
    FlexAllocationOrder flex_allocation_order) {
  if (flex_allocation_order_ != flex_allocation_order) {
    flex_allocation_order_ = flex_allocation_order;
    InvalidateHost(true);
  }
  return *this;
}

FlexRule FlexLayout::GetDefaultFlexRule() const {
  return base::BindRepeating(&FlexLayout::DefaultFlexRuleImpl,
                             base::Unretained(this));
}

ProposedLayout FlexLayout::CalculateProposedLayout(
    const SizeBounds& size_bounds) const {
  FlexLayoutData data;

  if (include_host_insets_in_layout()) {
    // Combining the interior margin and host insets means we only have to set
    // the margin value; we'll leave the insets at zero.
    data.interior_margin =
        Normalize(orientation(), interior_margin() + host_view()->GetInsets());
  } else {
    data.host_insets = Normalize(orientation(), host_view()->GetInsets());
    data.interior_margin = Normalize(orientation(), interior_margin());
  }
  NormalizedSizeBounds bounds = Normalize(orientation(), size_bounds);
  bounds.Inset(data.host_insets);
  bounds.set_cross(
      std::max<SizeBound>(bounds.cross(), minimum_cross_axis_size()));

  // The main idea of the new algorithm comes from css flexbox:
  // https://www.w3.org/TR/css-flexbox-1/#box-manip Based on the css flexbox
  // algorithm, combined with the old algorithm. Redesigned new algorithm.
  //
  // But there are some differences:
  // 1. In css flex box, there is no situation where elements suddenly become
  //    invisible during layout. But in views it will.
  // 2. CSS flex box does not have multiple layout orders. So we need to make
  //    special adjustments here
  //
  // Other more specific details will be explained in subsequent gazes.

  // Populate the child layout data vectors and the order-to-index map.
  FlexOrderToViewIndexMap order_to_view_index;
  InitializeChildData(bounds, data, order_to_view_index);

  // Do the initial layout update, calculating spacing between children.
  ChildViewSpacing child_spacing(
      base::BindRepeating(&FlexLayout::CalculateChildSpacing,
                          base::Unretained(this), std::cref(data)));
  UpdateLayoutFromChildren(bounds, data, child_spacing);

  // We now have a layout with all views at the absolute minimum size and with
  // those able to drop out dropped out. Now apply flex rules.
  //
  // This is done in two primary phases:
  // 1. If there is insufficient space to provide each view with its preferred
  //    size, the deficit will be spread across the views that can flex, with
  //    any views that bottom out getting their minimum and dropping out of the
  //    calculation.
  // 2. If there is excess space after the first phase, it is spread across all
  //    of the remaining flex views that haven't dropped out.
  //
  // The result of this calculation is extremely *correct* but it is possible
  // there are some pathological cases where the cost of one of the steps is
  // quadratic in the number of views. Again, this is unlikely and numbers of
  // child views tend to be small enough that it won't matter.

  CalculateNonFlexAvailableSpace(
      std::max<SizeBound>(0, bounds.main() - data.total_size.main()),
      order_to_view_index, child_spacing, data);

  // If there are multiple orders. We need to first limit the maximum size to
  // the preferred size. To ensure that subsequent views have a chance to reach
  // the preferred size
  if (order_to_view_index.size() > 1) {
    std::vector<NormalizedSize> backup_size(data.num_children());
    for (size_t i = 0; i < data.num_children(); ++i) {
      FlexChildData& flex_child = data.child_data[i];
      backup_size[i] = flex_child.maximum_size;
      flex_child.maximum_size = flex_child.preferred_size;
    }
    AllocateFlexItem(bounds, order_to_view_index, data, child_spacing, true);
    for (size_t i = 0; i < data.num_children(); ++i) {
      FlexChildData& flex_child = data.child_data[i];
      flex_child.maximum_size = backup_size[i];
    }
  }
  AllocateFlexItem(bounds, order_to_view_index, data, child_spacing, true);

