File: lens_overlay_image_helper.cc

package info (click to toggle)
chromium 138.0.7204.183-1~deb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm-proposed-updates
  • size: 6,080,960 kB
  • sloc: cpp: 34,937,079; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,954; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,811; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (538 lines) | stat: -rw-r--r-- 21,582 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "chrome/browser/ui/lens/lens_overlay_image_helper.h"

#include <numbers>

#include "base/compiler_specific.h"
#include "base/memory/ref_counted_memory.h"
#include "base/memory/scoped_refptr.h"
#include "base/numerics/safe_math.h"
#include "chrome/browser/ui/lens/ref_counted_lens_overlay_client_logs.h"
#include "components/lens/lens_features.h"
#include "third_party/lens_server_proto/lens_overlay_image_crop.pb.h"
#include "third_party/lens_server_proto/lens_overlay_image_data.pb.h"
#include "third_party/lens_server_proto/lens_overlay_phase_latencies_metadata.pb.h"
#include "third_party/lens_server_proto/lens_overlay_polygon.pb.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkColor.h"
#include "ui/gfx/codec/jpeg_codec.h"
#include "ui/gfx/codec/png_codec.h"
#include "ui/gfx/codec/webp_codec.h"
#include "ui/gfx/color_analysis.h"
#include "ui/gfx/color_conversions.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/size.h"
#include "ui/gfx/image/image_skia_operations.h"

namespace {

bool ShouldDownscaleSize(const gfx::Size& size,
                         int max_area,
                         int max_width,
                         int max_height) {
  // This returns true if the area is larger than the max area AND one of the
  // width OR height exceeds the configured max values.
  return size.GetArea() > max_area &&
         (size.width() > max_width || size.height() > max_height);
}

bool ShouldDownscaleSizeWithUiScaling(const gfx::Size& size,
                                      int max_area,
                                      int max_width,
                                      int max_height,
                                      int ui_scale_factor) {
  if (ui_scale_factor <= 0) {
    return ShouldDownscaleSize(size, max_area, max_width, max_height);
  }
  return ui_scale_factor <
             lens::features::
                 GetLensOverlayImageDownscaleUiScalingFactorThreshold() &&
         ShouldDownscaleSize(size, max_area, max_width, max_height);
}

double GetPreferredScale(const gfx::Size& original_size,
                         int target_width,
                         int target_height) {
  return std::min(
      base::ClampDiv(static_cast<double>(target_width), original_size.width()),
      base::ClampDiv(static_cast<double>(target_height),
                     original_size.height()));
}

gfx::Size GetPreferredSize(const gfx::Size& original_size,
                           int target_width,
                           int target_height) {
  double scale = GetPreferredScale(original_size, target_width, target_height);
  int width = std::clamp<int>(scale * original_size.width(), 1, target_width);
  int height =
      std::clamp<int>(scale * original_size.height(), 1, target_height);
  return gfx::Size(width, height);
}

void AddClientLogsForDownscale(
    scoped_refptr<lens::RefCountedLensOverlayClientLogs> client_logs,
    const SkBitmap& original_image,
    const SkBitmap& downscaled_image) {
  auto* downscale_phase = client_logs->client_logs()
                              .mutable_phase_latencies_metadata()
                              ->add_phase();
  downscale_phase->mutable_image_downscale_data()->set_original_image_size(
      original_image.width() * original_image.height());
  downscale_phase->mutable_image_downscale_data()->set_downscaled_image_size(
      downscaled_image.width() * downscaled_image.height());
}

void AddClientLogsForEncode(
    scoped_refptr<lens::RefCountedLensOverlayClientLogs> client_logs,
    scoped_refptr<base::RefCountedBytes> output_bytes) {
  auto* encode_phase = client_logs->client_logs()
                           .mutable_phase_latencies_metadata()
                           ->add_phase();
  encode_phase->mutable_image_encode_data()->set_encoded_image_size_bytes(
      output_bytes->as_vector().size());
}

SkBitmap DownscaleImage(
    const SkBitmap& image,
    int target_width,
    int target_height,
    scoped_refptr<lens::RefCountedLensOverlayClientLogs> client_logs) {
  auto size = gfx::Size(image.width(), image.height());
  auto preferred_size = GetPreferredSize(size, target_width, target_height);
  SkBitmap downscaled_image = skia::ImageOperations::Resize(
      image, skia::ImageOperations::RESIZE_BEST, preferred_size.width(),
      preferred_size.height());
  AddClientLogsForDownscale(client_logs, image, downscaled_image);
  return downscaled_image;
}

