1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/browser/web_applications/os_integration/mac/icns_encoder.h"
#include <algorithm>
#include "base/files/file.h"
#include "base/notreached.h"
#include "base/numerics/byte_conversions.h"
#include "base/numerics/checked_math.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "ui/gfx/codec/png_codec.h"
#include "ui/gfx/image/image.h"
namespace web_app {
namespace {
// Mapping of image size to the type identifiers used in the .icns file format
// for the png representation of the image as well as the RGB and Alpha channel
// representations.
struct IcnsBlockTypes {
int size;
uint32_t png_type;
uint32_t image_type = 0;
uint32_t mask_type = 0;
};
constexpr IcnsBlockTypes kIcnsBlockTypes[] = {
{16, 'icp4', 'is32', 's8mk'},
{32, 'icp5', 'il32', 'l8mk'},
{48, 'icp6', 'ih32', 'h8mk'},
{128, 'ic07'},
{256, 'ic08'},
{512, 'ic09'},
};
std::vector<uint8_t> CreateBlockHeader(uint32_t type, size_t data_length) {
std::vector<uint8_t> result(8u);
auto [first, second] = base::span(result).split_at<4u>();
first.copy_from(base::U32ToBigEndian(type));
second.copy_from(
base::U32ToBigEndian(base::checked_cast<uint32_t>(data_length + 8u)));
return result;
}
// Struct containing the red, green, blue and alpha channels extracted from an
// image as four separate vectors.
struct ImageBytes {
std::vector<uint8_t> r, g, b, a;
};
// Extracts the red, green, blue and alpha channels from `bitmap` as four
// separate vectors. The red, green and blue channels will contain the
// unpremultiplied values, as that is how data is stored in an .icns file.
ImageBytes ExtractImageBytes(const SkBitmap& bitmap) {
ImageBytes result;
const size_t pixel_count = bitmap.height() * bitmap.width();
result.r.reserve(pixel_count);
result.g.reserve(pixel_count);
result.b.reserve(pixel_count);
result.a.reserve(pixel_count);
for (int y = 0; y < bitmap.height(); ++y) {
for (int x = 0; x < bitmap.width(); ++x) {
SkColor c = bitmap.getColor(x, y);
result.r.push_back(SkColorGetR(c));
result.g.push_back(SkColorGetG(c));
result.b.push_back(SkColorGetB(c));
result.a.push_back(SkColorGetA(c));
}
}
return result;
}
} // namespace
IcnsEncoder::Block::Block(uint32_t type, std::vector<uint8_t> data)
: type(type), data(std::move(data)) {}
IcnsEncoder::Block::~Block() = default;
IcnsEncoder::Block::Block(Block&&) = default;
IcnsEncoder::Block& IcnsEncoder::Block::operator=(Block&&) = default;
IcnsEncoder::IcnsEncoder() = default;
IcnsEncoder::~IcnsEncoder() = default;
bool IcnsEncoder::AddImage(const gfx::Image& image) {
if (image.IsEmpty())
return false;
SkBitmap bitmap = image.AsBitmap();
if (bitmap.colorType() != kN32_SkColorType ||
bitmap.width() != bitmap.height())
return false;
const IcnsBlockTypes* block_types =
std::ranges::find(kIcnsBlockTypes, bitmap.width(), &IcnsBlockTypes::size);
if (block_types == std::end(kIcnsBlockTypes))
return false;
if (block_types->image_type != 0) {
// If there is a legacy image type for this size we should use that rather
// than the png format, as many places in Mac OS do not properly support png
// icons for sizes that also support a legacy format.
DCHECK(block_types->mask_type != 0);
ImageBytes bytes = ExtractImageBytes(bitmap);
std::vector<uint8_t> image_data;
AppendRLEImageData(bytes.r, &image_data);
AppendRLEImageData(bytes.g, &image_data);
AppendRLEImageData(bytes.b, &image_data);
AppendBlock(block_types->image_type, std::move(image_data));
AppendBlock(block_types->mask_type, std::move(bytes.a));
} else {
DCHECK(block_types->png_type != 0);
std::optional<std::vector<uint8_t>> png_data =
gfx::PNGCodec::EncodeBGRASkBitmap(bitmap,
/*discard_transparency=*/false);
if (!png_data) {
return false;
}
AppendBlock(block_types->png_type, std::move(png_data).value());
}
return true;
}
bool IcnsEncoder::WriteToFile(const base::FilePath& path) const {
// Build the Table of Contents, which is simply the headers of all the blocks
// concatenated.