  // This is a different place too. Because css flexbox does not have dimensions
  // that can be changed freely: Custom flex rules.
  //
  // So we may have unallocated space.
  AllocateRemainingSpaceIfNeeded(bounds, order_to_view_index, data,
                                 child_spacing);

  // Calculate the size of the host view.
  NormalizedSize host_size = data.total_size;
  host_size.Enlarge(data.host_insets.main_size(),
                    data.host_insets.cross_size());
  data.layout.host_size = Denormalize(orientation(), host_size);

  // Size and position the children in screen space.
  CalculateChildBounds(size_bounds, data);

  return data.layout;
}

NormalizedSize FlexLayout::GetPreferredSizeForRule(
    const FlexRule& rule,
    const View* child,
    const SizeBound& available_cross) const {
  const NormalizedSize default_size =
      Normalize(orientation(), rule.Run(child, SizeBounds()));
  if (!available_cross.is_bounded()) {
    return default_size;
  }

  // Do the height-for-width calculation.
  const NormalizedSize stretch_size = Normalize(
      orientation(),
      rule.Run(child,
               Denormalize(orientation(), NormalizedSizeBounds(
                                              SizeBound(), available_cross))));

  NormalizedSize size = default_size;

  // For vertical layouts, allow changing the cross-axis to cause the main axis
  // to grow - or in the case of "stretch" alignment where we can potentially
  // force the cross-axis to be larger than the preferred size, allow the main
  // axis to shrink. This best handles labels and other text controls in
  // vertical layouts. (We don't do this in horizontal layouts for aesthetic
  // reasons.)
  if (orientation() == LayoutOrientation::kVertical) {
    const LayoutAlignment cross_align =
        GetViewProperty(child, layout_defaults_, kCrossAxisAlignmentKey);
    if (cross_align == LayoutAlignment::kStretch) {
      return stretch_size;
    }
    size.set_main(std::max(size.main(), stretch_size.main()));
  }

  // Always allow the cross axis to adjust to the available space if it's less
  // than the preferred size in order to prevent unnecessary overhang.
  size.set_cross(std::min(size.cross(), stretch_size.cross()));
  return size;
}

NormalizedSize FlexLayout::GetCurrentSizeForRule(
    const FlexRule& rule,
    const View* child,
    const NormalizedSizeBounds& available) const {
  return Normalize(orientation(),
                   rule.Run(child, Denormalize(orientation(), available)));
}

void FlexLayout::InitializeChildData(
    const NormalizedSizeBounds& bounds,
    FlexLayoutData& data,
    FlexOrderToViewIndexMap& flex_order_to_index) const {
  // Step through the children, creating placeholder layout view elements
  // and setting up initial minimal visibility.
  const bool main_axis_bounded = bounds.main().is_bounded();
  for (View* child : host_view()->children()) {
    if (!IsChildIncludedInLayout(child)) {
      continue;
    }

    const size_t view_index = data.num_children();
    data.layout.child_layouts.emplace_back(ChildLayout{child});
    ChildLayout& child_layout = data.layout.child_layouts.back();
    data.child_data.emplace_back(
        GetViewProperty(child, layout_defaults_, views::kFlexBehaviorKey));
    FlexChildData& flex_child = data.child_data.back();

    flex_child.margins =
        Normalize(orientation(),
                  GetViewProperty(child, layout_defaults_, views::kMarginsKey,
                                  &flex_child.using_default_margins));
    flex_child.internal_padding = Normalize(
        orientation(),
        GetViewProperty(child, layout_defaults_, views::kInternalPaddingKey));

    const SizeBound available_cross =
        GetAvailableCrossAxisSize(data, view_index, bounds);
    SetCrossAxis(&child_layout.available_size, orientation(), available_cross);