SkBitmap DownscaleImageIfNeededWithTieredApproach(
    const SkBitmap& image,
    int ui_scale_factor,
    scoped_refptr<lens::RefCountedLensOverlayClientLogs> client_logs) {
  auto size = gfx::Size(image.width(), image.height());
  // Tier 3 Downscaling.
  if (ShouldDownscaleSizeWithUiScaling(
          size, lens::features::GetLensOverlayImageMaxAreaTier3(),
          lens::features::GetLensOverlayImageMaxWidthTier3(),
          lens::features::GetLensOverlayImageMaxHeightTier3(),
          ui_scale_factor)) {
    return DownscaleImage(
        image, lens::features::GetLensOverlayImageMaxWidthTier3(),
        lens::features::GetLensOverlayImageMaxHeightTier3(), client_logs);
    // Tier 2 Downscaling.
  } else if (ShouldDownscaleSizeWithUiScaling(
                 size, lens::features::GetLensOverlayImageMaxAreaTier2(),
                 lens::features::GetLensOverlayImageMaxWidthTier2(),
                 lens::features::GetLensOverlayImageMaxHeightTier2(),
                 ui_scale_factor)) {
    return DownscaleImage(
        image, lens::features::GetLensOverlayImageMaxWidthTier2(),
        lens::features::GetLensOverlayImageMaxHeightTier2(), client_logs);
    // Tier 1.5 Downscaling.
  } else if (ShouldDownscaleSize(
                 size, lens::features::GetLensOverlayImageMaxAreaTier2(),
                 lens::features::GetLensOverlayImageMaxWidthTier2(),
                 lens::features::GetLensOverlayImageMaxHeightTier2())) {
    return DownscaleImage(image, lens::features::GetLensOverlayImageMaxWidth(),
                          lens::features::GetLensOverlayImageMaxHeight(),
                          client_logs);
    // Tier 1 Downscaling.
  } else if (ShouldDownscaleSize(
                 size, lens::features::GetLensOverlayImageMaxAreaTier1(),
                 lens::features::GetLensOverlayImageMaxWidthTier1(),
                 lens::features::GetLensOverlayImageMaxHeightTier1())) {
    return DownscaleImage(
        image, lens::features::GetLensOverlayImageMaxWidthTier1(),
        lens::features::GetLensOverlayImageMaxHeightTier1(), client_logs);
  }

  // No downscaling needed.
  return image;
}

SkBitmap DownscaleImageIfNeeded(
    const SkBitmap& image,
    int ui_scale_factor,
    scoped_refptr<lens::RefCountedLensOverlayClientLogs> client_logs) {
  if (lens::features::LensOverlayUseTieredDownscaling()) {
    return DownscaleImageIfNeededWithTieredApproach(image, ui_scale_factor,
                                                    client_logs);
  }

  auto size = gfx::Size(image.width(), image.height());
  if (ShouldDownscaleSize(size, lens::features::GetLensOverlayImageMaxArea(),
                          lens::features::GetLensOverlayImageMaxWidth(),
                          lens::features::GetLensOverlayImageMaxHeight())) {
    return DownscaleImage(image, lens::features::GetLensOverlayImageMaxWidth(),
                          lens::features::GetLensOverlayImageMaxHeight(),
                          client_logs);
  }
  // No downscaling needed.
  return image;
}

SkBitmap CropAndDownscaleImageIfNeeded(
    const SkBitmap& image,
    gfx::Rect region,
    scoped_refptr<lens::RefCountedLensOverlayClientLogs> client_logs) {
  SkBitmap output;
  auto full_image_size = gfx::Size(image.width(), image.height());
  auto region_size = gfx::Size(region.width(), region.height());
  auto target_width = lens::features::GetLensOverlayImageMaxWidth();
  auto target_height = lens::features::GetLensOverlayImageMaxHeight();
  if (ShouldDownscaleSize(region_size,
                          lens::features::GetLensOverlayImageMaxArea(),
                          target_width, target_height)) {
    double scale = GetPreferredScale(region_size, target_width, target_height);
    auto downscaled_region_size =
        GetPreferredSize(region_size, target_width, target_height);
    int scaled_full_image_width =
        std::max<int>(scale * full_image_size.width(), 1);
    int scaled_full_image_height =
        std::max<int>(scale * full_image_size.height(), 1);
    int scaled_x = int(scale * region.x());
    int scaled_y = int(scale * region.y());

