1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/342213636): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "content/browser/media/capture/frame_test_util.h"
#include <stdint.h>
#include <array>
#include <cmath>
#include "base/numerics/safe_conversions.h"
#include "media/base/video_frame.h"
#include "media/base/video_types.h"
#include "third_party/skia/include/core/SkColor.h"
#include "third_party/skia/include/core/SkColorSpace.h"
#include "third_party/skia/include/core/SkTypes.h"
#include "ui/gfx/color_space.h"
#include "ui/gfx/color_transform.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/rect_f.h"
#include "ui/gfx/geometry/size.h"
#include "ui/gfx/geometry/transform.h"
namespace content {
namespace {
using TriStim = gfx::ColorTransform::TriStim;
// Copies YUV row data into an array of TriStims, mapping [0,255]⇒[0.0,1.0]. The
// chroma planes are assumed to be half-width.
void LoadStimsFromYUV(const uint8_t y_src[],
const uint8_t u_src[],
const uint8_t v_src[],
int width,
TriStim stims[]) {
for (int i = 0; i < width; ++i) {
stims[i].SetPoint(y_src[i] / 255.0f, u_src[i / 2] / 255.0f,
v_src[i / 2] / 255.0f);
}
}
void LoadStimsFromYUV(const uint8_t y_src[],
const uint16_t uv_src[],
int width,
TriStim stims[]) {
// https://docs.microsoft.com/en-us/windows/win32/medfound/recommended-8-bit-yuv-formats-for-video-rendering#nv12
// "All of the Y samples appear first in memory as an array of unsigned char
// values with an even number of lines. The Y plane is followed immediately by
// an array of unsigned char values that contains packed U (Cb) and V (Cr)
// samples. When the combined U-V array is addressed as an array of
// little-endian WORD values, the LSBs contain the U values, and the MSBs
// contain the V values."
#if defined(SK_CPU_BENDIAN)
for (int i = 0; i < width; ++i) {
stims[i].SetPoint(
y_src[i] / 255.0f,
(uv_src[i / 2] >> 8) / 255.0f, // MSB contains U values on LE
(uv_src[i / 2] & 0xFF) / 255.0f);
}
#else
for (int i = 0; i < width; ++i) {
stims[i].SetPoint(
y_src[i] / 255.0f,
(uv_src[i / 2] & 0xFF) / 255.0f, // LSB contains U values on LE
(uv_src[i / 2] >> 8) / 255.0f);
}
#endif
}
// Maps [0.0,1.0]⇒[0,255], rounding to the nearest integer.
uint8_t QuantizeAndClamp(float value) {
return base::saturated_cast<uint8_t>(
std::fma(value, 255.0f, 0.5f /* rounding */));
}
// Copies the array of TriStims to the BGRA/RGBA output, mapping
// [0.0,1.0]⇒[0,255].
void StimsToN32Row(const TriStim row[], int width, uint8_t bgra_out[]) {
for (int i = 0; i < width; ++i) {
bgra_out[(i * 4) + (SK_R32_SHIFT / 8)] = QuantizeAndClamp(row[i].x());
bgra_out[(i * 4) + (SK_G32_SHIFT / 8)] = QuantizeAndClamp(row[i].y());
bgra_out[(i * 4) + (SK_B32_SHIFT / 8)] = QuantizeAndClamp(row[i].z());
bgra_out[(i * 4) + (SK_A32_SHIFT / 8)] = 255;
}
}
} // namespace
// static
SkBitmap FrameTestUtil::ConvertToBitmap(const media::VideoFrame& frame) {
CHECK(frame.ColorSpace().IsValid());
SkBitmap bitmap;
bitmap.allocPixels(SkImageInfo::MakeN32Premul(frame.visible_rect().width(),
frame.visible_rect().height(),
SkColorSpace::MakeSRGB()));
// Note: The hand-optimized libyuv::H420ToARGB() would be more-desirable for
// runtime performance. However, while it claims to convert from the REC709
// color space to sRGB, as of this writing, it does not do so accurately. For
// example, a YUV triplet that should become almost exactly yellow (0xffff01)
// is converted as 0xfeff0c (the blue channel has a difference of 11!). Since
// one goal of these tests is to confirm color space correctness, the
// following color transformation code is provided:
// Construct the ColorTransform.
const auto transform = gfx::ColorTransform::NewColorTransform(
frame.ColorSpace(), gfx::ColorSpace::CreateSRGB());
CHECK(transform);
// Convert one row at a time.