    // According to css flexbox:
    // https://www.w3.org/TR/css-flexbox-1/#algo-main-item $9.2.3 All layout
    // algorithms in views should follow the rule listed in $9.2.3, subsection
    // 'C'. So here the basic size is set according to the C rule.
    flex_child.preferred_size =
        GetPreferredSizeForRule(flex_child.flex.rule(), child, available_cross);
    flex_child.minimum_size =
        GetCurrentSizeForRule(flex_child.flex.rule(), child,
                              NormalizedSizeBounds(0, available_cross));
    flex_child.maximum_size = GetCurrentSizeForRule(
        flex_child.flex.rule(), child,
        NormalizedSizeBounds(bounds.main(), available_cross));

    data.SetCurrentSize(view_index, main_axis_bounded
                                        ? flex_child.minimum_size
                                        : flex_child.preferred_size);

    // Keep track of non-hidden/ignored child views that can flex. We assume any
    // view with a non-zero weight can flex, as can views with zero weight that
    // have a minimum size smaller than their preferred size.
    const int weight = flex_child.flex.weight();
    bool can_flex =
        weight > 0 ||
        flex_child.current_size.main() < flex_child.preferred_size.main() ||
        (weight == 0 &&
         flex_child.maximum_size.main() > flex_child.preferred_size.main());

    // Add views that have the potential to flex to the appropriate order list.
    if (can_flex) {
      flex_order_to_index[flex_child.flex.order()].push_back(view_index);
    }

    if (main_axis_bounded) {
      flex_child.flex_base_content_size = std::min<NormalizedSize>(
          std::max<NormalizedSize>(flex_child.minimum_size,
                                   flex_child.preferred_size),
          flex_child.maximum_size);
    } else {
      flex_child.flex_base_content_size = flex_child.maximum_size;
    }
  }
}

void FlexLayout::CalculateChildBounds(const SizeBounds& size_bounds,
                                      FlexLayoutData& data) const {
  // Apply main axis alignment (we've already done cross-axis alignment above).
  const NormalizedSizeBounds normalized_bounds =
      Normalize(orientation(), size_bounds);
  const NormalizedSize normalized_host_size =
      Normalize(orientation(), data.layout.host_size);
  int available_main = normalized_bounds.main().is_bounded()
                           ? normalized_bounds.main().value()
                           : normalized_host_size.main();
  available_main = std::max(0, available_main - data.host_insets.main_size());
  const int excess_main = available_main - data.total_size.main();
  NormalizedPoint start(data.host_insets.main_leading(),
                        data.host_insets.cross_leading());
  switch (main_axis_alignment()) {
    case LayoutAlignment::kStart:
      break;
    case LayoutAlignment::kCenter:
      start.set_main(start.main() + excess_main / 2);
      break;
    case LayoutAlignment::kEnd:
      start.set_main(start.main() + excess_main);
      break;
    case LayoutAlignment::kStretch:
    case LayoutAlignment::kBaseline:
      NOTIMPLEMENTED();
      break;
  }

  // Calculate the actual child bounds.
  for (size_t i = 0; i < data.num_children(); ++i) {
    ChildLayout& child_layout = data.layout.child_layouts[i];
    if (child_layout.visible) {
      FlexChildData& flex_child = data.child_data[i];
      NormalizedRect actual = flex_child.actual_bounds;
      actual.Offset(start.main(), start.cross());
      if (actual.size_main() > flex_child.preferred_size.main() &&
          flex_child.flex.alignment() != LayoutAlignment::kStretch) {
        Span container(actual.origin_main(), actual.size_main());
        Span new_main(0, flex_child.preferred_size.main());
        new_main.Align(container, flex_child.flex.alignment());
        actual.set_origin_main(new_main.start());
        actual.set_size_main(new_main.length());
      }
      child_layout.bounds = Denormalize(orientation(), actual);
    }
  }
}

void FlexLayout::CalculateNonFlexAvailableSpace(
    const SizeBound& available_space,
    const FlexOrderToViewIndexMap& flex_views,
    const ChildViewSpacing& child_spacing,
    FlexLayoutData& data) const {
  // Add all views which are participating in flex (and will have their
  // available space set later) to a lookup so we can skip them now.
  std::set<size_t> all_flex_indices;
  for (const auto& order_to_indices : flex_views) {
    all_flex_indices.insert(order_to_indices.second.begin(),
                            order_to_indices.second.end());
  }