    SkIRect dest_subset = {scaled_x, scaled_y,
                           scaled_x + downscaled_region_size.width(),
                           scaled_y + downscaled_region_size.height()};
    output = skia::ImageOperations::Resize(
        image, skia::ImageOperations::RESIZE_BEST, scaled_full_image_width,
        scaled_full_image_height, dest_subset);
  } else {
    SkIRect dest_subset = {region.x(), region.y(), region.x() + region.width(),
                           region.y() + region.height()};
    output = skia::ImageOperations::Resize(
        image, skia::ImageOperations::RESIZE_BEST, image.width(),
        image.height(), dest_subset);
  }

  // Since we are cropping the image from a screenshot, we are assuming there
  // cannot be transparent pixels. This allows encoding logic to choose the
  // correct image format to represent the crop.
  output.setAlphaType(kOpaque_SkAlphaType);
  AddClientLogsForDownscale(client_logs, image, output);
  return output;
}

gfx::Rect GetRectForRegion(const SkBitmap& image,
                           const lens::mojom::CenterRotatedBoxPtr& region) {
  bool use_normalized_coordinates =
      region->coordinate_type ==
      lens::mojom::CenterRotatedBox_CoordinateType::kNormalized;
  double x_scale = use_normalized_coordinates ? image.width() : 1;
  double y_scale = use_normalized_coordinates ? image.height() : 1;
  return gfx::Rect(
      base::ClampFloor((region->box.x() - 0.5 * region->box.width()) * x_scale),
      base::ClampFloor((region->box.y() - 0.5 * region->box.height()) *
                       y_scale),
      std::max(1, base::ClampFloor(region->box.width() * x_scale)),
      std::max(1, base::ClampFloor(region->box.height() * y_scale)));
}

}  // namespace

namespace lens {

bool EncodeImage(
    const SkBitmap& image,
    int compression_quality,
    scoped_refptr<base::RefCountedBytes> output,
    scoped_refptr<lens::RefCountedLensOverlayClientLogs> client_logs) {
  std::optional<std::vector<uint8_t>> encoded_image =
      gfx::JPEGCodec::Encode(image, compression_quality);
  if (encoded_image) {
    output->as_vector() = std::move(encoded_image.value());
    AddClientLogsForEncode(client_logs, output);
    return true;
  }
  return false;
}

bool EncodeImageMaybeWithTransparency(
    const SkBitmap& image,
    int compression_quality,
    scoped_refptr<base::RefCountedBytes> output,
    scoped_refptr<lens::RefCountedLensOverlayClientLogs> client_logs) {
  if (image.isOpaque()) {
    return EncodeImage(image, compression_quality, output, client_logs);
  }
  std::optional<std::vector<uint8_t>> encoded_image =
      gfx::WebpCodec::Encode(image, compression_quality);
  if (encoded_image) {
    output->as_vector() = std::move(encoded_image.value());
    AddClientLogsForEncode(client_logs, output);
    return true;
  }
  return false;
}

lens::ImageData DownscaleAndEncodeBitmap(
    const SkBitmap& image,
    int ui_scale_factor,
    scoped_refptr<lens::RefCountedLensOverlayClientLogs> client_logs) {
  lens::ImageData image_data;
  scoped_refptr<base::RefCountedBytes> data =
      base::MakeRefCounted<base::RefCountedBytes>();

  auto resized_bitmap =
      DownscaleImageIfNeeded(image, ui_scale_factor, client_logs);
  if (EncodeImage(resized_bitmap,
                  lens::features::GetLensOverlayImageCompressionQuality(), data,
                  client_logs)) {
    image_data.mutable_image_metadata()->set_height(resized_bitmap.height());
    image_data.mutable_image_metadata()->set_width(resized_bitmap.width());

    image_data.mutable_payload()->mutable_image_bytes()->assign(data->begin(),
                                                                data->end());
  }
  return image_data;
}

void AddSignificantRegions(
    lens::ImageData& image_data,
    std::vector<lens::mojom::CenterRotatedBoxPtr> significant_region_boxes) {
  for (auto& bounding_box : significant_region_boxes) {
    auto* region = image_data.add_significant_regions();
    auto box = bounding_box->box;
    region->mutable_bounding_box()->set_center_x(box.x());
    region->mutable_bounding_box()->set_center_y(box.y());
    region->mutable_bounding_box()->set_width(box.width());
    region->mutable_bounding_box()->set_height(box.height());
    region->mutable_bounding_box()->set_coordinate_type(
        lens::CoordinateType::NORMALIZED);
  }
}

