1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
|
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/safe_browsing/content/renderer/phishing_classifier/scorer.h"
#include <math.h>
#include <cstdint>
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include "base/logging.h"
#include "base/memory/read_only_shared_memory_region.h"
#include "base/memory/shared_memory_mapping.h"
#include "base/metrics/histogram_functions.h"
#include "base/metrics/histogram_macros.h"
#include "base/strings/string_number_conversions.h"
#include "base/task/sequenced_task_runner.h"
#include "base/task/task_traits.h"
#include "base/task/thread_pool.h"
#include "base/trace_event/trace_event.h"
#include "components/safe_browsing/content/common/visual_utils.h"
#include "components/safe_browsing/content/renderer/phishing_classifier/features.h"
#include "components/safe_browsing/core/common/features.h"
#include "components/safe_browsing/core/common/proto/client_model.pb.h"
#include "components/safe_browsing/core/common/proto/csd.pb.h"
#include "content/public/renderer/render_thread.h"
#include "crypto/sha2.h"
#include "skia/ext/image_operations.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkColorSpace.h"
#if BUILDFLAG(BUILD_WITH_TFLITE_LIB)
#include "third_party/tflite/src/tensorflow/lite/kernels/builtin_op_kernels.h"
#include "third_party/tflite/src/tensorflow/lite/op_resolver.h"
#include "third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/task_api_factory.h"
#include "third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/image_classifier.h"
#include "third_party/tflite_support/src/tensorflow_lite_support/cc/task/vision/image_embedder.h"
#endif
namespace safe_browsing {
namespace {
std::string HashToString(const flat::Hash* hash) {
return std::string(reinterpret_cast<const char*>(hash->data()->Data()),
hash->data()->size());
}
void RecordScorerCreationStatus(ScorerCreationStatus status) {
UMA_HISTOGRAM_ENUMERATION("SBClientPhishing.FlatBufferScorer.CreationStatus",
status, SCORER_STATUS_MAX);
}
#if BUILDFLAG(BUILD_WITH_TFLITE_LIB)
std::unique_ptr<tflite::MutableOpResolver> CreateOpResolver() {
tflite::MutableOpResolver resolver;
// The minimal set of OPs required to run the visual model.
resolver.AddBuiltin(tflite::BuiltinOperator_ADD,
tflite::ops::builtin::Register_ADD(),
/* min_version = */ 1,
/* max_version = */ 2);
resolver.AddBuiltin(tflite::BuiltinOperator_AVERAGE_POOL_2D,
tflite::ops::builtin::Register_AVERAGE_POOL_2D(),
/* min_version */ 1,
/* max_version */ 3);
resolver.AddBuiltin(tflite::BuiltinOperator_CONV_2D,
tflite::ops::builtin::Register_CONV_2D(),
/* min_version = */ 1,
/* max_version = */ 5);
resolver.AddBuiltin(tflite::BuiltinOperator_DEPTHWISE_CONV_2D,
tflite::ops::builtin::Register_DEPTHWISE_CONV_2D(),
/* min_version = */ 1,
/* max_version = */ 6);
resolver.AddBuiltin(tflite::BuiltinOperator_FULLY_CONNECTED,
tflite::ops::builtin::Register_FULLY_CONNECTED(),
/* min_version = */ 1,
/* max_version = */ 9);
resolver.AddBuiltin(tflite::BuiltinOperator_LOGISTIC,
tflite::ops::builtin::Register_LOGISTIC(),
/* min_version = */ 1,
/* max_version = */ 3);
resolver.AddBuiltin(tflite::BuiltinOperator_L2_NORMALIZATION,
tflite::ops::builtin::Register_L2_NORMALIZATION(), 1, 2);
resolver.AddBuiltin(tflite::BuiltinOperator_MEAN,
tflite::ops::builtin::Register_MEAN(),
/* min_version = */ 1,
/* max_version = */ 2);
resolver.AddBuiltin(tflite::BuiltinOperator_MUL,
tflite::ops::builtin::Register_MUL(),
/* min_version = */ 1,
/* max_version = */ 4);
resolver.AddBuiltin(tflite::BuiltinOperator_RESHAPE,
tflite::ops::builtin::Register_RESHAPE());
resolver.AddBuiltin(tflite::BuiltinOperator_SOFTMAX,
tflite::ops::builtin::Register_SOFTMAX(),
/* min_version = */ 1,
/* max_version = */ 3);
resolver.AddBuiltin(tflite::BuiltinOperator_SUB,
tflite::ops::builtin::Register_SUB(), 1, 2);
resolver.AddBuiltin(tflite::BuiltinOperator_DEQUANTIZE,
