1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
|
// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef COMPONENTS_OPTIMIZATION_GUIDE_CORE_TFLITE_MODEL_EXECUTOR_H_
#define COMPONENTS_OPTIMIZATION_GUIDE_CORE_TFLITE_MODEL_EXECUTOR_H_
#include <optional>
#include "base/files/file.h"
#include "base/functional/bind.h"
#include "base/functional/callback_forward.h"
#include "base/logging.h"
#include "base/metrics/histogram.h"
#include "base/metrics/histogram_functions.h"
#include "base/sequence_checker.h"
#include "base/task/sequenced_task_runner.h"
#include "base/task/thread_pool.h"
#include "base/time/time.h"
#include "base/timer/elapsed_timer.h"
#include "base/trace_event/trace_event.h"
#include "base/types/expected.h"
#include "components/optimization_guide/core/execution_status.h"
#include "components/optimization_guide/core/model_enums.h"
#include "components/optimization_guide/core/model_execution_timeout_watchdog.h"
#include "components/optimization_guide/core/model_executor.h"
#include "components/optimization_guide/core/model_util.h"
#include "components/optimization_guide/core/optimization_guide_features.h"
#include "components/optimization_guide/machine_learning_tflite_buildflags.h"
#include "third_party/tflite/src/tensorflow/lite/c/common.h"
#include "third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/base_task_api.h"
namespace optimization_guide {
namespace {
// Util class for recording the result of the model execution. The result is
// recorded when it goes out of scope and its destructor is called.
class ScopedExecutionStatusResultRecorder {
public:
explicit ScopedExecutionStatusResultRecorder(
proto::OptimizationTarget optimization_target)
: optimization_target_(optimization_target) {}
~ScopedExecutionStatusResultRecorder() {
base::UmaHistogramEnumeration(
"OptimizationGuide.ModelExecutor.ExecutionStatus." +
optimization_guide::GetStringNameForOptimizationTarget(
optimization_target_),
status_);
}
ExecutionStatus* mutable_status() { return &status_; }
ExecutionStatus status() const { return status_; }
void set_status(ExecutionStatus status) { status_ = status; }
private:
// The OptimizationTarget of the model being executed.
const proto::OptimizationTarget optimization_target_;
ExecutionStatus status_ = ExecutionStatus::kUnknown;
};
} // namespace
// An ModelExecutor that executes tflite models with arbitrary
// input and output types. Note that callers will need to give an implementation
// of this class to a |ModelHandler|, whereas the
// handle is the actual class that calling code would own and call into.
//
// By default, the model file will be (re)loaded for every execution and then
// unloaded from memory after every execution (e.g.: "OnComplete"). This helps
// to keep memory usage of the browser process down, but does delay model
// execution by the time it takes to load the model (about 50ms in practice).
// See |SetShouldUnloadModelOnComplete| to override this behavior.
//
// Note that when built with the MediaPipe backend (non-default), task
// cancellation is not supported.
template <class OutputType,
class InputType,
// TODO(b/283522287): Remove this once all usage of TFLite Task
// Support are replaced by MediaPipe.
class ModelExecutionTaskType =
tflite::task::core::BaseTaskApi<OutputType, InputType>>
class TFLiteModelExecutor : public ModelExecutor<OutputType, InputType> {
public:
TFLiteModelExecutor()
: watchdog_(nullptr, base::OnTaskRunnerDeleter(nullptr)) {}
~TFLiteModelExecutor() override {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Unload the model. Do not use `UnloadModel` since it may be overridden by
// a subclass and hence not available from this destructor.
model_fb_.reset();
}
// Should be called on the same sequence as the ctor, but once called |this|
// must only be used from the |execution_task_runner| thread/sequence.
