File: metrics_provider_desktop.cc

package info (click to toggle)
chromium 138.0.7204.183-1~deb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm-proposed-updates
  • size: 6,080,960 kB
  • sloc: cpp: 34,937,079; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,954; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,811; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (665 lines) | stat: -rw-r--r-- 25,266 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "chrome/browser/performance_manager/metrics/metrics_provider_desktop.h"

#include "base/metrics/histogram_functions.h"
#include "base/metrics/histogram_macros.h"
#include "base/numerics/safe_conversions.h"
#include "base/power_monitor/cpu_frequency_utils.h"
#include "base/process/process_metrics.h"
#include "base/system/sys_info.h"
#include "base/task/sequenced_task_runner.h"
#include "base/task/thread_pool.h"
#include "base/timer/timer.h"
#include "base/trace_event/base_tracing.h"
#include "chrome/browser/browser_process.h"
#include "chrome/browser/performance_manager/public/user_tuning/user_performance_tuning_manager.h"
#include "chrome/browser/profiles/profile_manager.h"
#include "components/performance_manager/public/user_tuning/prefs.h"
#include "components/prefs/pref_service.h"
#include "ui/accessibility/ax_mode.h"
#include "ui/accessibility/platform/ax_platform_node.h"

#if BUILDFLAG(IS_WIN)
#include "base/win/registry.h"
#endif

using performance_manager::user_tuning::prefs::kMemorySaverModeState;
using performance_manager::user_tuning::prefs::MemorySaverModeState;

namespace performance_manager {

namespace {

MetricsProviderDesktop* g_metrics_provider = nullptr;

uint64_t kBytesPerMb = 1024 * 1024;

#if SHOULD_COLLECT_CPU_FREQUENCY_METRICS()
enum class CpuThroughputEstimatedStatus {
  kNormal,
  kUnknown,
  kThrottled,
  kDescheduled,
  kMigrated,
};

CpuThroughputEstimatedStatus EstimateCpuThroughputStatus(
    bool migrated,
    std::optional<double> cpu_frequency_percent,
    std::optional<double> thread_time_percent,
    base::TimeDelta queued_time) {
  if (migrated) {
    // If the task migrated from one CPU to the other, report the status as
    // such. It's not relevant to check the thread time % in this instance,
    // since a migrated task has by definition been descheduled. Likewise,
    // checking the estimate vs nominal frequencies is also irrelevant, since
    // the frequency of the original and migrated cores might be different.
    return CpuThroughputEstimatedStatus::kMigrated;
  }

  if (!thread_time_percent) {
    return CpuThroughputEstimatedStatus::kUnknown;
  } else if (*thread_time_percent < 75.0) {
    // If the task is actually running for only 75% of its wall time or less, we
    // report it as having been descheduled
    return CpuThroughputEstimatedStatus::kDescheduled;
  }

  if (!cpu_frequency_percent) {
    return CpuThroughputEstimatedStatus::kUnknown;
  } else if (*cpu_frequency_percent < 75.0) {
    // If the task had a thread time close to its wall time, but we estimate its
    // CPU frequency as 75% of nominal or less, we report the CPU as being
    // throttled.
    return CpuThroughputEstimatedStatus::kThrottled;
  }

  return CpuThroughputEstimatedStatus::kNormal;
}

constexpr char kCpuEstimationEventCategory[] = "power";
constexpr char kCpuEstimationEvent[] = "CpuStatusSampling";

constexpr char kCpuEstimationStatusNormalEvent[] =
    "CpuStatusSampling.Status.Normal";
constexpr char kCpuEstimationStatusUnknownEvent[] =
    "CpuStatusSampling.Status.Unknown";
constexpr char kCpuEstimationStatusThrottledEvent[] =
    "CpuStatusSampling.Status.Throttled";
constexpr char kCpuEstimationStatusDescheduledEvent[] =
    "CpuStatusSampling.Status.Descheduled";
constexpr char kCpuEstimationStatusMigratedEvent[] =
    "CpuStatusSampling.Status.Migrated";

constexpr char kCpuEstimationQueuedEvent[] = "CpuStatusSampling.Queued";
constexpr char kCpuEstimationRunningEvent[] = "CpuStatusSampling.Running";
constexpr char kCpuEstimationThreadTimeEvent[] = "CpuStatusSampling.ThreadTime";
constexpr char kCpuEstimationDescheduledEvent[] =
    "CpuStatusSampling.Descheduled";

