1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/browser/ai/echo_ai_language_model.h"
#include <optional>
#include "base/containers/to_vector.h"
#include "base/functional/bind.h"
#include "base/location.h"
#include "base/time/time.h"
#include "components/optimization_guide/core/optimization_guide_features.h"
#include "content/browser/ai/echo_ai_manager_impl.h"
#include "content/public/browser/browser_thread.h"
#include "mojo/public/cpp/bindings/remote.h"
#include "mojo/public/cpp/bindings/self_owned_receiver.h"
#include "third_party/blink/public/mojom/ai/ai_common.mojom.h"
#include "third_party/blink/public/mojom/ai/ai_language_model.mojom.h"
#include "third_party/blink/public/mojom/ai/model_streaming_responder.mojom.h"
namespace content {
namespace {
constexpr char kResponsePrefix[] =
"On-device model is not available in Chromium, this API is just echoing "
"back the input:\n";
}
EchoAILanguageModel::EchoAILanguageModel(
blink::mojom::AILanguageModelSamplingParamsPtr sampling_params,
base::flat_set<blink::mojom::AILanguageModelPromptType> input_types)
: sampling_params_(std::move(sampling_params)), input_types_(input_types) {}
EchoAILanguageModel::~EchoAILanguageModel() = default;
void EchoAILanguageModel::DoMockExecution(
const std::string& input,
mojo::RemoteSetElementId responder_id) {
blink::mojom::ModelStreamingResponder* responder =
responder_set_.Get(responder_id);
if (!responder) {
return;
}
uint32_t quota = EchoAIManagerImpl::kMaxContextSizeInTokens;
if (input.size() > quota) {
responder->OnError(
blink::mojom::ModelStreamingResponseStatus::kErrorInputTooLarge,
blink::mojom::QuotaErrorInfo::New(input.size(), quota));
return;
}
if (current_tokens_ > quota - input.size()) {
current_tokens_ = input.size();
responder->OnQuotaOverflow();
}
current_tokens_ += input.size();
responder->OnStreaming(kResponsePrefix);
responder->OnStreaming(input);
responder->OnCompletion(
blink::mojom::ModelExecutionContextInfo::New(current_tokens_));
}
void EchoAILanguageModel::Prompt(
std::vector<blink::mojom::AILanguageModelPromptPtr> prompts,
on_device_model::mojom::ResponseConstraintPtr constraint,
mojo::PendingRemote<blink::mojom::ModelStreamingResponder>
pending_responder) {
if (is_destroyed_) {
mojo::Remote<blink::mojom::ModelStreamingResponder> responder(
std::move(pending_responder));
responder->OnError(
blink::mojom::ModelStreamingResponseStatus::kErrorSessionDestroyed,
/*quota_error_info=*/nullptr);
return;
}
std::string response = "";
for (const auto& prompt : prompts) {
for (auto& content : prompt->content) {
if (content->is_text()) {
response += content->get_text();
} else if (content->is_bitmap()) {
if (!input_types_.contains(
blink::mojom::AILanguageModelPromptType::kImage)) {
mojo::ReportBadMessage("Image input is not supported.");
return;
}
response += "<image>";
} else if (content->is_audio()) {
if (!input_types_.contains(
blink::mojom::AILanguageModelPromptType::kAudio)) {
mojo::ReportBadMessage("Audio input is not supported.");
return;
}
response += "<audio>";
} else {
NOTIMPLEMENTED_LOG_ONCE();
}
}
}
mojo::RemoteSetElementId responder_id =
responder_set_.Add(std::move(pending_responder));
// Simulate the time taken by model execution.
content::GetUIThreadTaskRunner()->PostDelayedTask(
FROM_HERE,
base::BindOnce(&EchoAILanguageModel::DoMockExecution,
weak_ptr_factory_.GetWeakPtr(), response, responder_id),
base::Seconds(1));
}
void EchoAILanguageModel::Append(
std::vector<blink::mojom::AILanguageModelPromptPtr> prompts,
mojo::PendingRemote<blink::mojom::ModelStreamingResponder>
pending_responder) {
mojo::Remote<blink::mojom::ModelStreamingResponder> responder(
std::move(pending_responder));
responder->OnCompletion(
blink::mojom::ModelExecutionContextInfo::New(current_tokens_));
}
void EchoAILanguageModel::Fork(
mojo::PendingRemote<blink::mojom::AIManagerCreateLanguageModelClient>
client) {
mojo::Remote<blink::mojom::AIManagerCreateLanguageModelClient> client_remote(
std::move(client));
mojo::PendingRemote<blink::mojom::AILanguageModel> language_model;
mojo::MakeSelfOwnedReceiver(std::make_unique<EchoAILanguageModel>(
sampling_params_.Clone(), input_types_),
language_model.InitWithNewPipeAndPassReceiver());
client_remote->OnResult(
std::move(language_model),
blink::mojom::AILanguageModelInstanceInfo::New(
EchoAIManagerImpl::kMaxContextSizeInTokens, current_tokens_,
sampling_params_->Clone(), base::ToVector(input_types_)));
}
void EchoAILanguageModel::Destroy() {
is_destroyed_ = true;
for (auto& responder : responder_set_) {
responder->OnError(
blink::mojom::ModelStreamingResponseStatus::kErrorSessionDestroyed,
/*quota_error_info=*/nullptr);
}
responder_set_.Clear();
}
void EchoAILanguageModel::MeasureInputUsage(
std::vector<blink::mojom::AILanguageModelPromptPtr> input,
MeasureInputUsageCallback callback) {
size_t total = 0;
for (const auto& prompt : input) {
for (const auto& content : prompt->content) {
if (content->is_text()) {
total += content->get_text().size();
} else {
total += 100; // TODO(crbug.com/415304330): Improve estimate.
}
}
}
std::move(callback).Run(total);
}
} // namespace content
|