  // Work through the remaining views and set their available space. Since
  // non-flex views get their space first, these views will have access to the
  // entire budget of remaining space in the layout.
  for (size_t index = 0; index < data.child_data.size(); ++index) {
    if (base::Contains(all_flex_indices, index)) {
      continue;
    }

    // Cross-axis available size is already set in InitializeChildData(), so
    // just set the main axis here.
    const SizeBound max_size = child_spacing.GetMaxSize(
        index, data.child_data[index].current_size.main(), available_space);
    SetMainAxis(&data.layout.child_layouts[index].available_size, orientation(),
                max_size);
  }
}

Inset1D FlexLayout::GetCrossAxisMargins(const FlexLayoutData& layout,
                                        size_t child_index) const {
  const FlexChildData& child_data = layout.child_data[child_index];
  const int leading_margin =
      CalculateMargin(layout.interior_margin.cross_leading(),
                      child_data.margins.cross_leading(),
                      child_data.internal_padding.cross_leading());
  const int trailing_margin =
      CalculateMargin(layout.interior_margin.cross_trailing(),
                      child_data.margins.cross_trailing(),
                      child_data.internal_padding.cross_trailing());
  return Inset1D(leading_margin, trailing_margin);
}

int FlexLayout::CalculateMargin(int margin1,
                                int margin2,
                                int internal_padding) const {
  const int result =
      collapse_margins() ? std::max(margin1, margin2) : margin1 + margin2;
  return std::max(0, result - internal_padding);
}

SizeBound FlexLayout::GetAvailableCrossAxisSize(
    const FlexLayoutData& layout,
    size_t child_index,
    const NormalizedSizeBounds& bounds) const {
  const Inset1D cross_margins = GetCrossAxisMargins(layout, child_index);
  return std::max<SizeBound>(0, bounds.cross() - cross_margins.size());
}

int FlexLayout::CalculateChildSpacing(
    const FlexLayoutData& layout,
    std::optional<size_t> child1_index,
    std::optional<size_t> child2_index) const {
  const FlexChildData* const child1 =
      child1_index ? &layout.child_data[*child1_index] : nullptr;
  const FlexChildData* const child2 =
      child2_index ? &layout.child_data[*child2_index] : nullptr;

  const int child1_trailing =
      child1 && (child2 || !ignore_default_main_axis_margins() ||
                 !child1->using_default_margins)
          ? child1->margins.main_trailing()
          : 0;
  const int child2_leading =
      child2 && (child1 || !ignore_default_main_axis_margins() ||
                 !child2->using_default_margins)
          ? child2->margins.main_leading()
          : 0;

  const int left_margin =
      child1 ? child1_trailing : layout.interior_margin.main_leading();
  const int right_margin =
      child2 ? child2_leading : layout.interior_margin.main_trailing();

  const int left_padding =
      child1 ? child1->internal_padding.main_trailing() : 0;
  const int right_padding =
      child2 ? child2->internal_padding.main_leading() : 0;

  return CalculateMargin(left_margin, right_margin,
                         left_padding + right_padding);
}

void FlexLayout::UpdateLayoutFromChildren(
    const NormalizedSizeBounds& bounds,
    FlexLayoutData& data,
    ChildViewSpacing& child_spacing) const {
  // Calculate starting minimum for cross-axis size.
  int min_cross_size =
      std::max(minimum_cross_axis_size(),
               CalculateMargin(data.interior_margin.cross_leading(),
                               data.interior_margin.cross_trailing(), 0));
  data.total_size = NormalizedSize(0, min_cross_size);

  std::vector<Inset1D> cross_spacings(data.num_children());
  for (size_t i = 0; i < data.num_children(); ++i) {
    FlexChildData& flex_child = data.child_data[i];

    const bool is_visible = data.layout.child_layouts[i].visible;