// This function emits trace events related to the status of the CPU throughput
// estimation task. In a trace, these events might look like this (where CSS is
// CpuStatusSampling):
//
// +-----------------------------------------------+
// |               CpuStatusSampling               |
// +-----------------------------------------------+
// |          CSS.Status.{estimated_status}        |
// +------------+----------------------------------+
// | CSS.Queued |          CSS.Running             |
// +------------+----------------+-----------------+
//              | CSS.ThreadTime | CSS.Descheduled |
//              +----------------+-----------------+
//
// CpuStatusSampling.Status.{estimated_status} will reflect what the estimation
// code thinks the status of the CPU is, between Normal, Unknown, Throttled,
// Descheduled, Migrated.
//
// CpuStatusSampling.Queued is the time between when the estimation task was
// posted and when it started running.
//
// CpuStatusSampling.Running is the time between when the task started running
// and when it finished
//
// CpuStatusSampling.ThreadTime is the CPU time of the running task
//
// CpuStatusSampling.Descheduled is the wall time the task spent off-cpu
void EmitCpuStatusSamplingTraceEvents(base::TimeTicks posted_at_time,
                                      base::TimeTicks started_running_time,
                                      base::TimeDelta thread_time,
                                      base::TimeDelta wall_time,
                                      CpuThroughputEstimatedStatus status) {
  void* id = g_metrics_provider;

  base::TimeTicks end_time = started_running_time + wall_time;

  TRACE_EVENT_NESTABLE_ASYNC_BEGIN_WITH_TIMESTAMP0(
      kCpuEstimationEventCategory, kCpuEstimationEvent, TRACE_ID_LOCAL(id),
      posted_at_time);
  TRACE_EVENT_NESTABLE_ASYNC_END_WITH_TIMESTAMP0(kCpuEstimationEventCategory,
                                                 kCpuEstimationEvent,
                                                 TRACE_ID_LOCAL(id), end_time);

  const char* selected;
  switch (status) {
    case CpuThroughputEstimatedStatus::kNormal:
      selected = kCpuEstimationStatusNormalEvent;
      break;

    case CpuThroughputEstimatedStatus::kUnknown:
      selected = kCpuEstimationStatusUnknownEvent;
      break;

    case CpuThroughputEstimatedStatus::kThrottled:
      selected = kCpuEstimationStatusThrottledEvent;
      break;

    case CpuThroughputEstimatedStatus::kDescheduled:
      selected = kCpuEstimationStatusDescheduledEvent;
      break;

    case CpuThroughputEstimatedStatus::kMigrated:
      selected = kCpuEstimationStatusMigratedEvent;
      break;
  }

  TRACE_EVENT_NESTABLE_ASYNC_BEGIN_WITH_TIMESTAMP0(kCpuEstimationEventCategory,
                                                   selected, TRACE_ID_LOCAL(id),
                                                   posted_at_time);
  TRACE_EVENT_NESTABLE_ASYNC_END_WITH_TIMESTAMP0(
      kCpuEstimationEventCategory, selected, TRACE_ID_LOCAL(id), end_time);

  TRACE_EVENT_NESTABLE_ASYNC_BEGIN_WITH_TIMESTAMP0(
      kCpuEstimationEventCategory, kCpuEstimationQueuedEvent,
      TRACE_ID_LOCAL(id), posted_at_time);
  TRACE_EVENT_NESTABLE_ASYNC_END_WITH_TIMESTAMP0(
      kCpuEstimationEventCategory, kCpuEstimationQueuedEvent,
      TRACE_ID_LOCAL(id), started_running_time);

