1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/browser/byte_stream.h"
#include <memory>
#include <set>
#include <utility>
#include "base/containers/circular_deque.h"
#include "base/functional/bind.h"
#include "base/location.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/ref_counted.h"
#include "base/task/sequenced_task_runner.h"
#include "base/time/time.h"
namespace content {
namespace {
using ContentVector =
base::circular_deque<std::pair<scoped_refptr<net::IOBuffer>, size_t>>;
class ByteStreamReaderImpl;
// A makeshift weak pointer; a RefCountedThreadSafe boolean that can be cleared
// in an object destructor and accessed to check for object existence. We can't
// use weak pointers because they're tightly tied to threads rather than task
// runners.
// TODO(rdsmith): A better solution would be extending weak pointers
// to support SequencedTaskRunners.
struct LifetimeFlag : public base::RefCountedThreadSafe<LifetimeFlag> {
public:
LifetimeFlag() : is_alive(true) { }
LifetimeFlag(const LifetimeFlag&) = delete;
LifetimeFlag& operator=(const LifetimeFlag&) = delete;
bool is_alive;
protected:
friend class base::RefCountedThreadSafe<LifetimeFlag>;
virtual ~LifetimeFlag() {}
};
// For both ByteStreamWriterImpl and ByteStreamReaderImpl, Construction and
// SetPeer may happen anywhere; all other operations on each class must
// happen in the context of their SequencedTaskRunner.
class ByteStreamWriterImpl : public ByteStreamWriter {
public:
ByteStreamWriterImpl(scoped_refptr<base::SequencedTaskRunner> task_runner,
scoped_refptr<LifetimeFlag> lifetime_flag,
size_t buffer_size);
~ByteStreamWriterImpl() override;
// Must be called before any operations are performed.
void SetPeer(ByteStreamReaderImpl* peer,
scoped_refptr<base::SequencedTaskRunner> peer_task_runner,
scoped_refptr<LifetimeFlag> peer_lifetime_flag);
// Overridden from ByteStreamWriter.
bool Write(scoped_refptr<net::IOBuffer> buffer, size_t byte_count) override;
void Flush() override;
void Close(int status) override;
void RegisterCallback(base::RepeatingClosure source_callback) override;
size_t GetTotalBufferedBytes() const override;
// PostTask target from |ByteStreamReaderImpl::MaybeUpdateInput|.
static void UpdateWindow(scoped_refptr<LifetimeFlag> lifetime_flag,
ByteStreamWriterImpl* target,
size_t bytes_consumed);
private:
// Called from UpdateWindow when object existence has been validated.
void UpdateWindowInternal(size_t bytes_consumed);
void PostToPeer(bool complete, int status);
const size_t total_buffer_size_;
// All data objects in this class are only valid to access on
// this task runner except as otherwise noted.
scoped_refptr<base::SequencedTaskRunner> my_task_runner_;
// True while this object is alive.
scoped_refptr<LifetimeFlag> my_lifetime_flag_;
base::RepeatingClosure space_available_callback_;
ContentVector input_contents_;
size_t input_contents_size_;
// ** Peer information.
scoped_refptr<base::SequencedTaskRunner> peer_task_runner_;
// How much we've sent to the output that for flow control purposes we
// must assume hasn't been read yet.
size_t output_size_used_;
// Only valid to access on peer_task_runner_.
scoped_refptr<LifetimeFlag> peer_lifetime_flag_;
// Only valid to access on peer_task_runner_ if
// |*peer_lifetime_flag_ == true|
raw_ptr<ByteStreamReaderImpl, DanglingUntriaged> peer_;
};
class ByteStreamReaderImpl : public ByteStreamReader {
public:
ByteStreamReaderImpl(scoped_refptr<base::SequencedTaskRunner> task_runner,
scoped_refptr<LifetimeFlag> lifetime_flag,
size_t buffer_size);
~ByteStreamReaderImpl() override;
// Must be called before any operations are performed.
void SetPeer(ByteStreamWriterImpl* peer,
scoped_refptr<base::SequencedTaskRunner> peer_task_runner,
scoped_refptr<LifetimeFlag> peer_lifetime_flag);
// Overridden from ByteStreamReader.