    // Update the cross-axis margins and if necessary, the size.
    cross_spacings[i] = GetCrossAxisMargins(data, i);
    if (is_visible || flex_child.preferred_size.main() == 0) {
      data.total_size.SetToMax(
          0, cross_spacings[i].size() + flex_child.current_size.cross());
    }

    // We don't have to deal with invisible children any further than this.
    if (!is_visible) {
      continue;
    }

    // Calculate main-axis size and upper-left main axis coordinate.
    int leading_space;
    if (child_spacing.HasViewIndex(i)) {
      leading_space = child_spacing.GetLeadingSpace(i);
    } else {
      child_spacing.AddViewIndex(i, &leading_space);
    }
    data.total_size.Enlarge(leading_space, 0);

    const int size_main = flex_child.current_size.main();
    flex_child.actual_bounds.set_origin_main(data.total_size.main());
    flex_child.actual_bounds.set_size_main(size_main);
    data.total_size.Enlarge(size_main, 0);
  }

  // Add the end margin.
  data.total_size.Enlarge(child_spacing.GetTrailingInset(), 0);

  // We only need to consider the cross axis size when aligning. But we
  // should not let it affect total_size. Because this will affect the preferred
  // size of the host view.
  SizeBound cross_axis_size =
      bounds.cross().is_bounded() && bounds.cross().value() > 0
          ? bounds.cross()
          : data.total_size.cross();

  // Calculate cross-axis positioning based on the cross margins and size that
  // were calculated above.
  const Span cross_span(0, cross_axis_size.value());
  for (size_t i = 0; i < data.num_children(); ++i) {
    FlexChildData& flex_child = data.child_data[i];
    flex_child.actual_bounds.set_size_cross(flex_child.current_size.cross());
    const LayoutAlignment cross_align =
        GetViewProperty(data.layout.child_layouts[i].child_view,
                        layout_defaults_, kCrossAxisAlignmentKey);
    flex_child.actual_bounds.AlignCross(cross_span, cross_align,
                                        cross_spacings[i]);
  }
}

NormalizedSize FlexLayout::ClampSizeToMinAndMax(FlexLayoutData& data,
                                                const size_t view_index,
                                                SizeBound size) const {
  FlexChildData& flex_child = data.child_data[view_index];
  if (size.value() <= flex_child.minimum_size.main()) {
    return flex_child.minimum_size;
  }

  ChildLayout& child_layout = data.layout.child_layouts[view_index];

  // See how much space the child view wants within the reduced space
  // remaining for it.
  const NormalizedSizeBounds available(
      size, GetCrossAxis(orientation(), child_layout.available_size));
  const NormalizedSize new_size = GetCurrentSizeForRule(
      flex_child.flex.rule(), child_layout.child_view, available);

  return std::min<NormalizedSize>(
      std::max<NormalizedSize>(flex_child.minimum_size, new_size),
      flex_child.maximum_size);
}

void FlexLayout::AllocateFlexItem(const NormalizedSizeBounds& bounds,
                                  const FlexOrderToViewIndexMap& order_to_index,
                                  FlexLayoutData& data,
                                  ChildViewSpacing& child_spacing,
                                  bool skip_zero_preferred_size_view) const {
  for (const auto& flex_elem : order_to_index) {
    // Record available space for each view at this flex order.
    CalculateFlexAvailableSpace(bounds, flex_elem.second, child_spacing, data);

    // Unlike css flexbox. Here we first deal with the view with 0 weight and
    // the view with 0 preferred size. Because they have different meanings in
    // views.
    // We only need to allocate views with 0 preferred sizes if there are extra
    // sizes left.