  TRACE_EVENT_NESTABLE_ASYNC_BEGIN_WITH_TIMESTAMP0(
      kCpuEstimationEventCategory, kCpuEstimationRunningEvent,
      TRACE_ID_LOCAL(id), started_running_time);
  TRACE_EVENT_NESTABLE_ASYNC_END_WITH_TIMESTAMP0(kCpuEstimationEventCategory,
                                                 kCpuEstimationRunningEvent,
                                                 TRACE_ID_LOCAL(id), end_time);

  // Emit a block for the running thread time
  TRACE_EVENT_NESTABLE_ASYNC_BEGIN_WITH_TIMESTAMP0(
      kCpuEstimationEventCategory, kCpuEstimationThreadTimeEvent,
      TRACE_ID_LOCAL(id), started_running_time);
  TRACE_EVENT_NESTABLE_ASYNC_END_WITH_TIMESTAMP0(
      kCpuEstimationEventCategory, kCpuEstimationThreadTimeEvent,
      TRACE_ID_LOCAL(id), started_running_time + thread_time);

  // And then one of the wall time spent descheduled
  TRACE_EVENT_NESTABLE_ASYNC_BEGIN_WITH_TIMESTAMP0(
      kCpuEstimationEventCategory, kCpuEstimationDescheduledEvent,
      TRACE_ID_LOCAL(id), started_running_time + thread_time);
  TRACE_EVENT_NESTABLE_ASYNC_END_WITH_TIMESTAMP0(
      kCpuEstimationEventCategory, kCpuEstimationDescheduledEvent,
      TRACE_ID_LOCAL(id), started_running_time + wall_time);
}
#endif  // SHOULD_COLLECT_CPU_FREQUENCY_METRICS()

#if BUILDFLAG(IS_WIN)
// Reports histograms describing the value of the HKEY_LOCAL_MACHINE ->
// Software\Microsoft\Windows NT\CurrentVersion\Image File ->
// FrontEndHeapDebugOptions registry key. We observed locally that the 0x10 bit
// activates stack collection on heap allocation, which results in unacceptable
// performance. We want to be sure that this isn't used widely in the field.
void RecordFrontEndHeapDebugOptionsHistogram() {
  // Outcome of reading the registry key. These values are persisted to logs.
  // Entries should not be renumbered and numeric values should never be reused.
  // LINT.IfChange(FrontEndHeapDebugOptionsOutcome)
  enum class FrontEndHeapDebugOptionsOutcome {
    kCannotOpenKey = 0,
    kCannotReadValue = 1,
    kSuccess = 2,
    kMaxValue = kSuccess,
  };
  // LINT.ThenChange(//tools/metrics/histograms/metadata/performance_manager/enums.xml:FrontEndHeapDebugOptionsOutcome)

  std::optional<FrontEndHeapDebugOptionsOutcome> outcome;
  base::win::RegKey key;
  if (key.Open(HKEY_LOCAL_MACHINE,
               L"Software\\Microsoft\\Windows NT\\CurrentVersion\\Image File "
               L"Execution Options\\chrome.exe",
               KEY_QUERY_VALUE | KEY_WOW64_32KEY) == ERROR_SUCCESS) {
    DWORD value = 0;
    if (key.ReadValueDW(L"FrontEndHeapDebugOptions", &value) == ERROR_SUCCESS) {
      base::UmaHistogramSparse(
          "PerformanceManager.RegistryStats.FrontEndHeapDebugOptionsValue",
          // Limit the number of distinct values recorded to this histogram, as
          // recommended by `base::UmaHistogramSparse()` documentation. The
          // highest bit observed being set in practice is 0x10 (for stack
          // collection on heap allocation). We set the maximum a little bit
          // above that, to be aware if higher bits are used in the field.
          std::clamp(base::saturated_cast<int>(value), 0, 0xff));
      outcome = FrontEndHeapDebugOptionsOutcome::kSuccess;
    } else {
      outcome = FrontEndHeapDebugOptionsOutcome::kCannotReadValue;
    }
  } else {
    outcome = FrontEndHeapDebugOptionsOutcome::kCannotOpenKey;
  }

