1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
|
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/os_crypt/async/common/encryptor.h"
#include <algorithm>
#include <vector>
#include "base/containers/span.h"
#include "base/functional/callback_helpers.h"
#include "base/test/gtest_util.h"
#include "build/build_config.h"
#include "components/os_crypt/async/common/encryptor.h"
#include "components/os_crypt/async/common/encryptor.mojom.h"
#include "components/os_crypt/sync/os_crypt.h"
#include "components/os_crypt/sync/os_crypt_mocker.h"
#include "crypto/hkdf.h"
#include "crypto/random.h"
#include "mojo/public/cpp/test_support/test_utils.h"
#include "testing/gtest/include/gtest/gtest.h"
#if BUILDFLAG(IS_LINUX)
#include "components/os_crypt/sync/key_storage_linux.h"
#endif
#if BUILDFLAG(IS_WIN)
#include <windows.h>
#include <wincrypt.h>
#include "base/win/scoped_localalloc.h"
#endif // BUILDFLAG(IS_WIN)
namespace os_crypt_async {
#if BUILDFLAG(IS_WIN)
namespace {
// Utility function to encrypt data using the raw DPAPI interface.
bool EncryptStringWithDPAPI(const std::string& plaintext,
std::string& ciphertext) {
DATA_BLOB input = {};
input.pbData =
const_cast<BYTE*>(reinterpret_cast<const BYTE*>(plaintext.data()));
input.cbData = static_cast<DWORD>(plaintext.length());
BOOL result = FALSE;
DATA_BLOB output = {};
result =
::CryptProtectData(&input, /*szDataDescr=*/L"",
/*pOptionalEntropy=*/nullptr, /*pvReserved=*/nullptr,
/*pPromptStruct=*/nullptr, /*dwFlags=*/0, &output);
if (!result) {
return false;
}
auto local_alloc = base::win::TakeLocalAlloc(output.pbData);
static_assert(sizeof(std::string::value_type) == 1);
ciphertext.assign(
reinterpret_cast<std::string::value_type*>(local_alloc.get()),
output.cbData);
return true;
}
} // namespace
#endif // BUILDFLAG(IS_WIN)
enum class TestType {
// Test that all operations work with no keys.
kEmptyPassThru,
// Test that all operations work with a single key loaded.
kWithSingleKey,
// Test that all operations work with multiple keys loaded, and the first key
// loaded is the default encryption provider.
kWithMultipleKeys,
// Test that all operations work with multiple keys loaded, and the second key
// loaded is the default encryption provider.
kWithMultipleKeysBackwards,
};
const auto kTestCases = {TestType::kEmptyPassThru, TestType::kWithSingleKey,
TestType::kWithMultipleKeys,
TestType::kWithMultipleKeysBackwards};
class EncryptorTestBase : public ::testing::Test {
protected:
// This constant is taken from os_crypt_win.cc.
static const size_t kKeyLength = 256 / 8;
static_assert(kKeyLength == Encryptor::Key::kAES256GCMKeySize,
"Key lengths must be the same.");
static const Encryptor GetEncryptor() { return Encryptor(); }
static const Encryptor GetEncryptor(
Encryptor::KeyRing keys,
const std::string& provider_for_encryption) {
return Encryptor(std::move(keys), provider_for_encryption,
provider_for_encryption);
}
static const Encryptor GetEncryptor(
Encryptor::KeyRing keys,
const std::string& provider_for_encryption,
const std::string& provider_for_os_crypt_sync_compatible_encryption) {
return Encryptor(std::move(keys), provider_for_encryption,
provider_for_os_crypt_sync_compatible_encryption);
}
static Encryptor::Key GenerateRandomAES256TestKey() {
Encryptor::Key key(
crypto::RandBytesAsVector(Encryptor::Key::kAES256GCMKeySize),
mojom::Algorithm::kAES256GCM);
return key;
}
static Encryptor::Key DeriveAES256TestKey(std::string_view seed) {
auto key_data =
crypto::HkdfSha256(seed, {}, {}, Encryptor::Key::kAES256GCMKeySize);
Encryptor::Key key(base::as_byte_span(key_data),
mojom::Algorithm::kAES256GCM);
return key;
}
// Simulate a 'locked' OSCrypt keychain on platforms that need it, which makes
// OSCrypt::IsEncryptionAvailable return false, without hitting a CHECK on
// Linux. Note this is different from using the full OSCryptMocker, because in
// this state, no key is available for encryption. Returns a
// ScopedClosureRunner that will reset the behavior back to default when it
// goes out of scope.