    // Get the list of views to process at this flex priority, in the desired
    // order. Zero-preferred-size views are sorted directly onto the list of
    // expandable views, because they're already at their preferred size.
    ChildIndices view_indices;
    std::ranges::copy_if(
        MaybeReverse(flex_elem.second, flex_allocation_order()),
        std::back_inserter(view_indices),
        [skip_zero_preferred_size_view, &data](size_t child_index) {
          return !skip_zero_preferred_size_view ||
                 data.child_data[child_index].preferred_size.main() > 0;
        });

    // Allocate zero-weight child views at this order first. This removes them
    // from |view_indices|.
    SizeBound remaining_free_space =
        AllocateZeroWeightFlex(bounds, view_indices, data, child_spacing);
    if (!skip_zero_preferred_size_view) {
      FilterZeroSizeChildreIfNeeded(bounds, remaining_free_space, view_indices,
                                    data, child_spacing);
    }

    // Solve the problem of flexible size allocation.
    while (ResolveFlexibleLengths(bounds, remaining_free_space, view_indices,
                                  data, child_spacing)) {
      continue;
    }

    UpdateLayoutFromChildren(bounds, data, child_spacing);
  }
}

SizeBound FlexLayout::AllocateZeroWeightFlex(
    const NormalizedSizeBounds& bounds,
    ChildIndices& child_list,
    FlexLayoutData& data,
    ChildViewSpacing& child_spacing) const {
  if (!bounds.main().is_bounded()) {
    return SizeBound();
  }

  SizeBound remaining =
      std::max<SizeBound>(0, bounds.main() - data.total_size.main());

  // Allocate space to views with zero flex weight. They get first priority at
  // this priority order.
  auto it = child_list.begin();
  while (it != child_list.end()) {
    const size_t child_index = *it;
    FlexChildData& flex_child = data.child_data[child_index];
    // We don't care about weighted flex in this step.
    if (flex_child.flex.weight() > 0) {
      ++it;
      continue;
    }
    ChildLayout& child_layout = data.layout.child_layouts[child_index];

    const int old_size =
        child_layout.visible ? flex_child.current_size.main() : 0;
    const SizeBound available_main =
        child_spacing.GetMaxSize(child_index, old_size, remaining);
    NormalizedSize new_size =
        ClampSizeToMinAndMax(data, child_index, available_main);

    if (new_size.main() > old_size) {
      const int delta = child_spacing.GetTotalSizeChangeForNewSize(
          child_index, old_size, new_size.main());
      remaining -= delta;
      data.SetCurrentSize(child_index, new_size);
      if (!child_spacing.HasViewIndex(child_index)) {
        child_spacing.AddViewIndex(child_index);
      }
    }
    it = child_list.erase(it);
  }

  return remaining;
}

void FlexLayout::FilterZeroSizeChildreIfNeeded(
    const NormalizedSizeBounds& bounds,
    SizeBound& to_allocate,
    ChildIndices& child_list,
    FlexLayoutData& data,
    ChildViewSpacing& child_spacing) const {
  int flex_total = CalculateFlexTotal(data, child_list);

  // Collect views that have preferred size zero (and are therefore still not
  // visible) and see if we can allocate the additional required margins for
  // them. If we can, make them all visible. If not, none are visible.
  ChildIndices zero_size_children;
  ChildViewSpacing temp_spacing(child_spacing);
  const int old_spacing = temp_spacing.GetTotalSpace();
  std::ranges::copy_if(child_list, std::back_inserter(zero_size_children),
                       [&child_spacing, &data](auto index) {
                         return !child_spacing.HasViewIndex(index) &&
                                data.child_data[index].preferred_size.main() ==
                                    0;
                       });

  if (zero_size_children.empty()) {
    return;
  }

  for (auto index : zero_size_children) {
    temp_spacing.AddViewIndex(index);
  }

  // Make sure there is enough space to show each of the affected views. If
  // there is not, none of them appear, so remove them and bail out.
  const int new_spacing = temp_spacing.GetTotalSpace();
  const int delta = new_spacing - old_spacing;
  // We'll factor in |flex_total| so that each child view should be
  // allocated at least 1dp of space. That doesn't mean the child's flex
  // rule will allow it to take up that space (see note below).
  if (delta + flex_total > to_allocate) {
    child_list.remove_if([&child_spacing, &data](size_t index) {
      return !child_spacing.HasViewIndex(index) &&
             data.child_data[index].preferred_size.main() == 0;
    });
    return;
  }