void InitializeAndMoveToExecutionThread(
std::optional<base::TimeDelta> model_inference_timeout,
proto::OptimizationTarget optimization_target,
scoped_refptr<base::SequencedTaskRunner> execution_task_runner,
scoped_refptr<base::SequencedTaskRunner> reply_task_runner) override {
DCHECK(!execution_task_runner_);
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK_NE(optimization_target,
proto::OptimizationTarget::OPTIMIZATION_TARGET_UNKNOWN);
DETACH_FROM_SEQUENCE(sequence_checker_);
optimization_target_ = optimization_target;
execution_task_runner_ = execution_task_runner;
reply_task_runner_ = reply_task_runner;
model_loading_task_runner_ = base::ThreadPool::CreateSequencedTaskRunner(
{base::MayBlock(), base::TaskPriority::BEST_EFFORT});
if (features::IsModelExecutionWatchdogEnabled()) {
// The sequence |watchdog_sequence| is used to run watchdog's task. The
// watchdog must be deleted on that sequence to guarantee that pending
// tasks can safely be executed.
scoped_refptr<base::SequencedTaskRunner> watchdog_sequence =
base::ThreadPool::CreateSequencedTaskRunner({base::MayBlock()});
watchdog_ = std::unique_ptr<ModelExecutionTimeoutWatchdog,
base::OnTaskRunnerDeleter>(
new ModelExecutionTimeoutWatchdog(
watchdog_sequence, optimization_target_,
model_inference_timeout.value_or(
features::ModelExecutionWatchdogDefaultTimeout())),
base::OnTaskRunnerDeleter(watchdog_sequence));
}
}
// Called when a model file is available to load. Immediately loads model into
// memory when `should_preload_model_` is set.
void UpdateModelFile(
base::optional_ref<const base::FilePath> file_path) override {
DCHECK(execution_task_runner_ &&
execution_task_runner_->RunsTasksInCurrentSequence());
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
UnloadModel();
DCHECK(!loaded_model_);
DCHECK(!model_fb_);
// The model has been removed.
if (!file_path.has_value()) {
model_file_path_.reset();
return;
}
model_file_path_ = *file_path;
// crbug/1257189: Histogram enums can't use dynamically created histogram
// names, so factory create the local histogram (used in testing).
base::HistogramBase* histogram = base::BooleanHistogram::FactoryGet(
"OptimizationGuide.ModelExecutor.ModelFileUpdated." +
optimization_guide::GetStringNameForOptimizationTarget(
optimization_target_),
base::Histogram::kNoFlags);
histogram->Add(true);
if (should_preload_model_) {
LoadModelFile(base::DoNothing());
}
}
// Calling this method allows the default model loading/unloading behavior to
// be overridden. Setting this to false will cause the model to remain loaded
// afterwards a model execution (e.g.: "OnComplete"), until |UnloadModel| is
// called. False is the default behavior (see class comment).
//
// Note that keeping the model in memory for a long duration may be detected
// as a memory leak in Chrome, and will always increase the private or shared
// memory used by the browser by the size of the model file and the
// constructed TFLite graph.
void SetShouldUnloadModelOnComplete(
bool should_unload_model_on_complete) override {
DCHECK(execution_task_runner_->RunsTasksInCurrentSequence());
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
should_unload_model_on_complete_ = should_unload_model_on_complete;
}
// Calling this method allows the default model preloading behavior to
// be overridden. Setting this to true will cause the model to be loaded as
// soon as its file path is available. Callers may also need to call
// `SetShouldUnloadModelOnComplete(true)` to keep the model in memory for the
// lifetime of the entire browsing session.