[[nodiscard]] static std::optional<base::ScopedClosureRunner>
MaybeSimulateLockedKeyChain() {
#if BUILDFLAG(IS_LINUX)
OSCrypt::ClearCacheForTesting();
OSCrypt::UseMockKeyStorageForTesting(base::BindOnce(
[]() -> std::unique_ptr<KeyStorageLinux> { return nullptr; }));
return base::ScopedClosureRunner(base::BindOnce([]() {
OSCrypt::UseMockKeyStorageForTesting(base::NullCallback());
OSCrypt::ClearCacheForTesting();
}));
#elif BUILDFLAG(IS_APPLE)
OSCrypt::UseLockedMockKeychainForTesting(/*use_locked=*/true);
return base::ScopedClosureRunner(base::BindOnce([]() {
OSCrypt::UseLockedMockKeychainForTesting(/*use_locked=*/false);
}));
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
OSCrypt::SetEncryptionAvailableForTesting(/*available=*/false);
return base::ScopedClosureRunner(base::BindOnce([]() {
OSCrypt::SetEncryptionAvailableForTesting(/*available=*/std::nullopt);
}));
#else
return std::nullopt;
#endif
}
};
class EncryptorTestWithOSCrypt : public EncryptorTestBase {
protected:
void SetUp() override { OSCryptMocker::SetUp(); }
void TearDown() override {
OSCryptMocker::TearDown();
#if BUILDFLAG(IS_WIN)
OSCrypt::ResetStateForTesting();
#endif // BUILDFLAG(IS_WIN)
}
};
class EncryptorTest : public EncryptorTestWithOSCrypt,
public ::testing::WithParamInterface<TestType> {
protected:
const Encryptor GetTestEncryptor() {
switch (GetParam()) {
case TestType::kEmptyPassThru: {
return GetEncryptor();
}
case TestType::kWithSingleKey: {
Encryptor::KeyRing key_ring;
key_ring.emplace("TEST", GenerateRandomAES256TestKey());
return GetEncryptor(std::move(key_ring), "TEST");
}
case TestType::kWithMultipleKeys: {
Encryptor::KeyRing key_ring;
key_ring.emplace("BLAH", GenerateRandomAES256TestKey());
key_ring.emplace("TEST", GenerateRandomAES256TestKey());
return GetEncryptor(std::move(key_ring), "BLAH");
}
case TestType::kWithMultipleKeysBackwards: {
Encryptor::KeyRing key_ring;
key_ring.emplace("TEST", GenerateRandomAES256TestKey());
key_ring.emplace("BLAH", GenerateRandomAES256TestKey());
return GetEncryptor(std::move(key_ring), "BLAH");
}
}
}
};
TEST_P(EncryptorTest, StringInterface) {
const Encryptor encryptor = GetTestEncryptor();
std::string plaintext = "secrets";
std::string ciphertext;
EXPECT_TRUE(encryptor.EncryptString(plaintext, &ciphertext));
std::string decrypted;
EXPECT_TRUE(encryptor.DecryptString(ciphertext, &decrypted));
EXPECT_EQ(plaintext, decrypted);
}
TEST_P(EncryptorTest, SpanInterface) {
const Encryptor encryptor = GetTestEncryptor();
std::string plaintext = "secrets";
auto ciphertext = encryptor.EncryptString(plaintext);
ASSERT_TRUE(ciphertext);
auto decrypted = encryptor.DecryptData(*ciphertext);
ASSERT_TRUE(decrypted);
EXPECT_EQ(plaintext, *decrypted);
}
TEST_P(EncryptorTest, EncryptStringDecryptSpan) {
const Encryptor encryptor = GetTestEncryptor();
std::string plaintext = "secrets";
std::string ciphertext;
EXPECT_TRUE(encryptor.EncryptString(plaintext, &ciphertext));
auto decrypted = encryptor.DecryptData(base::as_byte_span(ciphertext));
ASSERT_TRUE(decrypted);
EXPECT_EQ(plaintext.size(), decrypted->size());
ASSERT_TRUE(
std::equal(plaintext.cbegin(), plaintext.cend(), decrypted->cbegin()));