  // Make all of the views visible, though note that at this point they are
  // still zero-size, which typically does not happen elsewhere in
  // FlexLayout.
  // TODO(dfried): We could add a second boolean that would allow these
  // views to be set to not visible but still "take up space" in the layout,
  // or do some kind of post-processing pass to change the visibility flag
  // to false once all of the other computations are complete, but I don't
  // think it's worth the extra complexity until we have an actual use case
  // or bug.
  to_allocate -= delta;
  child_spacing = temp_spacing;
  for (size_t view_index : zero_size_children) {
    data.layout.child_layouts[view_index].visible = true;
  }
}

bool FlexLayout::ResolveFlexibleLengths(const NormalizedSizeBounds& bounds,
                                        SizeBound& remaining_free_space,
                                        ChildIndices& child_list,
                                        FlexLayoutData& data,
                                        ChildViewSpacing& child_spacing) const {
  if (!remaining_free_space.is_bounded()) {
    return false;
  }

  // Assume all subviews are visible. Calculate the total space change required
  // to adjust from the current size to the main size.
  ChildViewSpacing proposed_spacing(child_spacing);
  int delta = 0;
  for (size_t child_index : child_list) {
    const FlexChildData& flex_child = data.child_data[child_index];
    delta += proposed_spacing.GetTotalSizeChangeForNewSize(
        child_index, flex_child.current_size.main(),
        flex_child.flex_base_content_size.main());
    if (!proposed_spacing.HasViewIndex(child_index)) {
      proposed_spacing.AddViewIndex(child_index);
    }
  }
  SizeBound temp_remaining_free_space = remaining_free_space - delta;

  // According to css flexbox:
  // https://www.w3.org/TR/css-flexbox-1/#resolve-flexible-lengths $9.2.7
  // The following algorithm mainly comes from it.

  int flex_total = CalculateFlexTotal(data, child_list);
  ChildIndices min_violations;
  ChildIndices max_violations;
  int total_violation = 0;
  for (auto view_index : child_list) {
    FlexChildData& flex_child = data.child_data[view_index];
    // We think it's already in the main sizes. Adjust according to remaining
    // space.
    SizeBound child_size = flex_child.flex_base_content_size.main();

    const int weight = flex_child.flex.weight();
    DCHECK_GT(weight, 0);
    const SizeBound extra_space =
        base::ClampFloor(temp_remaining_free_space.value() * weight /
                             static_cast<float>(flex_total) +
                         0.5f);
    child_size += extra_space;

    // $9.2.7.4.C Constrain new dimensions under maximum and minimum dimensions.
    const NormalizedSize new_size =
        ClampSizeToMinAndMax(data, view_index, child_size);
    flex_child.pending_size = new_size;

    int violation = new_size.main() - child_size.value();
    if (violation > 0) {
      min_violations.push_back(view_index);
    } else if (violation < 0) {
      max_violations.push_back(view_index);
    }
    total_violation += violation;
    temp_remaining_free_space -= extra_space;
    flex_total -= weight;
  }

  // $9.2.7.4.d: Fix min/max violations.
  if (total_violation) {
    FreezeViolations(child_list, remaining_free_space,
                     total_violation > 0 ? min_violations : max_violations,
                     child_spacing, data);
    return true;
  } else {
    ChildIndices temp_list(child_list);
    return FreezeViolations(child_list, remaining_free_space, temp_list,
                            child_spacing, data);
  }
}

bool FlexLayout::FreezeViolations(ChildIndices& child_list,
                                  SizeBound& remaining_free_space,
                                  ChildIndices& freeze_child_list,
                                  ChildViewSpacing& child_spacing,
                                  FlexLayoutData& data) const {
  ChildViewSpacing new_spacing(child_spacing);
  auto it = child_list.rbegin();
  bool force_relayout = false;
  while (!freeze_child_list.empty() && it != child_list.rend()) {
    const size_t view_index = *it;
    if (view_index != freeze_child_list.back()) {
      ++it;
      continue;
    }

    child_list.erase(--it.base());
    ChildLayout& child_layout = data.layout.child_layouts[view_index];
    FlexChildData& flex_child = data.child_data[view_index];
    NormalizedSize old_size = flex_child.current_size;
    flex_child.current_size = flex_child.pending_size;
    child_layout.visible = flex_child.current_size.main() > 0;
    freeze_child_list.pop_back();

