File: autocomplete_scoring_model_executor.cc

package info (click to toggle)
chromium 138.0.7204.183-1~deb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm-proposed-updates
  • size: 6,080,960 kB
  • sloc: cpp: 34,937,079; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,954; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,811; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (56 lines) | stat: -rw-r--r-- 1,920 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "components/omnibox/browser/autocomplete_scoring_model_executor.h"

#include <optional>
#include <vector>

#include "base/check_op.h"
#include "base/metrics/histogram_functions.h"
#include "base/notreached.h"
#include "third_party/tflite/src/tensorflow/lite/c/common.h"
#include "third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/task_utils.h"

AutocompleteScoringModelExecutor::AutocompleteScoringModelExecutor() = default;
AutocompleteScoringModelExecutor::~AutocompleteScoringModelExecutor() = default;

bool AutocompleteScoringModelExecutor::Preprocess(
    const std::vector<TfLiteTensor*>& input_tensors,
    ModelInput input) {
  const bool valid_input_size = input.size() == input_tensors.size();
  base::UmaHistogramBoolean(
      "Omnibox.URLScoringModelExecuted.Preprocess.ValidInputSize",
      valid_input_size);
  if (!valid_input_size) {
    return false;
  }
  DCHECK_EQ(kTfLiteFloat32, input_tensors[0]->type);
  for (size_t i = 0; i < input.size(); ++i) {
    std::vector<float> data = {input[i]};
    absl::Status status =
        tflite::task::core::PopulateTensor<float>(data, input_tensors[i]);
    if (!status.ok()) {
      return false;
    }
  }
  return true;
}

std::optional<AutocompleteScoringModelExecutor::ModelOutput>
AutocompleteScoringModelExecutor::Postprocess(
    const std::vector<const TfLiteTensor*>& output_tensors) {
  DCHECK_EQ(1u, output_tensors.size());
  DCHECK_EQ(kTfLiteFloat32, output_tensors[0]->type);
  DCHECK_EQ(1u, output_tensors[0]->bytes / sizeof(output_tensors[0]->type));

  ModelOutput output;
  absl::Status status =
      tflite::task::core::PopulateVector<float>(output_tensors[0], &output);
  if (!status.ok()) {
    NOTREACHED();
  }
  DCHECK_EQ(1u, output.size());
  return output;
}