StreamState Read(scoped_refptr<net::IOBuffer>* data, size_t* length) override;
int GetStatus() const override;
void RegisterCallback(base::RepeatingClosure sink_callback) override;
// PostTask target from |ByteStreamWriterImpl::Write| and
// |ByteStreamWriterImpl::Close|.
// Receive data from our peer.
// static because it may be called after the object it is targeting
// has been destroyed. It may not access |*target|
// if |*object_lifetime_flag| is false.
static void TransferData(scoped_refptr<LifetimeFlag> object_lifetime_flag,
ByteStreamReaderImpl* target,
std::unique_ptr<ContentVector> transfer_buffer,
size_t transfer_buffer_bytes,
bool source_complete,
int status);
private:
// Called from TransferData once object existence has been validated.
void TransferDataInternal(std::unique_ptr<ContentVector> transfer_buffer,
size_t transfer_buffer_bytes,
bool source_complete,
int status);
void MaybeUpdateInput();
const size_t total_buffer_size_;
scoped_refptr<base::SequencedTaskRunner> my_task_runner_;
// True while this object is alive.
scoped_refptr<LifetimeFlag> my_lifetime_flag_;
ContentVector available_contents_;
bool received_status_;
int status_;
base::RepeatingClosure data_available_callback_;
// Time of last point at which data in stream transitioned from full
// to non-full. Nulled when a callback is sent.
base::Time last_non_full_time_;
// ** Peer information
scoped_refptr<base::SequencedTaskRunner> peer_task_runner_;
// How much has been removed from this class that we haven't told
// the input about yet.
size_t unreported_consumed_bytes_;
// Only valid to access on peer_task_runner_.
scoped_refptr<LifetimeFlag> peer_lifetime_flag_;
// Only valid to access on peer_task_runner_ if
// |*peer_lifetime_flag_ == true|
raw_ptr<ByteStreamWriterImpl, DanglingUntriaged> peer_;
};
ByteStreamWriterImpl::ByteStreamWriterImpl(
scoped_refptr<base::SequencedTaskRunner> task_runner,
scoped_refptr<LifetimeFlag> lifetime_flag,
size_t buffer_size)
: total_buffer_size_(buffer_size),
my_task_runner_(task_runner),
my_lifetime_flag_(lifetime_flag),
input_contents_size_(0),
output_size_used_(0),
peer_(nullptr) {
DCHECK(my_lifetime_flag_.get());
my_lifetime_flag_->is_alive = true;
}
ByteStreamWriterImpl::~ByteStreamWriterImpl() {
// No RunsTasksInCurrentSequence() check to allow deleting a created writer
// before we start using it. Once started, should be deleted on the specified
// task runner.
my_lifetime_flag_->is_alive = false;
}
void ByteStreamWriterImpl::SetPeer(
ByteStreamReaderImpl* peer,
scoped_refptr<base::SequencedTaskRunner> peer_task_runner,
scoped_refptr<LifetimeFlag> peer_lifetime_flag) {
peer_ = peer;
peer_task_runner_ = peer_task_runner;
peer_lifetime_flag_ = peer_lifetime_flag;
}
bool ByteStreamWriterImpl::Write(
scoped_refptr<net::IOBuffer> buffer, size_t byte_count) {
DCHECK(my_task_runner_->RunsTasksInCurrentSequence());
// Check overflow.
//
// TODO(tyoshino): Discuss with content/browser/download developer and if
// they're fine with, set smaller limit and make it configurable.
size_t space_limit = std::numeric_limits<size_t>::max() -
GetTotalBufferedBytes();
if (byte_count > space_limit) {
// TODO(tyoshino): Tell the user that Write() failed.