}
TEST_P(EncryptorTest, EncryptSpanDecryptString) {
const Encryptor encryptor = GetTestEncryptor();
std::string plaintext = "secrets";
auto ciphertext = encryptor.EncryptString(plaintext);
ASSERT_TRUE(ciphertext);
std::string decrypted;
EXPECT_TRUE(encryptor.DecryptString(
std::string(ciphertext->begin(), ciphertext->end()), &decrypted));
EXPECT_EQ(plaintext.size(), decrypted.size());
EXPECT_TRUE(
std::equal(plaintext.cbegin(), plaintext.cend(), decrypted.cbegin()));
}
TEST_P(EncryptorTest, EncryptDecryptString16) {
const Encryptor encryptor = GetTestEncryptor();
const std::u16string plaintext = u"secrets";
std::string ciphertext;
ASSERT_TRUE(encryptor.EncryptString16(plaintext, &ciphertext));
std::u16string decrypted;
EXPECT_TRUE(encryptor.DecryptString16(ciphertext, &decrypted));
EXPECT_EQ(plaintext, decrypted);
}
TEST_P(EncryptorTest, EncryptEmpty) {
const Encryptor encryptor = GetTestEncryptor();
auto ciphertext = encryptor.EncryptString(std::string());
ASSERT_TRUE(ciphertext);
Encryptor::DecryptFlags flags;
auto decrypted = encryptor.DecryptData(*ciphertext, &flags);
ASSERT_FALSE(flags.should_reencrypt);
ASSERT_TRUE(decrypted);
EXPECT_TRUE(decrypted->empty());
}
// In a behavior change on Windows, Decrypt/Encrypt of empty data results in a
// success and an empty buffer. This was already the behavior on non-Windows so
// this change makes it consistent.
TEST_P(EncryptorTest, DecryptEmpty) {
const Encryptor encryptor = GetTestEncryptor();
Encryptor::DecryptFlags flags;
auto plaintext = encryptor.DecryptData({}, &flags);
ASSERT_FALSE(flags.should_reencrypt);
ASSERT_TRUE(plaintext);
EXPECT_TRUE(plaintext->empty());
}
// Non-Windows platforms can decrypt random data fine.
#if BUILDFLAG(IS_WIN)
TEST_P(EncryptorTest, DecryptInvalid) {
const Encryptor encryptor = GetTestEncryptor();
{
std::vector<uint8_t> invalid_cipher(100);
for (size_t c = 0u; c < invalid_cipher.size(); c++) {
invalid_cipher[c] = c;
}
Encryptor::DecryptFlags flags;
auto plaintext = encryptor.DecryptData(invalid_cipher, &flags);
ASSERT_FALSE(flags.should_reencrypt);
ASSERT_FALSE(plaintext);
}
{
std::string plaintext;
ASSERT_FALSE(encryptor.DecryptString("a", &plaintext));
ASSERT_TRUE(plaintext.empty());
}
}
#endif // BUILDFLAG(IS_WIN)
// Encryptor can decrypt data encrypted with OSCrypt.
TEST_P(EncryptorTest, DecryptFallback) {
std::string ciphertext;
EXPECT_TRUE(OSCrypt::EncryptString("secret", &ciphertext));
const Encryptor encryptor = GetTestEncryptor();
std::string decrypted;
// Fallback to OSCrypt takes place.
EXPECT_TRUE(encryptor.DecryptString(ciphertext, &decrypted));
EXPECT_EQ("secret", decrypted);
}
// Encryptor can decrypt data encrypted with OSCrypt.
TEST_P(EncryptorTest, Decrypt16Fallback) {
std::string ciphertext;
EXPECT_TRUE(OSCrypt::EncryptString16(u"secret", &ciphertext));
const Encryptor encryptor = GetTestEncryptor();
std::u16string decrypted;
// Fallback to OSCrypt takes place.
EXPECT_TRUE(encryptor.DecryptString16(ciphertext, &decrypted));
EXPECT_EQ(u"secret", decrypted);
}
#if BUILDFLAG(IS_WIN)
// Encryptor should still decrypt data encrypted using DPAPI (pre-m79) by fall
// back to OSCrypt.
