1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef CONTENT_BROWSER_PRELOADING_PRELOADING_PREDICTION_H_
#define CONTENT_BROWSER_PRELOADING_PRELOADING_PREDICTION_H_
#include <optional>
#include <string_view>
#include "base/timer/elapsed_timer.h"
#include "content/browser/preloading/preloading_confidence.h"
#include "content/public/browser/preloading_data.h"
#include "services/metrics/public/cpp/ukm_source_id.h"
#include "url/gurl.h"
namespace content {
// PreloadingPrediction keeps track of every preloading prediction associated
// with various predictors as defined in content/public/preloading.h
// (please see for more details); whether the prediction is accurate or not;
// whether the prediction is confident enough or not.
class PreloadingPrediction {
public:
~PreloadingPrediction();
// Disallow copy and assign.
PreloadingPrediction(const PreloadingPrediction& other) = delete;
PreloadingPrediction& operator=(const PreloadingPrediction& other) = delete;
PreloadingPrediction(PreloadingPrediction&&);
PreloadingPrediction& operator=(PreloadingPrediction&&);
// Records both UKMs Preloading_Prediction and
// Preloading_Prediction_PreviousPrimaryPage. Metrics for both these are same.
// Only difference is that the Preloading_Prediction_PreviousPrimaryPage UKM
// is associated with the WebContents primary page that triggered the
// preloading prediction. This is done to easily analyze the impact of the
// preloading prediction on the primary visible page.
void RecordPreloadingPredictionUKMs(
ukm::SourceId navigated_page_source_id,
std::optional<double> sampling_likelihood);
// Sets `is_accurate_prediction_` to true if `navigated_url` matches the URL
// predicate. It also records `time_to_next_navigation_`.
void SetIsAccuratePrediction(const GURL& navigated_url);
bool IsAccuratePrediction() const { return is_accurate_prediction_; }
PreloadingPrediction(
PreloadingPredictor predictor,
PreloadingConfidence confidence,
ukm::SourceId triggered_primary_page_source_id,
base::RepeatingCallback<bool(const GURL&)> url_match_predicate);
// Called by the `PreloadingDataImpl` that owns this prediction, to check the
// validity of `predictor_type_`.
PreloadingPredictor predictor_type() const { return predictor_type_; }
private:
// Preloading predictor of this preloading prediction.
PreloadingPredictor predictor_type_;
// Holds the triggered primary page of preloading operation ukm::SourceId.
ukm::SourceId triggered_primary_page_source_id_;
// Triggers can specify their own predicate to judge whether two URLs are
// considered as pointing to the same destination as this varies for different
// predictors.
PreloadingURLMatchCallback url_match_predicate_;
// Confidence percentage of predictor's preloading prediction. This value
// should be between 0 - 100.
PreloadingConfidence confidence_;
// Set to true when preloading prediction was correct i.e., when the
// navigation happens to the same predicted URL.
bool is_accurate_prediction_ = false;
// Records when the preloading prediction was first recorded.
base::ElapsedTimer elapsed_timer_;
// The time between the creation of the prediction and the start of the next
// navigation, whether accurate or not. The latency is reported as standard
// buckets, of 1.15 spacing.
std::optional<base::TimeDelta> time_to_next_navigation_;
};
// The output of many predictors is a logit/probability score. To use this score
// for binary classification, we compare it to a threshold. If the score is
// above the threshold, we classify the instance as positive; otherwise, we
// classify it as negative. Threshold choice affects classifier precision and
// recall. There is a trade-off between precision and recall. If we set the
// threshold too low, we will have high precision but low recall. If we set the
// threshold too high, we will have high recall but low precision. To choose the
// best threshold, we can use ROC curves, precision-recall curves, or
// logit-precision and logit-recall curves. `ExperimentalPreloadingPrediction`
// helps us collect the UMA data required to achieve this.
class ExperimentalPreloadingPrediction {
public:
ExperimentalPreloadingPrediction() = delete;
ExperimentalPreloadingPrediction(
std::string_view name,
PreloadingURLMatchCallback url_match_predicate,
float score,
float min_score,
float max_score,
size_t buckets);
~ExperimentalPreloadingPrediction();
ExperimentalPreloadingPrediction(
const ExperimentalPreloadingPrediction& other) = delete;
ExperimentalPreloadingPrediction& operator=(
const ExperimentalPreloadingPrediction& other) = delete;
ExperimentalPreloadingPrediction(ExperimentalPreloadingPrediction&&);
ExperimentalPreloadingPrediction& operator=(
ExperimentalPreloadingPrediction&&);
std::string_view PredictorName() const { return name_; }
bool IsAccuratePrediction() const { return is_accurate_prediction_; }
void SetIsAccuratePrediction(const GURL& navigated_url);
void RecordToUMA() const;
private:
// Experimental predictor's name
std::string_view name_;
// Set to true when preloading prediction was correct i.e., when the
// navigation happens to the same predicted URL.
bool is_accurate_prediction_ = false;
// The number of buckets that will be used for UMA aggregation. It must be
// less than 101.
uint8_t buckets_;
// The logit or probability score output of the predictor model.
// Normalized based on the min and max score values.
float normalized_score_;
// The callback to verify that the navigated URL is a match.
PreloadingURLMatchCallback url_match_predicate_;
};
// Stores data relating to a prediction made by the preloading ML model. Once
// the outcome of whether the prediction is accurate is known, the provided
// callback is invoked.
class ModelPredictionTrainingData {
public:
using OutcomeCallback =
base::OnceCallback<void(std::optional<double> sampling_likelihood,
bool is_accurate_prediction)>;
ModelPredictionTrainingData(OutcomeCallback on_record_outcome,
PreloadingURLMatchCallback url_match_predicate);
~ModelPredictionTrainingData();
ModelPredictionTrainingData(const ModelPredictionTrainingData&) = delete;
ModelPredictionTrainingData& operator=(const ModelPredictionTrainingData&) =
delete;
ModelPredictionTrainingData(ModelPredictionTrainingData&&);
ModelPredictionTrainingData& operator=(ModelPredictionTrainingData&&);
void SetIsAccuratePrediction(const GURL& navigated_url);
void Record(std::optional<double> sampling_likelihood);
private:
OutcomeCallback on_record_outcome_;
PreloadingURLMatchCallback url_match_predicate_;
bool is_accurate_prediction_ = false;
};
} // namespace content
#endif // CONTENT_BROWSER_PRELOADING_PRELOADING_PREDICTION_H_
|