  CHECK(outcome.has_value());
  base::UmaHistogramEnumeration(
      "PerformanceManager.RegistryStats.FrontEndHeapDebugOptionsOutcome",
      outcome.value());
}
#endif  // BUILDFLAG(IS_WIN)

}  // namespace

// Tracks the proportion of time a specific mode was enabled during this
// object's entire lifetime, and records it to a specified histogram on
// destruction.
class ScopedTimeInModeTracker {
 public:
  ScopedTimeInModeTracker(bool enabled, const std::string& histogram_name)
      : currently_enabled_(enabled),
        current_interval_start_(base::LiveTicks::Now()),
        start_(current_interval_start_),
        histogram_name_(histogram_name) {}

  ~ScopedTimeInModeTracker() {
    // Ensure `time_spent_enabled_` is updated if the mode was currently
    // enabled. This doesn't call `ModeChanged` directly to ensure the value of
    // `now` used for the total time computation is the same as was used to
    // close the interval.
    base::LiveTicks now = base::LiveTicks::Now();

    CHECK(current_interval_start_ <= now);
    CHECK(start_ <= now);

    if (currently_enabled_) {
      time_spent_enabled_ += now - current_interval_start_;
    }

    base::TimeDelta total_time = now - start_;

    // Time spent enabled should be lower or equal to the total time this was
    // active.
    CHECK_LE(time_spent_enabled_, total_time);
    // Check that the `time_spent_enabled_ * 100` operation can't overflow.
    CHECK_LE(time_spent_enabled_.InMicroseconds(),
             std::numeric_limits<int64_t>::max() / 100);

    // `total_time` being 0 would mean the object was constructed and destructed
    // without the clock advancing a single microsecond. This shouldn't happen
    // in production but can happen in tests that use mock time. Treat this as
    // an interval that has only been in the current state.
    unsigned int percent_enabled = currently_enabled_ ? 100 : 0;
    if (total_time.is_positive()) {
      // Do the computation in microseconds to avoid prior truncation since it's
      // `TimeDelta`'s internal representation.
      int64_t checked_percent =
          (base::CheckMul(time_spent_enabled_.InMicroseconds(), 100) /
           total_time.InMicroseconds())
              .ValueOrDie();

      CHECK(base::IsValueInRangeForNumericType<unsigned int>(checked_percent));

      percent_enabled = checked_percent;
    }

    CHECK_LE(percent_enabled, 100U);

    base::UmaHistogramPercentage(histogram_name_, percent_enabled);
  }

  void ModeChanged(bool enabled) {
    if (currently_enabled_ == enabled) {
      // It's possible for the pref to be notified as "changed" even if it's
      // "changing" to the same state it's already in when going to/from
      // "enabled with heuristic mode" to/from "enabled on timer mode".
      return;
    }

    base::LiveTicks now = base::LiveTicks::Now();

    CHECK(current_interval_start_ <= now);

    if (currently_enabled_) {
      time_spent_enabled_ += now - current_interval_start_;
    }

    currently_enabled_ = enabled;
    current_interval_start_ = now;
  }

 private:
  bool currently_enabled_;

  base::TimeDelta time_spent_enabled_;
  base::LiveTicks current_interval_start_;
  base::LiveTicks start_;

  std::string histogram_name_;
};

// static
MetricsProviderDesktop* MetricsProviderDesktop::GetInstance() {
  DCHECK(g_metrics_provider);
  return g_metrics_provider;
}

MetricsProviderDesktop::~MetricsProviderDesktop() {
  DCHECK_EQ(this, g_metrics_provider);
  g_metrics_provider = nullptr;
}

void MetricsProviderDesktop::Initialize() {
  DCHECK(!initialized_);

  pref_change_registrar_.Init(local_state_);
  pref_change_registrar_.Add(
      kMemorySaverModeState,
      base::BindRepeating(&MetricsProviderDesktop::OnMemorySaverPrefChanged,
                          base::Unretained(this)));
  performance_manager::user_tuning::BatterySaverModeManager::GetInstance()
      ->AddObserver(this);
  battery_saver_enabled_ =
      performance_manager::user_tuning::BatterySaverModeManager::GetInstance()
          ->IsBatterySaverActive();

  initialized_ = true;
  current_mode_ = ComputeCurrentMode();