//
// Note that keeping the model in memory for a long duration may be detected
// as a memory leak in Chrome, and will always increase the private or shared
// memory used by the browser by the size of the model file and the
// constructed TFLite graph.
void SetShouldPreloadModel(bool should_preload_model) override {
DCHECK(execution_task_runner_->RunsTasksInCurrentSequence());
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
should_preload_model_ = should_preload_model;
}
// Clears the loaded model from memory if it is loaded. Safe to call when the
// model is already unloaded, and becomes a no-op.
void UnloadModel() override {
TRACE_EVENT1("browser", "OptGuideModelExecutor::UnloadModel",
"OptimizationTarget",
optimization_guide::GetStringNameForOptimizationTarget(
optimization_target_));
DCHECK(execution_task_runner_->RunsTasksInCurrentSequence());
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
loaded_model_.reset();
model_fb_.reset();
}
using ExecutionCallback =
base::OnceCallback<void(const std::optional<OutputType>&)>;
using BatchExecutionCallback =
base::OnceCallback<void(const std::vector<std::optional<OutputType>>&)>;
// When complete, |callback_on_complete| will be run via |reply_task_runner_|
// with the outputs of the model.
void SendForExecution(ExecutionCallback callback_on_complete,
base::TimeTicks start_time,
InputType input) override {
BatchExecutionCallback adapted_callback = base::BindOnce(
[](ExecutionCallback callback,
const std::vector<std::optional<OutputType>>& output) {
CHECK_EQ(output.size(), 1U);
std::move(callback).Run(output[0]);
},
std::move(callback_on_complete));
SendForBatchExecution(std::move(adapted_callback), start_time, {input});
}
// Starts the batch execution of the model. When complete,
// |callback_on_complete| will be run via |reply_task_runner_| with the
// outputs of the model.
void SendForBatchExecution(
BatchExecutionCallback callback_on_complete,
base::TimeTicks start_time,
ModelExecutor<OutputType, InputType>::ConstRefInputVector inputs)
override {
DCHECK(execution_task_runner_->RunsTasksInCurrentSequence());
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(reply_task_runner_);
base::TimeDelta task_scheduling_latency =
base::TimeTicks::Now() - start_time;
base::UmaHistogramMediumTimes(
"OptimizationGuide.ModelExecutor.TaskSchedulingLatency." +
optimization_guide::GetStringNameForOptimizationTarget(
optimization_target_),
task_scheduling_latency);
// Load the model file in the background thread if not loaded yet, and
// then batch execute the loaded model on the execution thread.
LoadModelFileAndBatchExecute(std::move(callback_on_complete), inputs);
}
// Starts the synchronous execution of the model. Returns model outputs.
// Model needs to be loaded. Synchronous calls do not load or unload model.
std::vector<std::optional<OutputType>> SendForBatchExecutionSync(
ModelExecutor<OutputType, InputType>::ConstRefInputVector inputs)
override {
DCHECK(execution_task_runner_->RunsTasksInCurrentSequence());
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
std::vector<std::optional<OutputType>> outputs;
outputs.reserve(inputs.size());
// If the model isn't loaded yet, return null results.
if (!loaded_model_) {
for (size_t i = 0; i < inputs.size(); i++) {
outputs.push_back(std::nullopt);
// If the model is not loaded in a batch context, this status would not
// get recorded the same number of times as it would in success. Thus,
// increment the bucket |inputs.size()| number of times to keep metrics
// sane.
ScopedExecutionStatusResultRecorder status_recorder(
optimization_target_);
status_recorder.set_status(
ExecutionStatus::kErrorModelFileNotAvailable);
}
return outputs;
}
BatchExecuteLoadedModel(inputs, &outputs);
OnExecutionComplete();
return outputs;
}
// IMPORTANT: These WeakPointers must only be dereferenced on the
// |execution_task_runner| thread.
base::WeakPtr<TFLiteModelExecutor> GetWeakPtrForExecutionThread() {
return execution_sequence_weak_ptr_factory_.GetWeakPtr();
}
TFLiteModelExecutor(const TFLiteModelExecutor&) = delete;
TFLiteModelExecutor& operator=(const TFLiteModelExecutor&) = delete;
protected:
using ModelExecutionTask =
tflite::task::core::BaseTaskApi<OutputType, InputType>;
// Executes the model using |execution_task| on |args|, returning the model
// output and setting |out_status| with the status of the execution attempt.