// Ignore input.
return false;
}
input_contents_.push_back(std::make_pair(buffer, byte_count));
input_contents_size_ += byte_count;
// Arbitrarily, we buffer to a third of the total size before sending.
if (input_contents_size_ > total_buffer_size_ / kFractionBufferBeforeSending)
PostToPeer(false, 0);
return GetTotalBufferedBytes() <= total_buffer_size_;
}
void ByteStreamWriterImpl::Flush() {
DCHECK(my_task_runner_->RunsTasksInCurrentSequence());
if (input_contents_size_ > 0)
PostToPeer(false, 0);
}
void ByteStreamWriterImpl::Close(int status) {
DCHECK(my_task_runner_->RunsTasksInCurrentSequence());
PostToPeer(true, status);
}
void ByteStreamWriterImpl::RegisterCallback(
base::RepeatingClosure source_callback) {
DCHECK(my_task_runner_->RunsTasksInCurrentSequence());
space_available_callback_ = std::move(source_callback);
}
size_t ByteStreamWriterImpl::GetTotalBufferedBytes() const {
DCHECK(my_task_runner_->RunsTasksInCurrentSequence());
// This sum doesn't overflow since Write() fails if this sum is going to
// overflow.
return input_contents_size_ + output_size_used_;
}
// static
void ByteStreamWriterImpl::UpdateWindow(
scoped_refptr<LifetimeFlag> lifetime_flag, ByteStreamWriterImpl* target,
size_t bytes_consumed) {
// If the target object isn't alive anymore, we do nothing.
if (!lifetime_flag->is_alive) return;
target->UpdateWindowInternal(bytes_consumed);
}
void ByteStreamWriterImpl::UpdateWindowInternal(size_t bytes_consumed) {
DCHECK(my_task_runner_->RunsTasksInCurrentSequence());
bool was_above_limit = GetTotalBufferedBytes() > total_buffer_size_;
DCHECK_GE(output_size_used_, bytes_consumed);
output_size_used_ -= bytes_consumed;
// Callback if we were above the limit and we're now <= to it.
bool no_longer_above_limit = GetTotalBufferedBytes() <= total_buffer_size_;
if (no_longer_above_limit && was_above_limit &&
!space_available_callback_.is_null())
space_available_callback_.Run();
}
void ByteStreamWriterImpl::PostToPeer(bool complete, int status) {
DCHECK(my_task_runner_->RunsTasksInCurrentSequence());
// Valid contexts in which to call.
DCHECK(complete || 0 != input_contents_size_);
std::unique_ptr<ContentVector> transfer_buffer;
size_t buffer_size = 0;
if (0 != input_contents_size_) {
transfer_buffer = std::make_unique<ContentVector>();
transfer_buffer->swap(input_contents_);
buffer_size = input_contents_size_;
output_size_used_ += input_contents_size_;
input_contents_size_ = 0;
}
peer_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&ByteStreamReaderImpl::TransferData, peer_lifetime_flag_,
peer_, std::move(transfer_buffer), buffer_size, complete,
status));
}
ByteStreamReaderImpl::ByteStreamReaderImpl(
scoped_refptr<base::SequencedTaskRunner> task_runner,
scoped_refptr<LifetimeFlag> lifetime_flag,
size_t buffer_size)
: total_buffer_size_(buffer_size),
my_task_runner_(task_runner),
my_lifetime_flag_(lifetime_flag),
received_status_(false),
status_(0),
unreported_consumed_bytes_(0),
peer_(nullptr) {
DCHECK(my_lifetime_flag_.get());
my_lifetime_flag_->is_alive = true;
}
ByteStreamReaderImpl::~ByteStreamReaderImpl() {
// No RunsTasksInCurrentSequence() check to allow deleting a created writer
// before we start using it. Once started, should be deleted on the specified
// task runner.