TEST_P(EncryptorTest, AncientFallback) {
std::string ciphertext;
EXPECT_TRUE(EncryptStringWithDPAPI("secret", ciphertext));
std::string decrypted;
const Encryptor encryptor = GetTestEncryptor();
// Encryptor can still decrypt very old DPAPI data.
EXPECT_TRUE(encryptor.DecryptString(ciphertext, &decrypted));
EXPECT_EQ("secret", decrypted);
}
#endif // BUILDFLAG(IS_WIN)
INSTANTIATE_TEST_SUITE_P(All,
EncryptorTest,
::testing::ValuesIn(kTestCases),
[](const ::testing::TestParamInfo<TestType>& info) {
switch (info.param) {
case TestType::kEmptyPassThru:
return "EmptyPassThru";
case TestType::kWithSingleKey:
return "WithSingleKey";
case TestType::kWithMultipleKeys:
return "WithMultipleKeys";
case TestType::kWithMultipleKeysBackwards:
return "WithMultipleKeysBackwards";
}
});
// This test verifies various combinations of multiple keys in a keyring, to
// make sure they are all handled correctly. This needs access to OSCrypt as
// failed decryptions will call IsEncryptionAvailable which attempts to
// obtain a valid key from keychain on macOS.
TEST_F(EncryptorTestWithOSCrypt, MultipleKeys) {
Encryptor::Key foo_key = GenerateRandomAES256TestKey();
Encryptor::Key bar_key = GenerateRandomAES256TestKey();
Encryptor::KeyRing key_ring_both;
key_ring_both.emplace("FOO", foo_key.Clone());
key_ring_both.emplace("BAR", bar_key.Clone());
const Encryptor foo_encryptor = GetEncryptor(std::move(key_ring_both), "FOO");
// Should encrypt with FOO key.
auto ciphertext = foo_encryptor.EncryptString("secret");
ASSERT_TRUE(ciphertext);
// Look into the data and verify that it's used the FOO key by looking for the
// header.
std::string foo_data_header("FOO");
EXPECT_TRUE(std::equal(foo_data_header.cbegin(), foo_data_header.cend(),
ciphertext->cbegin()));
// Decrypt with just the FOO key should succeed.
{
Encryptor::KeyRing key_ring_foo;
key_ring_foo.emplace("FOO", foo_key.Clone());
const Encryptor encryptor = GetEncryptor(std::move(key_ring_foo), "FOO");
auto decrypted = encryptor.DecryptData(*ciphertext);
ASSERT_TRUE(decrypted);
EXPECT_EQ("secret", *decrypted);
}
// Decrypt with just the BAR key should fail.
{
Encryptor::KeyRing key_ring_bar;
key_ring_bar.emplace("BAR", bar_key.Clone());
const Encryptor encryptor = GetEncryptor(std::move(key_ring_bar), "BAR");
auto decrypted = encryptor.DecryptData(*ciphertext);
EXPECT_FALSE(decrypted);
}
// Verify that order of keys in the keyring does not matter.
{
Encryptor::KeyRing key_ring;
key_ring.emplace("BAR", bar_key.Clone());
key_ring.emplace("FOO", foo_key.Clone());
const Encryptor encryptor = GetEncryptor(std::move(key_ring), "FOO");
auto decrypted = encryptor.DecryptData(*ciphertext);
ASSERT_TRUE(decrypted);
EXPECT_EQ("secret", *decrypted);
// Verify that order does not affect which key is chosen to use for
// encryption: "FOO" should always be picked. Note: because
// Algorithm::kAES256GCM uses a random nonce, the encrypted values
// themselves will be different.
auto ciphertext2 = encryptor.EncryptString("secret");
ASSERT_TRUE(ciphertext2);
// Look into the data and verify that it's used the FOO key by looking for
// the header.
EXPECT_TRUE(std::equal(foo_data_header.cbegin(), foo_data_header.cend(),
ciphertext->cbegin()));
}
// Verify that the encryption provider does not matter when decrypting, it
// just needs the key.
{
Encryptor::KeyRing key_ring;
key_ring.emplace("BAR", bar_key.Clone());
key_ring.emplace("FOO", foo_key.Clone());
const Encryptor encryptor = GetEncryptor(std::move(key_ring), "BAR");
auto decrypted = encryptor.DecryptData(*ciphertext);
ASSERT_TRUE(decrypted);
EXPECT_EQ("secret", *decrypted);
}
// Verify that an empty Encryptor can't decrypt FOO.