tflite::ops::builtin::Register_DEQUANTIZE(),
/* min_version = */ 1,
/* max_version = */ 4);
resolver.AddBuiltin(tflite::BuiltinOperator_QUANTIZE,
tflite::ops::builtin::Register_QUANTIZE(),
/* min_version = */ 1,
/* max_version = */ 2);
return std::make_unique<tflite::MutableOpResolver>(resolver);
}
std::unique_ptr<tflite::task::vision::ImageClassifier> CreateClassifier(
std::string model_data) {
TRACE_EVENT0("safe_browsing", "CreateTfLiteClassifier");
tflite::task::vision::ImageClassifierOptions options;
tflite::task::core::BaseOptions* base_options =
options.mutable_base_options();
base_options->mutable_model_file()->set_file_content(std::move(model_data));
base_options->mutable_compute_settings()
->mutable_tflite_settings()
->mutable_cpu_settings()
->set_num_threads(1);
auto statusor_classifier =
tflite::task::vision::ImageClassifier::CreateFromOptions(
options, CreateOpResolver());
if (!statusor_classifier.ok()) {
VLOG(1) << statusor_classifier.status().ToString();
return nullptr;
}
return std::move(*statusor_classifier);
}
std::unique_ptr<tflite::task::vision::ImageEmbedder> CreateImageEmbedder(
std::string model_data) {
TRACE_EVENT0("safe_browsing", "CreateTfLiteImageEmbedder");
tflite::task::vision::ImageEmbedderOptions embedder_options;
embedder_options.mutable_model_file_with_metadata()->set_file_content(
model_data);
auto embedder = tflite::task::vision::ImageEmbedder::CreateFromOptions(
embedder_options, CreateOpResolver());
if (!embedder.ok()) {
VLOG(1) << "Failed to create the embedder. Embedder status is: "
<< embedder.status().ToString();
return nullptr;
}
return std::move(*embedder);
}
std::string GetModelInput(const SkBitmap& bitmap,
int width,
int height,
bool image_embedding = false) {
TRACE_EVENT0("safe_browsing", "GetTfLiteModelInput");
// Use the Rec. 2020 color space, in case the user input is wide-gamut.
sk_sp<SkColorSpace> rec2020 = SkColorSpace::MakeRGB(
{2.22222f, 0.909672f, 0.0903276f, 0.222222f, 0.0812429f, 0, 0},
SkNamedGamut::kRec2020);
SkBitmap downsampled =
image_embedding && base::FeatureList::IsEnabled(kConditionalImageResize)
? skia::ImageOperations::Resize(
bitmap, skia::ImageOperations::RESIZE_BEST,
static_cast<int>(width), static_cast<int>(height))
: skia::ImageOperations::Resize(
bitmap, skia::ImageOperations::RESIZE_GOOD,
static_cast<int>(width), static_cast<int>(height));
if (downsampled.drawsNothing()) {
return std::string();
}
CHECK_EQ(downsampled.width(), width);
CHECK_EQ(downsampled.height(), height);
// Format as an RGB buffer for input into the model
std::string data;
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
SkColor color = downsampled.getColor(x, y);
data += static_cast<char>(SkColorGetR(color));
data += static_cast<char>(SkColorGetG(color));
data += static_cast<char>(SkColorGetB(color));
}
}
return data;
}
auto CreateFrameBuffer(const std::string& model_input,
int input_width,
int input_height) {
tflite::task::vision::FrameBuffer::Plane plane{
reinterpret_cast<const uint8_t*>(model_input.data()),
{3 * input_width, 3}};
return tflite::task::vision::FrameBuffer::Create(
{plane}, {input_width, input_height},
tflite::task::vision::FrameBuffer::Format::kRGB,
tflite::task::vision::FrameBuffer::Orientation::kTopLeft);
}
void OnModelInputCreatedForClassifier(
const std::string& model_input,
int input_width,
int input_height,
std::unique_ptr<tflite::task::vision::ImageClassifier> classifier,
scoped_refptr<base::SequencedTaskRunner> callback_task_runner,
base::OnceCallback<void(std::vector<double>)> callback) {
base::Time before_operation = base::Time::Now();
auto frame_buffer = CreateFrameBuffer(model_input, input_width, input_height);
auto statusor_result = classifier->Classify(*frame_buffer);
base::UmaHistogramTimes("SBClientPhishing.ApplyTfliteTime.Classify",
base::Time::Now() - before_operation);
if (!statusor_result.ok()) {