my_lifetime_flag_->is_alive = false;
}
void ByteStreamReaderImpl::SetPeer(
ByteStreamWriterImpl* peer,
scoped_refptr<base::SequencedTaskRunner> peer_task_runner,
scoped_refptr<LifetimeFlag> peer_lifetime_flag) {
peer_ = peer;
peer_task_runner_ = peer_task_runner;
peer_lifetime_flag_ = peer_lifetime_flag;
}
ByteStreamReaderImpl::StreamState
ByteStreamReaderImpl::Read(scoped_refptr<net::IOBuffer>* data,
size_t* length) {
DCHECK(my_task_runner_->RunsTasksInCurrentSequence());
if (available_contents_.size()) {
*data = available_contents_.front().first;
*length = available_contents_.front().second;
available_contents_.pop_front();
unreported_consumed_bytes_ += *length;
MaybeUpdateInput();
return STREAM_HAS_DATA;
}
if (received_status_) {
return STREAM_COMPLETE;
}
return STREAM_EMPTY;
}
int ByteStreamReaderImpl::GetStatus() const {
DCHECK(my_task_runner_->RunsTasksInCurrentSequence());
DCHECK(received_status_);
return status_;
}
void ByteStreamReaderImpl::RegisterCallback(
base::RepeatingClosure sink_callback) {
DCHECK(my_task_runner_->RunsTasksInCurrentSequence());
data_available_callback_ = std::move(sink_callback);
}
// static
void ByteStreamReaderImpl::TransferData(
scoped_refptr<LifetimeFlag> object_lifetime_flag,
ByteStreamReaderImpl* target,
std::unique_ptr<ContentVector> transfer_buffer,
size_t buffer_size,
bool source_complete,
int status) {
// If our target is no longer alive, do nothing.
if (!object_lifetime_flag->is_alive) return;
target->TransferDataInternal(std::move(transfer_buffer), buffer_size,
source_complete, status);
}
void ByteStreamReaderImpl::TransferDataInternal(
std::unique_ptr<ContentVector> transfer_buffer,
size_t buffer_size,
bool source_complete,
int status) {
DCHECK(my_task_runner_->RunsTasksInCurrentSequence());
bool was_empty = available_contents_.empty();
if (transfer_buffer) {
available_contents_.insert(available_contents_.end(),
transfer_buffer->begin(),
transfer_buffer->end());
}
if (source_complete) {
received_status_ = true;
status_ = status;
}
// Callback on transition from empty to non-empty, or
// source complete.
if (((was_empty && !available_contents_.empty()) ||
source_complete) &&
!data_available_callback_.is_null())
data_available_callback_.Run();
}
// Decide whether or not to send the input a window update.
// Currently we do that whenever we've got unreported consumption
// greater than 1/3 of total size.
void ByteStreamReaderImpl::MaybeUpdateInput() {
DCHECK(my_task_runner_->RunsTasksInCurrentSequence());
if (unreported_consumed_bytes_ <=
total_buffer_size_ / kFractionReadBeforeWindowUpdate)
return;
peer_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&ByteStreamWriterImpl::UpdateWindow, peer_lifetime_flag_,
peer_, unreported_consumed_bytes_));
unreported_consumed_bytes_ = 0;
}
} // namespace
const int ByteStreamWriter::kFractionBufferBeforeSending = 3;
const int ByteStreamReader::kFractionReadBeforeWindowUpdate = 3;
ByteStreamReader::~ByteStreamReader() { }
ByteStreamWriter::~ByteStreamWriter() { }
void CreateByteStream(
scoped_refptr<base::SequencedTaskRunner> input_task_runner,
scoped_refptr<base::SequencedTaskRunner> output_task_runner,
size_t buffer_size,
std::unique_ptr<ByteStreamWriter>* input,
std::unique_ptr<ByteStreamReader>* output) {
scoped_refptr<LifetimeFlag> input_flag(new LifetimeFlag());
scoped_refptr<LifetimeFlag> output_flag(new LifetimeFlag());
ByteStreamWriterImpl* in = new ByteStreamWriterImpl(
input_task_runner, input_flag, buffer_size);
ByteStreamReaderImpl* out = new ByteStreamReaderImpl(
output_task_runner, output_flag, buffer_size);
in->SetPeer(out, output_task_runner, output_flag);
out->SetPeer(in, input_task_runner, input_flag);
input->reset(in);
output->reset(out);
}
} // namespace content
|