{
const Encryptor encryptor = GetEncryptor();
auto decrypted = encryptor.DecryptData(*ciphertext);
EXPECT_FALSE(decrypted);
}
}
TEST_F(EncryptorTestWithOSCrypt, EmptyandNonEmpty) {
// Verify that an Encryptor loaded with keys can still decrypt data encrypted
// by an empty Encryptor. This is because OSCrypt is used for empty
// encryptors.
Encryptor::KeyRing key_ring_both;
key_ring_both.emplace("TEST", GenerateRandomAES256TestKey());
const Encryptor test_encryptor =
GetEncryptor(std::move(key_ring_both), "TEST");
const Encryptor encryptor = GetEncryptor();
auto encrypted = encryptor.EncryptString("secret");
ASSERT_TRUE(encrypted);
auto decrypted = test_encryptor.DecryptData(*encrypted);
ASSERT_TRUE(decrypted);
ASSERT_EQ("secret", *decrypted);
}
TEST_F(EncryptorTestWithOSCrypt, ShortCiphertext) {
Encryptor::KeyRing key_ring;
key_ring.emplace("TEST", GenerateRandomAES256TestKey());
const Encryptor encryptor = GetEncryptor(std::move(key_ring), "TEST");
// Create some bad data for the decryptor. Use the "TEST" prefix to ensure it
// gets passed to the AES256 decryptor.
std::string bad_data = "TEST";
// This is the nonce length for this algorithm.
static const size_t kNonceLength = 12u;
for (size_t i = 0; i < kNonceLength * 2; i++) {
bad_data += "a";
auto decrypted = encryptor.DecryptData(base::as_byte_span(bad_data));
EXPECT_FALSE(decrypted);
}
}
// These two tests verify the fallback to OSCrypt::IsEncryptionAvailable
// functions correctly. When there is no OSCrypt mocker in place, encryption is
// not available if the keyring is empty.
TEST_F(EncryptorTestBase, IsEncryptionAvailableFallback) {
auto cleanup = MaybeSimulateLockedKeyChain();
Encryptor encryptor = GetEncryptor();
EXPECT_FALSE(encryptor.IsDecryptionAvailable());
EXPECT_FALSE(encryptor.IsEncryptionAvailable());
}
TEST_F(EncryptorTestWithOSCrypt, IsEncryptionAvailableFallback) {
Encryptor encryptor = GetEncryptor();
EXPECT_TRUE(encryptor.IsDecryptionAvailable());
EXPECT_TRUE(encryptor.IsEncryptionAvailable());
}
TEST_F(EncryptorTestBase, IsEncryptionAvailable) {
auto cleanup = MaybeSimulateLockedKeyChain();
{
Encryptor::KeyRing key_ring;
key_ring.emplace("TEST", GenerateRandomAES256TestKey());
const Encryptor encryptor = GetEncryptor(std::move(key_ring), "TEST");
EXPECT_TRUE(encryptor.IsEncryptionAvailable());
EXPECT_TRUE(encryptor.IsDecryptionAvailable());
}
{
Encryptor::KeyRing key_ring;
key_ring.emplace("TEST", GenerateRandomAES256TestKey());
const Encryptor encryptor = GetEncryptor(std::move(key_ring), "BLAH");
EXPECT_FALSE(encryptor.IsEncryptionAvailable());
// Decryption for data encrypted with TEST key is available, but encryption
// is not available as there is no key BLAH.
EXPECT_TRUE(encryptor.IsDecryptionAvailable());
}
}
TEST_F(EncryptorTestWithOSCrypt, IsEncryptionAvailableFallbackLocked) {
ASSERT_TRUE(OSCrypt::IsEncryptionAvailable());
Encryptor encryptor = GetEncryptor();
// This will encrypt with OSCrypt as no keys are loaded into the Encryptor.
const auto ciphertext = encryptor.EncryptString("secret");
ASSERT_TRUE(ciphertext);
{
// "Lock" the keychain. Only some platforms support this.
auto cleanup = MaybeSimulateLockedKeyChain();
if (!cleanup.has_value()) {
GTEST_SKIP() << "Platform does not support a locked keychain.";
}
Encryptor::DecryptFlags flags;
const auto plaintext = encryptor.DecryptData(*ciphertext, &flags);
EXPECT_FALSE(plaintext);
EXPECT_TRUE(flags.temporarily_unavailable);
}
}
#if BUILDFLAG(IS_WIN)
// This test verifies that data encrypted with OSCrypt can successfully be
// decrypted by an Encryptor loaded with the same key with
// Algorithm::kAES256GCM.