VLOG(1) << statusor_result.status().ToString();
callback_task_runner->PostTask(
FROM_HERE, base::BindOnce(std::move(callback), std::vector<double>()));
return;
}
std::vector<double> scores(
statusor_result->classifications(0).classes().size());
for (const tflite::task::vision::Class& clas :
statusor_result->classifications(0).classes()) {
scores[clas.index()] = clas.score();
}
callback_task_runner->PostTask(
FROM_HERE, base::BindOnce(std::move(callback), std::move(scores)));
}
void OnModelInputCreatedForImageEmbedding(
const std::string& model_input,
int input_width,
int input_height,
std::unique_ptr<tflite::task::vision::ImageEmbedder> image_embedder,
scoped_refptr<base::SequencedTaskRunner> callback_task_runner,
base::OnceCallback<void(ImageFeatureEmbedding)> callback) {
auto frame_buffer = CreateFrameBuffer(model_input, input_width, input_height);
tflite::support::StatusOr<tflite::task::vision::EmbeddingResult>
statusor_result = image_embedder->Embed(*frame_buffer);
ImageFeatureEmbedding image_feature_embedding;
if (!statusor_result.ok()) {
VLOG(1) << "Embedding failed with the status "
<< statusor_result.status().ToString();
callback_task_runner->PostTask(
FROM_HERE,
base::BindOnce(std::move(callback), image_feature_embedding));
return;
}
auto feature_vector = statusor_result->embeddings(0).feature_vector();
std::vector<float> value_floats = std::vector<float>(
feature_vector.value_float().begin(), feature_vector.value_float().end());
for (float value : value_floats) {
image_feature_embedding.add_embedding_value(value);
}
callback_task_runner->PostTask(
FROM_HERE,
base::BindOnce(std::move(callback), std::move(image_feature_embedding)));
}
void OnClassifierCreated(
const SkBitmap& bitmap,
int input_width,
int input_height,
std::unique_ptr<tflite::task::vision::ImageClassifier> classifier,
scoped_refptr<base::SequencedTaskRunner> callback_task_runner,
base::OnceCallback<void(std::vector<double>)> callback) {
std::string model_input = GetModelInput(bitmap, input_width, input_height);
if (model_input.empty()) {
callback_task_runner->PostTask(
FROM_HERE, base::BindOnce(std::move(callback), std::vector<double>()));
return;
}
// Break up the task to avoid blocking too long.
base::ThreadPool::PostTask(
FROM_HERE, {base::TaskPriority::BEST_EFFORT},
base::BindOnce(&OnModelInputCreatedForClassifier, std::move(model_input),
input_width, input_height, std::move(classifier),
std::move(callback_task_runner), std::move(callback)));
}
void OnImageEmbedderCreated(
const SkBitmap& bitmap,
int input_width,
int input_height,
std::unique_ptr<tflite::task::vision::ImageEmbedder> image_embedder,
scoped_refptr<base::SequencedTaskRunner> callback_task_runner,
base::OnceCallback<void(ImageFeatureEmbedding)> callback) {
std::string model_input = GetModelInput(bitmap, input_width, input_height,
/*image_embedding=*/true);
if (model_input.empty()) {
callback_task_runner->PostTask(
FROM_HERE,
base::BindOnce(std::move(callback), ImageFeatureEmbedding()));
return;
}
base::ThreadPool::PostTask(
FROM_HERE, {base::TaskPriority::BEST_EFFORT},
base::BindOnce(&OnModelInputCreatedForImageEmbedding,
std::move(model_input), input_width, input_height,
std::move(image_embedder), std::move(callback_task_runner),
std::move(callback)));
}
#endif
} // namespace
#if BUILDFLAG(BUILD_WITH_TFLITE_LIB)
void Scorer::ApplyVisualTfLiteModelHelper(
const SkBitmap& bitmap,
int input_width,
int input_height,
std::string model_data,
scoped_refptr<base::SequencedTaskRunner> callback_task_runner,
base::OnceCallback<void(std::vector<double>)> callback) {
TRACE_EVENT0("safe_browsing", "ApplyVisualTfLiteModel");
std::unique_ptr<tflite::task::vision::ImageClassifier> classifier =
CreateClassifier(std::move(model_data));
if (!classifier) {
callback_task_runner->PostTask(
FROM_HERE, base::BindOnce(std::move(callback), std::vector<double>()));
return;
}
// Break up the task to avoid blocking too long.