virtual std::optional<OutputType> Execute(
ModelExecutionTaskType* execution_task,
ExecutionStatus* out_status,
InputType args) = 0;
// Builds a model execution task using |model_file|. On error, the returned
// `ExecutionStatus` will never be `ExecutionStatus::kSuccess`.
virtual base::expected<std::unique_ptr<ModelExecutionTaskType>,
ExecutionStatus>
BuildModelExecutionTask(base::File& model_file) = 0;
private:
using FileDeleteOnTaskRunner =
std::unique_ptr<base::File, base::OnTaskRunnerDeleter>;
static FileDeleteOnTaskRunner NullFileDeleteOnTaskRunner() {
return {nullptr, base::OnTaskRunnerDeleter(nullptr)};
}
// Loads the model file in the background thread, and calls a callback on
// model file loaded in memory on the model execution thread.
void LoadModelFile(
base::OnceCallback<void(ExecutionStatus)> model_loaded_callback) {
TRACE_EVENT1("browser", "OptGuideModelExecutor::LoadModelFile",
"OptimizationTarget",
optimization_guide::GetStringNameForOptimizationTarget(
optimization_target_));
DCHECK(execution_task_runner_->RunsTasksInCurrentSequence());
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
UnloadModel();
base::UmaHistogramBoolean(
"OptimizationGuide.ModelExecutor.ModelAvailableToLoad." +
GetStringNameForOptimizationTarget(optimization_target_),
!!model_file_path_);
// TODO(b/298673103): Multiple calls to LoadModelFile may trigger this
// PostTask multiple times.
// Run the slower model loading file I/O task on the background thread to
// avoid blocking the main thread, e.g., the UI thread.
model_loading_task_runner_->PostTaskAndReplyWithResult(
FROM_HERE,
// Anomynous model file loading function to be called on the background
// thread, which returns the memory-mapped model file or nullptr if
// failed to load.
base::BindOnce(
[](const std::optional<base::FilePath> model_file_path,
proto::OptimizationTarget optimization_target,
scoped_refptr<base::SequencedTaskRunner>
model_loading_task_runner)
-> base::expected<FileDeleteOnTaskRunner, ExecutionStatus> {
base::TimeTicks loading_start_time = base::TimeTicks::Now();
if (!model_file_path) {
return base::unexpected(
ExecutionStatus::kErrorModelFileNotAvailable);
}
FileDeleteOnTaskRunner model_fb(
new base::File(*model_file_path,
base::File::FLAG_OPEN | base::File::FLAG_READ),
base::OnTaskRunnerDeleter(
std::move(model_loading_task_runner)));
if (!model_fb->IsValid()) {
return base::unexpected(
ExecutionStatus::kErrorModelFileNotValid);
}
// We only want to record successful loading times.
base::UmaHistogramTimes(
"OptimizationGuide.ModelExecutor.ModelLoadingDuration2." +
optimization_guide::GetStringNameForOptimizationTarget(
optimization_target),
base::TimeTicks::Now() - loading_start_time);
return std::move(model_fb);
},
model_file_path_, optimization_target_, model_loading_task_runner_),
base::BindOnce(&TFLiteModelExecutor::OnModelFileLoadedInMemory,
GetWeakPtrForExecutionThread(),
std::move(model_loaded_callback)));
}
// Called on model file loaded in memory. Builds the model execution task from
// the memory-mapped file, and calls `model_loaded_callback`.
void OnModelFileLoadedInMemory(
base::OnceCallback<void(ExecutionStatus)> model_loaded_callback,
base::expected<FileDeleteOnTaskRunner, ExecutionStatus> model_fb) {
DCHECK(execution_task_runner_->RunsTasksInCurrentSequence());
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// If |model_fb_| is going to be replaced below, it needs to be deleted on a
// blockable thread.