    // If the view is not visible, the empty space itself is not given at this
    // time. Just make the difference directly.
    if (!child_layout.visible) {
      remaining_free_space -= flex_child.current_size.main() - old_size.main();
      force_relayout = true;
      break;
    }

    remaining_free_space -= new_spacing.GetTotalSizeChangeForNewSize(
        view_index, old_size.main(), flex_child.current_size.main());
    if (!new_spacing.HasViewIndex(view_index)) {
      new_spacing.AddViewIndex(view_index);
    }
  }

  child_spacing = new_spacing;
  return force_relayout;
}

void FlexLayout::AllocateRemainingSpaceIfNeeded(
    const NormalizedSizeBounds& bounds,
    const FlexOrderToViewIndexMap& order_to_index,
    FlexLayoutData& data,
    ChildViewSpacing& child_spacing) const {
  if (!bounds.main().is_bounded() || bounds.main() <= data.total_size.main()) {
    return;
  }

  // If there are any remaining sizes. We update the main size to the current
  // size. Ensured that subsequent allocations are based on the current size.
  for (size_t i = 0; i < data.num_children(); ++i) {
    FlexChildData& flex_child = data.child_data[i];
    flex_child.flex_base_content_size = flex_child.current_size;
  }

  AllocateFlexItem(bounds, order_to_index, data, child_spacing, false);
}

void FlexLayout::CalculateFlexAvailableSpace(
    const NormalizedSizeBounds& bounds,
    const ChildIndices& child_indices,
    const ChildViewSpacing& child_spacing,
    FlexLayoutData& data) const {
  const SizeBound remaining_at_priority =
      std::max<SizeBound>(0, bounds.main() - data.total_size.main());
  for (size_t index : child_indices) {
    // We'll save the maximum amount of main axis size first offered to the
    // view so we can report the maximum available size later. We only need to
    // do this the first time because the available space decreases
    // monotonically as we allocate flex space.
    ChildLayout& child_layout = data.layout.child_layouts[index];
    if (!GetMainAxis(orientation(), child_layout.available_size).is_bounded()) {
      // Calculate how much space this child view could take based on the
      // total remaining flex space at this priority. Note that this is not
      // the actual remaining space at this step, which will be based on flex
      // used by previous children at the same priority.
      const FlexChildData& flex_child = data.child_data[index];
      const int old_size =
          child_layout.visible ? flex_child.current_size.main() : 0;
      const SizeBound available_size = std::max<SizeBound>(
          flex_child.current_size.main(),
          child_spacing.GetMaxSize(index, old_size, remaining_at_priority));
      SetMainAxis(&child_layout.available_size, orientation(), available_size);
    }
  }
}

// static
int FlexLayout::CalculateFlexTotal(const FlexLayoutData& data,
                                   const ChildIndices& child_indices) {
  return std::accumulate(child_indices.begin(), child_indices.end(), 0,
                         [&data](int total, size_t index) {
                           return total + data.child_data[index].flex.weight();
                         });
}

// static
gfx::Size FlexLayout::DefaultFlexRuleImpl(const FlexLayout* flex_layout,
                                          const View* view,
                                          const SizeBounds& size_bounds) {
  if (size_bounds == SizeBounds()) {
    return flex_layout->GetPreferredSize(view);
  }
  if (size_bounds == SizeBounds(0, 0)) {
    return flex_layout->GetMinimumSize(view);
  }
  return flex_layout->CalculateProposedLayout(size_bounds).host_size;
}

}  // namespace views