base::ThreadPool::PostTask(
FROM_HERE, {base::TaskPriority::BEST_EFFORT},
base::BindOnce(&OnClassifierCreated, bitmap, input_width, input_height,
std::move(classifier), std::move(callback_task_runner),
std::move(callback)));
}
void Scorer::ApplyImageEmbeddingTfLiteModelHelper(
const SkBitmap& bitmap,
int input_width,
int input_height,
const std::string& model_data,
scoped_refptr<base::SequencedTaskRunner> callback_task_runner,
base::OnceCallback<void(ImageFeatureEmbedding)> callback) {
TRACE_EVENT0("safe_browsing", "ApplyImageEmbeddingTfLiteModel");
std::unique_ptr<tflite::task::vision::ImageEmbedder> image_embedder =
CreateImageEmbedder(std::move(model_data));
if (!image_embedder) {
callback_task_runner->PostTask(
FROM_HERE,
base::BindOnce(std::move(callback), ImageFeatureEmbedding()));
return;
}
base::ThreadPool::PostTask(
FROM_HERE, {base::TaskPriority::BEST_EFFORT},
base::BindOnce(&OnImageEmbedderCreated, bitmap, input_width, input_height,
std::move(image_embedder), std::move(callback_task_runner),
std::move(callback)));
}
#endif
double Scorer::LogOdds2Prob(const double log_odds) const {
// 709 = floor(1023*ln(2)). 2**1023 is the largest finite double.
// Small log odds aren't a problem. as the odds will be 0. It's only
// when we get +infinity for the odds, that odds/(odds+1) would be NaN.
if (log_odds >= 709) {
return 1.0;
}
double odds = exp(log_odds);
return odds / (odds + 1.0);
}
Scorer::Scorer() = default;
Scorer::~Scorer() = default;
// static
ScorerStorage* ScorerStorage::GetInstance() {
static base::NoDestructor<ScorerStorage> instance;
return instance.get();
}
ScorerStorage::ScorerStorage() = default;
ScorerStorage::~ScorerStorage() = default;
/* static */
std::unique_ptr<Scorer> Scorer::Create(base::ReadOnlySharedMemoryRegion region,
base::File visual_tflite_model) {
std::unique_ptr<Scorer> scorer(new Scorer());
if (!region.IsValid()) {
RecordScorerCreationStatus(SCORER_FAIL_FLATBUFFER_INVALID_REGION);
return nullptr;
}
base::ReadOnlySharedMemoryMapping mapping = region.Map();
if (!mapping.IsValid()) {
RecordScorerCreationStatus(SCORER_FAIL_FLATBUFFER_INVALID_MAPPING);
return nullptr;
}
flatbuffers::Verifier verifier(
reinterpret_cast<const uint8_t*>(mapping.memory()), mapping.size());
if (!flat::VerifyClientSideModelBuffer(verifier)) {
RecordScorerCreationStatus(SCORER_FAIL_FLATBUFFER_FAILED_VERIFY);
return nullptr;
}
scorer->flatbuffer_model_ = flat::GetClientSideModel(mapping.memory());
// Only do this part if the visual model file exists
if (visual_tflite_model.IsValid()) {
if (!scorer->visual_tflite_model_.Initialize(
std::move(visual_tflite_model))) {
RecordScorerCreationStatus(SCORER_FAIL_MAP_VISUAL_TFLITE_MODEL);
return nullptr;
} else {
for (const flat::TfLiteModelMetadata_::Threshold* flat_threshold :
*(scorer->flatbuffer_model_->tflite_metadata()->thresholds())) {
// While the threshold comparison is done on the browser side, threshold
// fields are added so that the verdict score results size check with
// threshold size can be done
TfLiteModelMetadata::Threshold* threshold = scorer->thresholds_.Add();
threshold->set_label(flat_threshold->label()->str());
}
}
}
RecordScorerCreationStatus(SCORER_SUCCESS);
scorer->flatbuffer_mapping_ = std::move(mapping);
return scorer;
}
std::unique_ptr<Scorer> Scorer::CreateScorerWithImageEmbeddingModel(