SkBitmap CropBitmapToRegion(const SkBitmap& image,
                            lens::mojom::CenterRotatedBoxPtr region) {
  gfx::Rect region_rect = GetRectForRegion(image, region);
  return SkBitmapOperations::CreateTiledBitmap(
      image, region_rect.x(), region_rect.y(), region_rect.width(),
      region_rect.height());
}

std::optional<lens::ImageCrop> DownscaleAndEncodeBitmapRegionIfNeeded(
    const SkBitmap& image,
    lens::mojom::CenterRotatedBoxPtr region,
    std::optional<SkBitmap> region_bytes,
    scoped_refptr<lens::RefCountedLensOverlayClientLogs> client_logs) {
  if (!region) {
    return std::nullopt;
  }

  gfx::Rect region_rect = GetRectForRegion(image, region);

  lens::ImageCrop image_crop;
  SkBitmap region_bitmap;
  scoped_refptr<base::RefCountedBytes> data =
      base::MakeRefCounted<base::RefCountedBytes>();
  ;
  if (region_bytes.has_value()) {
    region_bitmap = DownscaleImageIfNeeded(*region_bytes, /*ui_scale_factor=*/0,
                                           client_logs);
  } else {
    region_bitmap =
        CropAndDownscaleImageIfNeeded(image, region_rect, client_logs);
  }
  if (EncodeImageMaybeWithTransparency(
          region_bitmap,
          lens::features::GetLensOverlayImageCompressionQuality(), data,
          client_logs)) {
    auto* mutable_zoomed_crop = image_crop.mutable_zoomed_crop();
    mutable_zoomed_crop->set_parent_height(image.height());
    mutable_zoomed_crop->set_parent_width(image.width());
    double scale = static_cast<double>(region_bitmap.width()) /
                   static_cast<double>(region_rect.width());
    mutable_zoomed_crop->set_zoom(scale);
    mutable_zoomed_crop->mutable_crop()->set_center_x(
        static_cast<double>(region_rect.CenterPoint().x()) /
        static_cast<double>(image.width()));
    mutable_zoomed_crop->mutable_crop()->set_center_y(
        static_cast<double>(region_rect.CenterPoint().y()) /
        static_cast<double>(image.height()));
    mutable_zoomed_crop->mutable_crop()->set_width(
        static_cast<double>(region_rect.width()) /
        static_cast<double>(image.width()));
    mutable_zoomed_crop->mutable_crop()->set_height(
        static_cast<double>(region_rect.height()) /
        static_cast<double>(image.height()));
    mutable_zoomed_crop->mutable_crop()->set_coordinate_type(
        lens::CoordinateType::NORMALIZED);

    image_crop.mutable_image()->mutable_image_content()->assign(data->begin(),
                                                                data->end());
  }
  return image_crop;
}

lens::mojom::CenterRotatedBoxPtr GetCenterRotatedBoxFromTabViewAndImageBounds(
    const gfx::Rect& tab_bounds,
    const gfx::Rect& view_bounds,
    gfx::Rect image_bounds) {
  // Image bounds are relative to view bounds, so create a copy of the view
  // bounds with the offset removed. Use this to clip the image bounds.
  auto view_bounds_for_clipping = gfx::Rect(view_bounds.size());
  image_bounds.Intersect(view_bounds_for_clipping);

  float left =
      static_cast<float>(view_bounds.x() + image_bounds.x() - tab_bounds.x()) /
      tab_bounds.width();
  float right = static_cast<float>(view_bounds.x() + image_bounds.x() +
                                   image_bounds.width() - tab_bounds.x()) /
                tab_bounds.width();
  float top =
      static_cast<float>(view_bounds.y() + image_bounds.y() - tab_bounds.y()) /
      tab_bounds.height();
  float bottom = static_cast<float>(view_bounds.y() + image_bounds.y() +
                                    image_bounds.height() - tab_bounds.y()) /
                 tab_bounds.height();

  // Clip to remain inside tab bounds.
  if (left < 0) {
    left = 0;
  }
  if (right > 1) {
    right = 1;
  }
  if (top < 0) {
    top = 0;
  }
  if (bottom > 1) {
    bottom = 1;
  }

  float width = right - left;
  float height = bottom - top;
  float x = (left + right) / 2;
  float y = (top + bottom) / 2;

  auto region = lens::mojom::CenterRotatedBox::New();
  region->box = gfx::RectF(x, y, width, height);
  region->coordinate_type =
      lens::mojom::CenterRotatedBox_CoordinateType::kNormalized;
  return region;
}