UnloadModel();
if (!model_fb.has_value()) {
std::move(model_loaded_callback).Run(model_fb.error());
return;
}
model_fb_ = std::move(*model_fb);
auto build_result = BuildModelExecutionTask(*model_fb_);
if (build_result.has_value()) {
loaded_model_ = std::move(build_result.value());
}
// Local histogram used in integration testing.
base::BooleanHistogram::FactoryGet(
"OptimizationGuide.ModelExecutor.ModelLoadedSuccessfully." +
optimization_guide::GetStringNameForOptimizationTarget(
optimization_target_),
base::Histogram::kNoFlags)
->Add(!!loaded_model_);
std::move(model_loaded_callback)
.Run(build_result.error_or(ExecutionStatus::kSuccess));
}
// Loads the model file if not loaded yet on the background thread, and batch
// executes it on the model execution thread.
void LoadModelFileAndBatchExecute(
BatchExecutionCallback callback_on_complete,
ModelExecutor<OutputType, InputType>::ConstRefInputVector inputs) {
DCHECK(execution_task_runner_->RunsTasksInCurrentSequence());
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (!loaded_model_) {
LoadModelFile(base::BindOnce(
&TFLiteModelExecutor::BatchExecuteLoadedModelAndRunCallback,
GetWeakPtrForExecutionThread(), std::move(callback_on_complete),
inputs));
} else {
BatchExecuteLoadedModelAndRunCallback(std::move(callback_on_complete),
inputs, ExecutionStatus::kSuccess);
}
}
// Batch executes the loaded model for inputs.
void BatchExecuteLoadedModel(
ModelExecutor<OutputType, InputType>::ConstRefInputVector inputs,
std::vector<std::optional<OutputType>>* outputs) {
DCHECK(execution_task_runner_->RunsTasksInCurrentSequence());
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(loaded_model_);
if (last_execution_time_) {
// The max of this histogram is 3m since only the distribution and count
// of smaller values is important.
base::UmaHistogramMediumTimes(
"OptimizationGuide.ModelExecutor.TimeSincePreviousRun." +
GetStringNameForOptimizationTarget(optimization_target_),
base::TimeTicks::Now() - *last_execution_time_);
}
last_execution_time_ = base::TimeTicks::Now();
for (const InputType& input : inputs) {
ScopedExecutionStatusResultRecorder status_recorder(optimization_target_);
// IMPORTANT: Once the arm method is called, disarm must be called when
// the model execution finishes. Do NOT early-return in this next block.
if (watchdog_) {
watchdog_->ArmWithTask(MakeCancelClosure());
}
{
TRACE_EVENT1("browser", "OptGuideModelExecutor::Execute",
"OptimizationTarget",
optimization_guide::GetStringNameForOptimizationTarget(
optimization_target_));
base::ElapsedThreadTimer execution_timer;
base::ElapsedTimer elapsed_timer;
std::optional<OutputType> output = Execute(
loaded_model_.get(), status_recorder.mutable_status(), input);
DCHECK_NE(status_recorder.status(), ExecutionStatus::kUnknown);
outputs->push_back(output);
// The max of this histogram is 1 hour because we want to understand
// tail behavior and catch long running model executions.
base::UmaHistogramLongTimes(
"OptimizationGuide.ModelExecutor.ExecutionLatency." +
GetStringNameForOptimizationTarget(optimization_target_),
elapsed_timer.Elapsed());
base::UmaHistogramLongTimes(
"OptimizationGuide.ModelExecutor.ExecutionThreadTime." +
GetStringNameForOptimizationTarget(optimization_target_),
execution_timer.Elapsed());
base::UmaHistogramMicrosecondsTimes(
"OptimizationGuide.ModelExecutor.ExecutionThreadTimeMicroseconds." +
GetStringNameForOptimizationTarget(optimization_target_),
execution_timer.Elapsed());
}
if (watchdog_) {
watchdog_->DisarmOnExecutionComplete();
}
}
}
// Batch executes the loaded model and runs callback on the reply thread.