  ResetTrackers();

  PostDiskMetricsTask();
}

void MetricsProviderDesktop::ProvideCurrentSessionData(
    metrics::ChromeUserMetricsExtension* uma_proto) {
  // It's valid for this to be called when `initialized_` is false if the finch
  // features controlling battery saver and memory saver are disabled.
  // TODO(crbug.com/40233418): CHECK(initialized_) when the features are enabled
  // and removed.
  base::UmaHistogramEnumeration("PerformanceManager.UserTuning.EfficiencyMode",
                                current_mode_);

  // Resetting the trackers will cause the existing ones to record their
  // histogram.
  ResetTrackers();

  // Set `current_mode_` to represent the state of the modes as they are now, so
  // that this mode is what is adequately reported at the next report, unless it
  // changes in the meantime.
  current_mode_ = ComputeCurrentMode();

  RecordDiskMetrics();

#if BUILDFLAG(IS_WIN)
  RecordFrontEndHeapDebugOptionsHistogram();
#endif  // BUILDFLAG(IS_WIN)

  // Request a disk measurement so it's ready for the next interval
  PostDiskMetricsTask();
}

MetricsProviderDesktop::MetricsProviderDesktop(PrefService* local_state)
    : local_state_(local_state),
      disk_metrics_getter_(
          base::ThreadPool::CreateSequencedTaskRunner({base::MayBlock()})) {
  DCHECK(!g_metrics_provider);
  g_metrics_provider = this;

#if SHOULD_COLLECT_CPU_FREQUENCY_METRICS()
  ScheduleCpuFrequencyTask();
#endif  // SHOULD_COLLECT_CPU_FREQUENCY_METRICS()
}

void MetricsProviderDesktop::OnBatterySaverActiveChanged(bool is_active) {
  battery_saver_enabled_ = is_active;
  battery_saver_mode_tracker_->ModeChanged(battery_saver_enabled_);
  OnTuningModesChanged();
}

void MetricsProviderDesktop::OnMemorySaverPrefChanged() {
  memory_saver_mode_tracker_->ModeChanged(IsMemorySaverEnabled());
  OnTuningModesChanged();
}

void MetricsProviderDesktop::OnTuningModesChanged() {
  EfficiencyMode new_mode = ComputeCurrentMode();

  // If the mode changes between UMA reports, mark it as Mixed for this
  // interval.
  if (current_mode_ != new_mode) {
    current_mode_ = EfficiencyMode::kMixed;
  }
}

MetricsProviderDesktop::EfficiencyMode
MetricsProviderDesktop::ComputeCurrentMode() const {
  // It's valid for this to be uninitialized if the battery saver/high
  // efficiency modes are unavailable. In that case, the browser is running in
  // normal mode, so return kNormal.
  // TODO(crbug.com/40233418): Change this to a DCHECK when the features are
  // enabled and removed.
  if (!initialized_) {
    return EfficiencyMode::kNormal;
  }

  // It's possible for this function to be called during shutdown, after
  // BatterySaverModeManager is destroyed. Do not access UPTM directly from
  // here.

  bool high_efficiency_enabled = IsMemorySaverEnabled();

  if (high_efficiency_enabled && battery_saver_enabled_) {
    return EfficiencyMode::kBoth;
  }

  if (high_efficiency_enabled) {
    return EfficiencyMode::kMemorySaver;
  }

  if (battery_saver_enabled_) {
    return EfficiencyMode::kBatterySaver;
  }

  return EfficiencyMode::kNormal;
}

bool MetricsProviderDesktop::IsMemorySaverEnabled() const {
  return local_state_->GetInteger(kMemorySaverModeState) !=
         static_cast<int>(MemorySaverModeState::kDisabled);
}

void MetricsProviderDesktop::ResetTrackers() {
  battery_saver_mode_tracker_ = std::make_unique<ScopedTimeInModeTracker>(
      battery_saver_enabled_,
      "PerformanceManager.UserTuning.BatterySaverModeEnabledPercent");
  memory_saver_mode_tracker_ = std::make_unique<ScopedTimeInModeTracker>(
      IsMemorySaverEnabled(),
      "PerformanceManager.UserTuning.MemorySaverModeEnabledPercent");
}