SkColor ExtractVibrantOrDominantColorFromImage(const SkBitmap& image,
                                               float min_population_pct) {
  if (image.empty() || image.isNull()) {
    return SK_ColorTRANSPARENT;
  }

  min_population_pct = std::clamp(min_population_pct, 0.0f, 1.0f);

  std::vector<color_utils::ColorProfile> profiles;
  // vibrant color profile
  profiles.emplace_back(color_utils::LumaRange::ANY,
                        color_utils::SaturationRange::VIBRANT);
  // any color profile
  profiles.emplace_back(color_utils::LumaRange::ANY,
                        color_utils::SaturationRange::ANY);

  auto vibrantAndDominantColors = color_utils::CalculateProminentColorsOfBitmap(
      image, profiles, /*region=*/nullptr, color_utils::ColorSwatchFilter());

  for (const auto& swatch : vibrantAndDominantColors) {
    // Valid color. Extraction failure returns 0 alpha channel.
    // Population Threshold.
    if (SkColorGetA(swatch.color) != SK_AlphaTRANSPARENT &&
        static_cast<float>(swatch.population) >=
            static_cast<float>(
                std::min(image.width() * image.height(),
                         color_utils::kMaxConsideredPixelsForSwatches)) *
                min_population_pct) {
      return swatch.color;
    }
  }
  return SK_ColorTRANSPARENT;
}

std::optional<float> CalculateHueAngle(
    const std::tuple<float, float, float>& lab_color) {
  float a = std::get<1>(lab_color);
  float b = std::get<2>(lab_color);
  if (a == 0) {
    return std::nullopt;
  }
  return atan2(b, a);
}

float CalculateChroma(const std::tuple<float, float, float>& lab_color) {
  return hypotf(std::get<1>(lab_color), std::get<2>(lab_color));
}

std::optional<float> CalculateHueAngleDistance(
    const std::tuple<float, float, float>& lab_color1,
    const std::tuple<float, float, float>& lab_color2) {
  auto angle1 = CalculateHueAngle(lab_color1);
  auto angle2 = CalculateHueAngle(lab_color2);
  if (!angle1.has_value() || !angle2.has_value()) {
    return std::nullopt;
  }
  float distance = std::abs(angle1.value() - angle2.value());
  return std::min(distance, (float)(std::numbers::pi * 2.0 - distance));
}

// This conversion goes from legacy int based RGB to sRGB floats to
// XYZD50 to Lab, leveraging gfx conver_conversion functions.
std::tuple<float, float, float> ConvertColorToLab(SkColor color) {
  // Legacy RGB -> float sRGB -> XYZD50 -> LAB.
  auto [r, g, b] = gfx::SRGBLegacyToSRGB((float)SkColorGetR(color),
                                         (float)SkColorGetG(color),
                                         (float)SkColorGetB(color));
  auto [x, y, z] = gfx::SRGBToXYZD50(r, g, b);
  return gfx::XYZD50ToLab(x, y, z);
}

SkColor FindBestMatchedColorOrTransparent(
    const std::vector<SkColor>& candidate_colors,
    SkColor seed_color,
    float min_chroma) {
  if (SkColorGetA(seed_color) == SK_AlphaTRANSPARENT) {
    return SK_ColorTRANSPARENT;
  }
  if (candidate_colors.empty()) {
    return SK_ColorTRANSPARENT;
  }

  const auto& seed_lab = ConvertColorToLab(seed_color);
  // Check seed has enough chroma, calculated as hypot of a & b channels.
  if (CalculateChroma(seed_lab) < min_chroma) {
    return SK_ColorTRANSPARENT;
  }

  auto closest_color = std::min_element(
      candidate_colors.begin(), candidate_colors.end(),
      [&seed_lab](const auto& color1, const auto& color2) -> bool {
        const auto& theme1_lab = ConvertColorToLab(color1);
        const auto& theme2_lab = ConvertColorToLab(color2);
        auto angle1 = CalculateHueAngleDistance(theme1_lab, seed_lab);
        auto angle2 = CalculateHueAngleDistance(theme2_lab, seed_lab);
        return angle1.has_value() && angle2.has_value() &&
               angle1.value() < angle2.value();
      });
  if (closest_color == candidate_colors.end()) {
    return SK_ColorTRANSPARENT;
  }
  return *closest_color;
}

bool AreBitmapsEqual(const SkBitmap& bitmap1, const SkBitmap& bitmap2) {
  // Verify the dimensions are the same.
  if (bitmap1.width() != bitmap2.width() ||
      bitmap1.height() != bitmap2.height()) {
    return false;
  }

  // Compare pixel data
  SkPixmap pixmap1 = bitmap1.pixmap();
  SkPixmap pixmap2 = bitmap2.pixmap();
  return UNSAFE_TODO(memcmp(pixmap1.addr(), pixmap2.addr(),
                            pixmap1.computeByteSize())) == 0;
}
}  // namespace lens