TEST_F(EncryptorTestBase, AlgorithmDecryptCompatibility) {
std::string ciphertext;
std::string ciphertext16;
const auto random_key = crypto::RandBytesAsVector(kKeyLength);
// Set the OSCrypt key to the fixed key.
OSCrypt::SetRawEncryptionKey(
std::string(random_key.begin(), random_key.end()));
// OSCrypt will now encrypt using this random key.
EXPECT_TRUE(OSCrypt::EncryptString("secret", &ciphertext));
EXPECT_TRUE(OSCrypt::EncryptString16(u"secret16", &ciphertext16));
// Reset OSCrypt so it cannot know the key, so fallback will fail.
OSCrypt::ResetStateForTesting();
OSCrypt::UseMockKeyForTesting(true);
// Verify that OSCrypt can no longer decrypt this data.
std::string plaintext;
EXPECT_FALSE(OSCrypt::DecryptString(ciphertext, &plaintext));
// Set up a test Encryptor that can decrypt the data.
Encryptor::KeyRing key_ring;
// "v10" is the OSCrypt tag for data encrypted with Algorithm::kAES256GCM. See
// `kEncryptionVersionPrefix` in os_crypt_win.cc.
constexpr char kEncryptionVersionPrefix[] = "v10";
key_ring.emplace(kEncryptionVersionPrefix,
Encryptor::Key(random_key, mojom::Algorithm::kAES256GCM));
// Construct an Encryptor with the same key that was used by OSCrypt to
// encrypt the data.
const Encryptor encryptor =
GetEncryptor(std::move(key_ring), kEncryptionVersionPrefix);
// The data should decrypt.
EXPECT_TRUE(encryptor.DecryptString(ciphertext, &plaintext));
std::u16string plaintext16;
EXPECT_TRUE(encryptor.DecryptString16(ciphertext16, &plaintext16));
EXPECT_EQ("secret", plaintext);
EXPECT_EQ(u"secret16", plaintext16);
// Reset OSCrypt for the next test.
OSCrypt::ResetStateForTesting();
}
// This test verifies that data encrypted with an Encryptor loaded with the same
// key as OSCrypt and Algorithm::kAES256GCM can successfully be decrypted by
// OSCrypt.
TEST_F(EncryptorTestBase, AlgorithmEncryptCompatibility) {
// From os_crypt_win.cc
const auto random_key = crypto::RandBytesAsVector(kKeyLength);
// Set up a test Encryptor that can encrypt the data.
Encryptor::KeyRing key_ring;
// "v10" is the OSCrypt tag for data encrypted with Algorithm::kAES256GCM. See
// `kEncryptionVersionPrefix` in os_crypt_win.cc.
constexpr char kEncryptionVersionPrefix[] = "v10";
key_ring.emplace(kEncryptionVersionPrefix,
Encryptor::Key(random_key, mojom::Algorithm::kAES256GCM));
// Construct an Encryptor with this key. The encryption provider tag will be
// "v10" to match OSCrypt's encryption. Encrypt the data.
const Encryptor encryptor =
GetEncryptor(std::move(key_ring), kEncryptionVersionPrefix);
auto ciphertext = encryptor.EncryptString("secret");
EXPECT_TRUE(ciphertext);
std::string ciphertext16;
EXPECT_TRUE(encryptor.EncryptString16(u"secret16", &ciphertext16));
// OSCrypt should not be able to decrypt this yet, as it does not have the
// key.
OSCrypt::UseMockKeyForTesting(true);
std::string plaintext;
std::u16string plaintext16;
EXPECT_FALSE(OSCrypt::DecryptString(
std::string(ciphertext->begin(), ciphertext->end()), &plaintext));
EXPECT_FALSE(OSCrypt::DecryptString16(ciphertext16, &plaintext16));
// Set the OSCrypt key to the fixed key.