#if SHOULD_COLLECT_CPU_FREQUENCY_METRICS()
// static
void MetricsProviderDesktop::RecordCpuFrequencyMetrics(
    base::TimeTicks posted_at_time) {
  auto started_running_time = base::TimeTicks::Now();
  auto queued_time = started_running_time - posted_at_time;

  static const double kHzInMhz = 1000 * 1000;

  std::optional<base::CpuThroughputEstimationResult> cpu_throughput =
      base::EstimateCpuThroughput();
  base::CpuFrequencyInfo cpu_frequency_info = base::GetCpuFrequencyInfo();

  if (!cpu_throughput) {
    return;
  }

  std::string_view core_type_suffix = "Performance";
  if (cpu_frequency_info.type == base::CpuFrequencyInfo::CoreType::kBalanced) {
    core_type_suffix = "Balanced";
  } else if (cpu_frequency_info.type ==
             base::CpuFrequencyInfo::CoreType::kEfficiency) {
    core_type_suffix = "Efficiency";
  }

  base::UmaHistogramCustomMicrosecondsTimes(
      base::StrCat(
          {"CPU.Experimental.CpuEstimationTaskQueuedTime.", core_type_suffix}),
      queued_time, base::Microseconds(1), base::Seconds(1), 50);

  base::UmaHistogramCustomMicrosecondsTimes(
      base::StrCat(
          {"CPU.Experimental.CpuEstimationTaskTotalTime.", core_type_suffix}),
      queued_time + cpu_throughput->wall_time, base::Microseconds(1),
      base::Seconds(1), 50);

  base::UmaHistogramCustomMicrosecondsTimes(
      base::StrCat(
          {"CPU.Experimental.CpuEstimationTaskThreadTime.", core_type_suffix}),
      cpu_throughput->thread_time, base::Microseconds(1), base::Seconds(1), 50);

  base::UmaHistogramCustomMicrosecondsTimes(
      base::StrCat(
          {"CPU.Experimental.CpuEstimationTaskWallTime.", core_type_suffix}),
      cpu_throughput->wall_time, base::Microseconds(1), base::Seconds(1), 50);

  base::UmaHistogramBoolean("CPU.Experimental.CpuEstimationTaskMigrated",
                            cpu_throughput->migrated);

  std::optional<double> cpu_frequency_percent = std::nullopt;
  if (!cpu_throughput->migrated) {
    // Don't record frequency metrics if the code migrated from one CPU to
    // another in the middle of the estimation loop. This is because the nominal
    // frequency of the start and end cores might be different.

    double estimated_mhz = cpu_throughput->estimated_frequency / kHzInMhz;

    // Max/Limit can (rarely) be 0 in the field, perhaps in virtualized or
    // sandboxed environments.
    if (cpu_frequency_info.max_mhz > 0UL) {
      cpu_frequency_percent = estimated_mhz * 100.0 /
                              static_cast<double>(cpu_frequency_info.max_mhz);

      base::UmaHistogramPercentage(
          base::StrCat({"CPU.Experimental.EstimatedFrequencyAsPercentOfMax.",
                        core_type_suffix}),
          static_cast<int>(*cpu_frequency_percent));
    }

    if (cpu_frequency_info.mhz_limit > 0UL) {
      base::UmaHistogramPercentage(
          base::StrCat({"CPU.Experimental.EstimatedFrequencyAsPercentOfLimit.",
                        core_type_suffix}),
          static_cast<int>(estimated_mhz * 100.0 /
                           static_cast<double>(cpu_frequency_info.mhz_limit)));
    }
  }

  // These can be 0 in tests
  if (!cpu_throughput->thread_time.is_zero() &&
      !cpu_throughput->wall_time.is_zero()) {
    std::optional<double> thread_time_percent =
        cpu_throughput->thread_time / cpu_throughput->wall_time * 100.0;
    base::UmaHistogramPercentage(
        base::StrCat({"CPU.Experimental.CpuEstimationThreadTimePercent.",
                      core_type_suffix}),
        static_cast<int>(*thread_time_percent));