Block toc('TOC ');
toc.data.reserve(8 * blocks_.size());
for (const auto& block : blocks_) {
auto header = CreateBlockHeader(block.type, block.data.size());
toc.data.insert(toc.data.end(), header.begin(), header.end());
}
size_t total_data_size =
total_block_size_ + toc.data.size() + kBlockHeaderSize;
base::File output(path, base::File::Flags::FLAG_CREATE_ALWAYS |
base::File::Flags::FLAG_WRITE);
if (!output.IsValid())
return false;
if (!output.WriteAtCurrentPosAndCheck(
::web_app::CreateBlockHeader('icns', total_data_size))) {
return false;
}
if (!WriteBlockToFile(output, toc))
return false;
for (const auto& block : blocks_) {
if (!WriteBlockToFile(output, block))
return false;
}
return true;
}
// static
void IcnsEncoder::AppendRLEImageData(base::span<const uint8_t> data,
std::vector<uint8_t>* rle_data) {
// The packing loop is done with two pieces of state:
// - data: at any point in the loop this only contains the bytes that have
// not yet been written to the block
// - search_offset: this is the offset within |data| used to search for
// byte runs
//
// The code scours through the data, looking for runs of length greater than 3
// (since only runs of 3 or longer can be compressed). As soon as a run is
// found, all the data up to `search_offset` is dumped as literal data,
// `data` is updated to only point at the remaining data, then the run is
// dumped (and `data` updated again), and then the search continues.
size_t search_offset = 0;
// Search for runs through the block of data, byte by byte.
while (search_offset < data.size()) {
uint8_t current_byte = data[search_offset];
size_t run_length = 1;
while (search_offset + run_length < data.size() && run_length < 130 &&
data[search_offset + run_length] == current_byte) {
++run_length;
}
if (run_length >= 3) {
// A long-enough run was found. First, dump all the data before the run
// into the output block.
while (search_offset > 0) {
// Because uncompressed data runs max out at 128 bytes of data, cap the
// uncompressed run at 128 bytes.
base::span<const uint8_t> uncompressed_chunk =
data.first(std::min<size_t>(search_offset, 128));
// Key byte values of 0..127 mean 1..128 bytes of uncompressed data.
uint8_t key_byte = uncompressed_chunk.size() - 1;
rle_data->push_back(key_byte);
rle_data->insert(rle_data->end(), uncompressed_chunk.begin(),
uncompressed_chunk.end());
data = data.subspan(uncompressed_chunk.size());
search_offset -= uncompressed_chunk.size();
}
// Now that the output block is caught up, put the run that was just found
// into it. Key byte values of 128..255 mean 3..130 copies of the
// following byte, thus the addition of 125 to the run length.
uint8_t key_byte = run_length + 125;
rle_data->push_back(key_byte);
rle_data->push_back(current_byte);
data = data.subspan(run_length);
} else {
// The run is too small, so keep looking.
search_offset += run_length;
}
}
// At this point, there are no more runs, so pack the rest of the data into
// the output block.
while (search_offset > 0) {
// Because uncompressed data runs max out at 128 bytes of data, cap the
// uncompressed run at 128 bytes.
base::span<const uint8_t> uncompressed_chunk =
data.first(std::min<size_t>(search_offset, 128));
// Key byte values of 0..127 mean 1..128 bytes of uncompressed data.
uint8_t key_byte = uncompressed_chunk.size() - 1;
rle_data->push_back(key_byte);
rle_data->insert(rle_data->end(), uncompressed_chunk.begin(),
uncompressed_chunk.end());
data = data.subspan(uncompressed_chunk.size());
search_offset -= uncompressed_chunk.size();
}
}
void IcnsEncoder::AppendBlock(uint32_t type, std::vector<uint8_t> data) {
total_block_size_ += data.size() + kBlockHeaderSize;
blocks_.emplace_back(type, std::move(data));
}
// static
bool IcnsEncoder::WriteBlockToFile(base::File& file, const Block& block) {
if (!file.WriteAtCurrentPosAndCheck(
CreateBlockHeader(block.type, block.data.size())))
return false;
if (!file.WriteAtCurrentPosAndCheck(block.data))
return false;
return true;
}
} // namespace web_app
|