std::vector<gfx::ColorTransform::TriStim> stims(bitmap.width());
for (int row = 0; row < bitmap.height(); ++row) {
if (frame.format() == media::VideoPixelFormat::PIXEL_FORMAT_I420) {
LoadStimsFromYUV(
frame.visible_data(media::VideoFrame::Plane::kY) +
row * frame.stride(media::VideoFrame::Plane::kY),
frame.visible_data(media::VideoFrame::Plane::kU) +
(row / 2) * frame.stride(media::VideoFrame::Plane::kU),
frame.visible_data(media::VideoFrame::Plane::kV) +
(row / 2) * frame.stride(media::VideoFrame::Plane::kV),
bitmap.width(), stims.data());
} else {
CHECK_EQ(frame.format(), media::VideoPixelFormat::PIXEL_FORMAT_NV12);
LoadStimsFromYUV(
frame.visible_data(media::VideoFrame::Plane::kY) +
row * frame.stride(media::VideoFrame::Plane::kY),
reinterpret_cast<const uint16_t*>(
frame.visible_data(media::VideoFrame::Plane::kUV) +
(row / 2) * frame.stride(media::VideoFrame::Plane::kUV)),
bitmap.width(), stims.data());
}
transform->Transform(stims.data(), stims.size());
StimsToN32Row(stims.data(), bitmap.width(),
reinterpret_cast<uint8_t*>(bitmap.getAddr32(0, row)));
}
return bitmap;
}
// static
gfx::Rect FrameTestUtil::ToSafeIncludeRect(const gfx::RectF& rect_f,
int fuzzy_border) {
gfx::Rect result = gfx::ToEnclosedRect(rect_f);
CHECK_GT(result.width(), 2 * fuzzy_border);
CHECK_GT(result.height(), 2 * fuzzy_border);
result.Inset(fuzzy_border);
return result;
}
// static
gfx::Rect FrameTestUtil::ToSafeExcludeRect(const gfx::RectF& rect_f,
int fuzzy_border) {
gfx::Rect result = gfx::ToEnclosingRect(rect_f);
result.Inset(-fuzzy_border);
return result;
}
// static
FrameTestUtil::RGB FrameTestUtil::ComputeAverageColor(
SkBitmap frame,
const gfx::Rect& raw_include_rect,
const gfx::Rect& raw_exclude_rect) {
// Clip the rects to the valid region within |frame|. Also, only the subregion
// of |exclude_rect| within |include_rect| is relevant.
gfx::Rect include_rect = raw_include_rect;
include_rect.Intersect(gfx::Rect(0, 0, frame.width(), frame.height()));
gfx::Rect exclude_rect = raw_exclude_rect;
exclude_rect.Intersect(include_rect);
// Sum up the color values in each color channel for all pixels in
// |include_rect| not contained by |exclude_rect|.
std::array<int64_t, 3> include_sums = {};
for (int y = include_rect.y(), bottom = include_rect.bottom(); y < bottom;
++y) {
for (int x = include_rect.x(), right = include_rect.right(); x < right;
++x) {
if (exclude_rect.Contains(x, y)) {
continue;
}
const SkColor color = frame.getColor(x, y);
include_sums[0] += SkColorGetR(color);
include_sums[1] += SkColorGetG(color);
include_sums[2] += SkColorGetB(color);
}
}
// Divide the sums by the area to compute the average color.
const int include_area =
include_rect.size().GetArea() - exclude_rect.size().GetArea();
if (include_area <= 0) {
return RGB{NAN, NAN, NAN};
} else {
const auto include_area_f = static_cast<double>(include_area);
return RGB{include_sums[0] / include_area_f,
include_sums[1] / include_area_f,
include_sums[2] / include_area_f};
}
}
// static
bool FrameTestUtil::IsApproximatelySameColor(SkColor color,
const RGB& rgb,
int max_diff) {
const double r_diff = std::abs(SkColorGetR(color) - rgb.r);
const double g_diff = std::abs(SkColorGetG(color) - rgb.g);
const double b_diff = std::abs(SkColorGetB(color) - rgb.b);
return r_diff < max_diff && g_diff < max_diff && b_diff < max_diff;
}
// static
bool FrameTestUtil::IsApproximatelySameColor(SkColor color,
SkColor expected_color,
int max_diff) {
const int r_diff = std::abs(static_cast<int>(SkColorGetR(color)) -
static_cast<int>(SkColorGetR(expected_color)));
const int g_diff = std::abs(static_cast<int>(SkColorGetG(color)) -
static_cast<int>(SkColorGetG(expected_color)));
const int b_diff = std::abs(static_cast<int>(SkColorGetB(color)) -
static_cast<int>(SkColorGetB(expected_color)));
return r_diff < max_diff && g_diff < max_diff && b_diff < max_diff;
}
bool FrameTestUtil::IsApproximatelySameColor(SkBitmap frame,
const gfx::Rect& raw_include_rect,
const gfx::Rect& raw_exclude_rect,
SkColor expected_color,
int max_diff) {
// Clip the rects to the valid region within |frame|. Also, only the subregion
// of |exclude_rect| within |include_rect| is relevant.
gfx::Rect include_rect = raw_include_rect;
include_rect.Intersect(gfx::Rect(0, 0, frame.width(), frame.height()));
gfx::Rect exclude_rect = raw_exclude_rect;
exclude_rect.Intersect(include_rect);
for (int y = include_rect.y(), bottom = include_rect.bottom(); y < bottom;
++y) {
for (int x = include_rect.x(), right = include_rect.right(); x < right;
++x) {
if (exclude_rect.Contains(x, y)) {
continue;
}
const SkColor color = frame.getColor(x, y);
if (!IsApproximatelySameColor(color, expected_color, max_diff)) {
return false;
}
}
}
return true;
}
// static
gfx::RectF FrameTestUtil::TransformSimilarly(const gfx::Rect& original,
const gfx::RectF& transformed,
const gfx::Rect& rect) {
if (original.IsEmpty()) {
return gfx::RectF(transformed.x() - original.x(),
transformed.y() - original.y(), 0.0f, 0.0f);
}
return gfx::MapRect(gfx::RectF(rect), gfx::RectF(original), transformed);
}
std::ostream& operator<<(std::ostream& out, const FrameTestUtil::RGB& rgb) {
return (out << "{r=" << rgb.r << ",g=" << rgb.g << ",b=" << rgb.b << '}');
}
} // namespace content
|