    CpuThroughputEstimatedStatus status = EstimateCpuThroughputStatus(
        cpu_throughput->migrated, cpu_frequency_percent, thread_time_percent,
        queued_time);
    EmitCpuStatusSamplingTraceEvents(posted_at_time, started_running_time,
                                     cpu_throughput->thread_time,
                                     cpu_throughput->wall_time, status);
  }

  ScheduleCpuFrequencyTask();
}

// static
void MetricsProviderDesktop::ScheduleCpuFrequencyTask() {
  static constexpr base::TimeDelta kCpuThroughputSamplingInterval =
      base::Minutes(5);
  base::ThreadPool::PostDelayedTask(
      FROM_HERE,
      {base::TaskPriority::USER_VISIBLE,
       base::TaskShutdownBehavior::CONTINUE_ON_SHUTDOWN},
      base::BindOnce(&MetricsProviderDesktop::PostCpuFrequencyEstimation),
      kCpuThroughputSamplingInterval);
}

// static
void MetricsProviderDesktop::PostCpuFrequencyEstimation() {
  base::ThreadPool::PostTask(
      FROM_HERE,
      {base::TaskPriority::USER_VISIBLE,
       base::TaskShutdownBehavior::CONTINUE_ON_SHUTDOWN},
      base::BindOnce(&MetricsProviderDesktop::RecordCpuFrequencyMetrics,
                     base::TimeTicks::Now()));
}
#endif  // SHOULD_COLLECT_CPU_FREQUENCY_METRICS()

void MetricsProviderDesktop::RecordDiskMetrics() {
  if (!pending_disk_metrics_) {
    // The measurements aren't ready yet, don't report anything.
    return;
  }

  if (pending_disk_metrics_->free_bytes == -1 ||
      pending_disk_metrics_->total_bytes == -1) {
    return;
  }

  base::UmaHistogramCustomCounts(
      "PerformanceManager.DiskStats.UserDataDirFreeSpaceMb",
      pending_disk_metrics_->free_bytes /
          kBytesPerMb,  // space_info is bytes, convert to Mb
      0, 10240,  // It's fine to bucket everything >10Gb as "large enough"
      100);
  // Also report as a percentage of capacity
  base::UmaHistogramPercentage(
      "PerformanceManager.DiskStats.UserDataDirFreeSpacePercent",
      pending_disk_metrics_->free_bytes * 100 /
          pending_disk_metrics_->total_bytes);

  pending_disk_metrics_ = std::nullopt;
}

void MetricsProviderDesktop::PostDiskMetricsTask() {
  if (!g_browser_process || !g_browser_process->profile_manager()) {
    // It's possible to have a null browser process or a null profile manager in
    // unit tests.
    return;
  }

  // Records the free/available space on the disk that hosts the user data dir.
  ProfileManager* profile_manager = g_browser_process->profile_manager();
  const base::FilePath& user_data_dir = profile_manager->user_data_dir();

  disk_metrics_getter_
      .AsyncCall(&MetricsProviderDesktop::DiskMetricsThreadPoolGetter::
                     ComputeDiskMetrics)
      .WithArgs(user_data_dir)
      .Then(base::BindOnce(&MetricsProviderDesktop::SavePendingDiskMetrics,
                           base::Unretained(this)));
}

MetricsProviderDesktop::DiskMetrics
MetricsProviderDesktop::DiskMetricsThreadPoolGetter::ComputeDiskMetrics(
    const base::FilePath& user_data_dir) {
  return {
      .free_bytes = base::SysInfo::AmountOfFreeDiskSpace(user_data_dir),
      .total_bytes = base::SysInfo::AmountOfTotalDiskSpace(user_data_dir),
  };
}

void MetricsProviderDesktop::SavePendingDiskMetrics(DiskMetrics metrics) {
  pending_disk_metrics_ = metrics;
}

}  // namespace performance_manager