// Unloads the model if needed.
void BatchExecuteLoadedModelAndRunCallback(
BatchExecutionCallback callback_on_complete,
ModelExecutor<OutputType, InputType>::ConstRefInputVector inputs,
ExecutionStatus execution_status) {
DCHECK(execution_task_runner_->RunsTasksInCurrentSequence());
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
std::vector<std::optional<OutputType>> outputs;
outputs.reserve(inputs.size());
if (!loaded_model_) {
for (size_t i = 0; i < inputs.size(); i++) {
outputs.push_back(std::nullopt);
// If the model fails to load in a batch context, this status would not
// get recorded the same number of times as it would in success. Thus,
// increment the bucket |inputs.size()| number of times to keep metrics
// sane.
ScopedExecutionStatusResultRecorder status_recorder(
optimization_target_);
status_recorder.set_status(execution_status);
}
reply_task_runner_->PostTask(
FROM_HERE, base::BindOnce(std::move(callback_on_complete), outputs));
return;
}
BatchExecuteLoadedModel(inputs, &outputs);
DCHECK(callback_on_complete);
reply_task_runner_->PostTask(
FROM_HERE, base::BindOnce(std::move(callback_on_complete), outputs));
OnExecutionComplete();
}
void OnExecutionComplete() {
DCHECK(execution_task_runner_->RunsTasksInCurrentSequence());
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (should_unload_model_on_complete_) {
UnloadModel();
}
}
base::OnceClosure MakeCancelClosure() {
#if BUILDFLAG(BUILD_WITH_MEDIAPIPE_LIB)
return base::DoNothing();
#else
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// |base::Unretained| is safe here since the watchdog itself guarantees the
// lifetime of the stored pointer will not extend beyond when it is
// disarmed.
return base::BindOnce(&ModelExecutionTask::Cancel,
base::Unretained(loaded_model_.get()));
#endif
}
proto::OptimizationTarget optimization_target_ =
proto::OptimizationTarget::OPTIMIZATION_TARGET_UNKNOWN;
bool should_unload_model_on_complete_ = true;
bool should_preload_model_ = false;
std::unique_ptr<ModelExecutionTimeoutWatchdog, base::OnTaskRunnerDeleter>
watchdog_;
// Main thread for model execution. For synchronous model execution, this
// needs to be the same caller thread.
scoped_refptr<base::SequencedTaskRunner> execution_task_runner_;
// Arbitrary thread for running reply tasks.
scoped_refptr<base::SequencedTaskRunner> reply_task_runner_;
// Background thread for model loading file I/O.
scoped_refptr<base::SequencedTaskRunner> model_loading_task_runner_;
// The time that the model was last executed. Logged in metrics for the second
// and following runs.
std::optional<base::TimeTicks> last_execution_time_
GUARDED_BY_CONTEXT(sequence_checker_);
// The model file path to be loaded. May be nullopt if no model has been
// downloaded yet.
std::optional<base::FilePath> model_file_path_
GUARDED_BY_CONTEXT(sequence_checker_);
// Note on lifetimes: |loaded_model_| and |model_fb_| both share the same
// lifetime, being set in |LoadModelFile()| and being destroyed in
// |UnloadModel()|.
std::unique_ptr<ModelExecutionTaskType> loaded_model_
GUARDED_BY_CONTEXT(sequence_checker_);
// This will only be non-null when |model_file_path_| is set, and while the
// model is loaded which is managed by a feature flag. `OnTaskRunnerDeleter`
// is used to ensure that destruction occurs on a sequence that allows
// blocking, since it involves closing a file handle.
FileDeleteOnTaskRunner model_fb_ GUARDED_BY_CONTEXT(sequence_checker_) =
NullFileDeleteOnTaskRunner();
SEQUENCE_CHECKER(sequence_checker_);
base::WeakPtrFactory<TFLiteModelExecutor>
execution_sequence_weak_ptr_factory_{this};
};
} // namespace optimization_guide
#endif // COMPONENTS_OPTIMIZATION_GUIDE_CORE_TFLITE_MODEL_EXECUTOR_H_
|