base::ReadOnlySharedMemoryRegion region,
base::File visual_tflite_model,
base::File image_embedding_model) {
std::unique_ptr<Scorer> scorer =
Create(std::move(region), std::move(visual_tflite_model));
if (image_embedding_model.IsValid()) {
if (scorer && !scorer->image_embedding_model_.Initialize(
std::move(image_embedding_model))) {
RecordScorerCreationStatus(
SCORER_FAIL_FLATBUFFER_INVALID_IMAGE_EMBEDDING_TFLITE_MODEL);
return nullptr;
}
}
return scorer;
}
void Scorer::AttachImageEmbeddingModel(base::File image_embedding_model) {
if (image_embedding_model.IsValid()) {
if (!image_embedding_model_.Initialize(std::move(image_embedding_model))) {
RecordScorerCreationStatus(
SCORER_FAIL_FLATBUFFER_INVALID_IMAGE_EMBEDDING_TFLITE_MODEL);
return;
}
}
}
double Scorer::ComputeRuleScore(const flat::ClientSideModel_::Rule* rule,
const FeatureMap& features) const {
if (!rule->feature()) {
return rule->weight();
}
// If the feature vector exists but there are no hashes, the weight will be 0
// ultimately, so we return here.
if (!flatbuffer_model_->hashes()) {
return 0.0;
}
const std::unordered_map<std::string, double>& feature_map =
features.features();
double rule_score = 1.0;
for (int32_t feature : *rule->feature()) {
const flat::Hash* hash = flatbuffer_model_->hashes()->Get(feature);
if (!hash || !hash->data()) {
return 0.0;
}
std::string hash_str(reinterpret_cast<const char*>(hash->data()->Data()),
hash->data()->size());
const auto it = feature_map.find(hash_str);
if (it == feature_map.end() || it->second == 0.0) {
// If the feature of the rule does not exist in the given feature map the
// feature weight is considered to be zero. If the feature weight is zero
// we leave early since we know that the rule score will be zero.
return 0.0;
}
rule_score *= it->second;
}
return rule_score * rule->weight();
}
double Scorer::ComputeScore(const FeatureMap& features) const {
double logodds = 0.0;
if (flatbuffer_model_ && flatbuffer_model_->rule()) {
for (const flat::ClientSideModel_::Rule* rule :
*flatbuffer_model_->rule()) {
logodds += ComputeRuleScore(rule, features);
}
}
return LogOdds2Prob(logodds);
}
#if BUILDFLAG(BUILD_WITH_TFLITE_LIB)
void Scorer::ApplyVisualTfLiteModel(
const SkBitmap& bitmap,
base::OnceCallback<void(std::vector<double>)> callback) const {
DCHECK(content::RenderThread::IsMainThread());
if (visual_tflite_model_.IsValid()) {
base::ThreadPool::PostTask(
FROM_HERE, {base::TaskPriority::BEST_EFFORT},
base::BindOnce(&ApplyVisualTfLiteModelHelper, bitmap,
flatbuffer_model_->tflite_metadata()->input_width(),
flatbuffer_model_->tflite_metadata()->input_height(),
std::string(reinterpret_cast<const char*>(
visual_tflite_model_.data()),
visual_tflite_model_.length()),
base::SequencedTaskRunner::GetCurrentDefault(),
std::move(callback)));
} else {
std::move(callback).Run(std::vector<double>());
}
}
void Scorer::ApplyVisualTfLiteModelImageEmbedding(
const SkBitmap& bitmap,
base::OnceCallback<void(ImageFeatureEmbedding)> callback) const {
DCHECK(content::RenderThread::IsMainThread());
if (image_embedding_model_.IsValid() &&
flatbuffer_model_->img_embedding_metadata()) {
base::Time start_post_task_time = base::Time::Now();
base::ThreadPool::PostTask(
FROM_HERE, {base::TaskPriority::BEST_EFFORT},
base::BindOnce(
&ApplyImageEmbeddingTfLiteModelHelper, bitmap,