OSCrypt::ResetStateForTesting();
OSCrypt::SetRawEncryptionKey(
std::string(random_key.begin(), random_key.end()));
// OSCrypt should now be able to decrypt using this key.
EXPECT_TRUE(OSCrypt::DecryptString(
std::string(ciphertext->begin(), ciphertext->end()), &plaintext));
EXPECT_EQ("secret", plaintext);
EXPECT_TRUE(OSCrypt::DecryptString16(ciphertext16, &plaintext16));
EXPECT_EQ(u"secret16", plaintext16);
// Reset OSCrypt for the next test.
OSCrypt::ResetStateForTesting();
}
#endif // BUILDFLAG(IS_WIN)
// Test that Clone respects the option to a key that is os_crypt sync
// compatible.
TEST_F(EncryptorTestBase, Clone) {
{
Encryptor::KeyRing key_ring;
key_ring.emplace("BLAH", GenerateRandomAES256TestKey());
key_ring.emplace("TEST", GenerateRandomAES256TestKey());
auto encryptor = GetEncryptor(std::move(key_ring), "TEST", "BLAH");
{
auto cloned_encryptor = encryptor.Clone(Encryptor::Option::kNone);
EXPECT_EQ(cloned_encryptor.provider_for_encryption_, "TEST");
EXPECT_EQ(cloned_encryptor.keys_.size(), 2u);
}
{
auto cloned_encryptor =
encryptor.Clone(Encryptor::Option::kEncryptSyncCompat);
EXPECT_EQ(cloned_encryptor.provider_for_encryption_, "BLAH");
EXPECT_EQ(cloned_encryptor.keys_.size(), 2u);
}
}
// Test when the only key provider is not OSCrypt compatible. In this case, no
// default provider for encryption should end up being set (and fallback to
// OSCrypt for encryption).
{
Encryptor::KeyRing key_ring;
key_ring.emplace("BLAH", GenerateRandomAES256TestKey());
auto encryptor = GetEncryptor(std::move(key_ring), "BLAH", std::string());
EXPECT_EQ(encryptor.provider_for_encryption_, "BLAH");
{
auto cloned_encryptor = encryptor.Clone(Encryptor::Option::kNone);
EXPECT_EQ(cloned_encryptor.provider_for_encryption_, "BLAH");
}
{
auto cloned_encryptor =
encryptor.Clone(Encryptor::Option::kEncryptSyncCompat);
EXPECT_TRUE(cloned_encryptor.provider_for_encryption_.empty());
}
}
// Test empty keyring.
{
const auto empty_encryptor = GetEncryptor();
EXPECT_TRUE(empty_encryptor.provider_for_encryption_.empty());
{
auto cloned_encryptor =
empty_encryptor.Clone(Encryptor::Option::kEncryptSyncCompat);
EXPECT_TRUE(cloned_encryptor.provider_for_encryption_.empty());
}
{
auto cloned_encryptor =
empty_encryptor.Clone(Encryptor::Option::kEncryptSyncCompat);
EXPECT_TRUE(cloned_encryptor.provider_for_encryption_.empty());
}
}
}
TEST_F(EncryptorTestWithOSCrypt, DecryptFlags) {
std::string ciphertext;
{
Encryptor::KeyRing key_ring;
key_ring.emplace("TEST", DeriveAES256TestKey("TEST"));
const auto encryptor = GetEncryptor(std::move(key_ring), "TEST");
ASSERT_TRUE(encryptor.EncryptString("secrets", &ciphertext));
Encryptor::DecryptFlags flags;
std::string plaintext;
ASSERT_TRUE(encryptor.DecryptString(ciphertext, &plaintext, &flags));
EXPECT_FALSE(flags.should_reencrypt);
}
{
Encryptor::KeyRing key_ring;
key_ring.emplace("BLAH", DeriveAES256TestKey("BLAH"));
key_ring.emplace("TEST", DeriveAES256TestKey("TEST"));
const auto encryptor = GetEncryptor(std::move(key_ring), "BLAH");
Encryptor::DecryptFlags flags;
std::string plaintext;
ASSERT_TRUE(encryptor.DecryptString(ciphertext, &plaintext, &flags));
EXPECT_TRUE(flags.should_reencrypt);
}
}
TEST_F(EncryptorTestWithOSCrypt, KeyAvailability) {
std::string ciphertext;
{
// Encrypt some data using the TEST key.