flatbuffer_model_->img_embedding_metadata()->input_width(),
flatbuffer_model_->img_embedding_metadata()->input_height(),
std::string(
reinterpret_cast<const char*>(image_embedding_model_.data()),
image_embedding_model_.length()),
base::SequencedTaskRunner::GetCurrentDefault(),
std::move(callback)));
base::UmaHistogramTimes(
"SBClientPhishing.ImageEmbeddingModelLoadTime.FlatbufferScorer",
base::Time::Now() - start_post_task_time);
} else {
std::move(callback).Run(ImageFeatureEmbedding());
}
}
#endif
int Scorer::model_version() const {
return flatbuffer_model_->version();
}
int Scorer::dom_model_version() const {
return flatbuffer_model_->dom_model_version();
}
bool Scorer::has_page_term(const std::string& str) const {
const flatbuffers::Vector<flatbuffers::Offset<flat::Hash>>* hashes =
flatbuffer_model_->hashes();
flatbuffers::Vector<flatbuffers::Offset<flat::Hash>>::const_iterator
hashes_iter =
std::lower_bound(hashes->begin(), hashes->end(), str,
[](const flat::Hash* hash, const std::string& str) {
std::string hash_str = HashToString(hash);
return hash_str.compare(str) < 0;
});
if (hashes_iter == hashes->end() || HashToString(*hashes_iter) != str) {
return false;
}
int index = hashes_iter - hashes->begin();
const flatbuffers::Vector<int32_t>* page_terms =
flatbuffer_model_->page_term();
return std::binary_search(page_terms->begin(), page_terms->end(), index);
}
base::RepeatingCallback<bool(const std::string&)>
Scorer::find_page_term_callback() const {
return base::BindRepeating(&Scorer::has_page_term, base::Unretained(this));
}
bool Scorer::has_page_word(uint32_t page_word_hash) const {
const flatbuffers::Vector<uint32_t>* page_words =
flatbuffer_model_->page_word();
return std::binary_search(page_words->begin(), page_words->end(),
page_word_hash);
}
base::RepeatingCallback<bool(uint32_t)> Scorer::find_page_word_callback()
const {
return base::BindRepeating(&Scorer::has_page_word, base::Unretained(this));
}
size_t Scorer::max_words_per_term() const {
return flatbuffer_model_->max_words_per_term();
}
uint32_t Scorer::murmurhash3_seed() const {
return flatbuffer_model_->murmur_hash_seed();
}
size_t Scorer::max_shingles_per_page() const {
return flatbuffer_model_->max_shingles_per_page();
}
size_t Scorer::shingle_size() const {
return flatbuffer_model_->shingle_size();
}
float Scorer::threshold_probability() const {
return flatbuffer_model_->threshold_probability();
}
int Scorer::tflite_model_version() const {
return flatbuffer_model_->tflite_metadata()->version();
}
const google::protobuf::RepeatedPtrField<TfLiteModelMetadata::Threshold>&
Scorer::tflite_thresholds() const {
return thresholds_;
}
int Scorer::image_embedding_tflite_model_version() const {
return flatbuffer_model_->img_embedding_metadata()->version();
}
void ScorerStorage::SetScorer(std::unique_ptr<Scorer> scorer) {
scorer_ = std::move(scorer);
for (Observer& obs : observers_) {
obs.OnScorerChanged();
}
}
void ScorerStorage::ClearScorer() {
scorer_.reset();
for (Observer& obs : observers_) {
obs.OnScorerChanged();
}
}
Scorer* ScorerStorage::GetScorer() const {
return scorer_.get();
}
void ScorerStorage::AddObserver(ScorerStorage::Observer* observer) {
observers_.AddObserver(observer);
}
void ScorerStorage::RemoveObserver(ScorerStorage::Observer* observer) {
observers_.RemoveObserver(observer);
}
} // namespace safe_browsing
|