Encryptor::KeyRing key_ring;
key_ring.emplace("TEST", DeriveAES256TestKey("TEST"));
const auto encryptor = GetEncryptor(std::move(key_ring), "TEST");
ASSERT_TRUE(encryptor.EncryptString("secrets", &ciphertext));
}
{
// Load a key with the name TEST but it's not the same as before, so the
// decrypt should fail permanently. This could happen e.g. if a key provider
// decides it can never recover a key and generates a new one.
Encryptor::KeyRing key_ring;
key_ring.emplace("TEST", DeriveAES256TestKey("NOTTEST"));
const auto encryptor = GetEncryptor(std::move(key_ring), "TEST");
Encryptor::DecryptFlags flags;
std::string plaintext;
ASSERT_FALSE(encryptor.DecryptString(ciphertext, &plaintext, &flags));
EXPECT_FALSE(flags.temporarily_unavailable);
}
{
// If the TEST key is not even there, it's also a permanent failure, since
// key providers should signal a temporary failure using the proper API. See
// OSCryptAsyncTestWithOSCrypt.TemporarilyFailingKeyProvider for a test that
// verifies this.
Encryptor::KeyRing key_ring;
key_ring.emplace("BLAH", DeriveAES256TestKey("BLAH"));
const auto encryptor = GetEncryptor(std::move(key_ring), "BLAH");
Encryptor::DecryptFlags flags;
std::string plaintext;
ASSERT_FALSE(encryptor.DecryptString(ciphertext, &plaintext, &flags));
EXPECT_FALSE(flags.temporarily_unavailable);
}
}
class EncryptorTraitsTest : public EncryptorTestBase {};
TEST_F(EncryptorTraitsTest, TraitsRoundTrip) {
{
const auto test_key1 =
crypto::RandBytesAsVector(Encryptor::Key::kAES256GCMKeySize);
const auto test_key2 =
crypto::RandBytesAsVector(Encryptor::Key::kAES256GCMKeySize);
Encryptor::KeyRing key_ring;
key_ring.emplace("TEST1",
Encryptor::Key(test_key1, mojom::Algorithm::kAES256GCM));
key_ring.emplace("TEST2",
Encryptor::Key(test_key2, mojom::Algorithm::kAES256GCM));
Encryptor encryptor = GetEncryptor(std::move(key_ring), "TEST1");
const auto ciphertext = encryptor.EncryptString("plaintext");
ASSERT_TRUE(ciphertext.has_value());
Encryptor roundtripped;
EXPECT_TRUE(mojo::test::SerializeAndDeserialize<mojom::Encryptor>(
encryptor, roundtripped));
EXPECT_EQ(roundtripped.provider_for_encryption_, "TEST1");
EXPECT_EQ(roundtripped.keys_.size(), 2U);
EXPECT_EQ(roundtripped.keys_.at("TEST1"),
Encryptor::Key(test_key1, mojom::Algorithm::kAES256GCM));
EXPECT_EQ(roundtripped.keys_.at("TEST2"),
Encryptor::Key(test_key2, mojom::Algorithm::kAES256GCM));
const auto plaintext = roundtripped.DecryptData(*ciphertext);
EXPECT_TRUE(plaintext.has_value());
EXPECT_EQ(*plaintext, "plaintext");
}
{
Encryptor encryptor = GetEncryptor();
Encryptor roundtripped;
EXPECT_TRUE(mojo::test::SerializeAndDeserialize<mojom::Encryptor>(
encryptor, roundtripped));
EXPECT_TRUE(roundtripped.keys_.empty());
EXPECT_TRUE(roundtripped.provider_for_encryption_.empty());
}
{
Encryptor::KeyRing key_ring;
key_ring.emplace("TEST", GenerateRandomAES256TestKey());
Encryptor encryptor = GetEncryptor(std::move(key_ring), "TEST");
// Reach into the encryptor and change the key length to an invalid length
// for the kAES256GCM algorithm.
encryptor.keys_.at("TEST")->key_.resize(8u);
Encryptor roundtripped;
// Mojo will fail gracefully to serialize this bad Encryptor.
EXPECT_FALSE(mojo::test::SerializeAndDeserialize<mojom::Encryptor>(
encryptor, roundtripped));
}
}
} // namespace os_crypt_async
|