1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
|
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/browser/scheduler/responsiveness/calculator.h"
#include <algorithm>
#include <set>
#include <utility>
#include "base/functional/bind.h"
#include "base/metrics/histogram_functions.h"
#include "base/metrics/histogram_macros.h"
#include "base/trace_event/histogram_scope.h"
#include "base/trace_event/trace_event.h"
#include "base/trace_event/trace_id_helper.h"
#include "build/build_config.h"
#include "content/public/browser/browser_thread.h"
namespace content {
namespace responsiveness {
namespace {
// We divide the measurement interval into discretized time slices. Each slice
// is marked as congested if it contained a congested task. A congested task is
// one whose execution latency is greater than kCongestionThreshold.
constexpr auto kMeasurementPeriod = base::Seconds(30);
// A task or event longer than kCongestionThreshold is considered congested.
constexpr auto kCongestionThreshold = base::Milliseconds(100);
// If there have been no events/tasks on the UI thread for a significant period
// of time, it's likely because Chrome was suspended.
// This value is copied from queueing_time_estimator.cc:kInvalidPeriodThreshold.
constexpr auto kSuspendInterval = base::Seconds(30);
constexpr char kLatencyEventCategory[] = "latency";
// The names emitted for CongestedIntervals measurement events.
constexpr char kCongestionTrack[] = "MainThreadsCongestion";
perfetto::StaticString GetCongestedIntervalEvent(
Calculator::CongestionType congestion_type) {
switch (congestion_type) {
case Calculator::CongestionType::kExecutionOnly:
return "CongestedInterval.RunningOnly";
case Calculator::CongestionType::kQueueAndExecution:
return "CongestedInterval";
}
}
perfetto::StaticString GetCongestedIntervalsMeasurementEvent(
Calculator::StartupStage startup_stage) {
switch (startup_stage) {
case Calculator::StartupStage::kFirstInterval:
case Calculator::StartupStage::kFirstIntervalDoneWithoutFirstIdle:
case Calculator::StartupStage::kFirstIntervalAfterFirstIdle:
return "MainThreadsCongestion.Initial";
case Calculator::StartupStage::kPeriodic:
return "MainThreadsCongestion.Periodic";
}
}
// Given a |congestion|, finds each congested slice between |start_time| and
// |end_time|, and adds it to |congested_slices|.
void AddCongestedSlices(std::set<int>* congested_slices,
const Calculator::Congestion& congestion,
base::TimeTicks start_time,
base::TimeTicks end_time) {
// Ignore the first congestion threshold, since that's the part of the
// task/event that wasn't congested.
base::TimeTicks congestion_start =
congestion.start_time + kCongestionThreshold;
// Bound by |start_time| and |end_time|.
congestion_start = std::max(congestion_start, start_time);
base::TimeTicks congestion_end = std::min(congestion.end_time, end_time);
// Find each congested slice, and add it to |congested_slices|.
while (congestion_start < congestion_end) {
// Convert |congestion_start| to a slice label.
int64_t label =
(congestion_start - start_time).IntDiv(kCongestionThreshold);
congested_slices->insert(label);
congestion_start += kCongestionThreshold;
}
}
} // namespace
Calculator::Congestion::Congestion(base::TimeTicks start_time,
base::TimeTicks end_time)
: start_time(start_time), end_time(end_time) {
DCHECK_LE(start_time, end_time);
}
Calculator::Calculator(
std::unique_ptr<ResponsivenessCalculatorDelegate> delegate)
: last_calculation_time_(base::TimeTicks::Now()),
most_recent_activity_time_(last_calculation_time_),
delegate_(std::move(delegate)),
congestion_track_(
kCongestionTrack,
static_cast<uint64_t>(reinterpret_cast<uintptr_t>(this)))
#if BUILDFLAG(IS_ANDROID)
,
application_status_listener_(
base::android::ApplicationStatusListener::New(
base::BindRepeating(&Calculator::OnApplicationStateChanged,
// Listener is destroyed at destructor, and
// object will be alive for any callback.
base::Unretained(this)))) {
// This class assumes construction and access from the UI thread from all
// methods that aren't explicitly flagged otherwise (i.e. *OnIOThread()).
DCHECK_CURRENTLY_ON(BrowserThread::UI);
OnApplicationStateChanged(
base::android::ApplicationStatusListener::GetState());
}
#else
{
}
#endif
Calculator::~Calculator() {
DCHECK_CURRENTLY_ON(BrowserThread::UI);
}
void Calculator::TaskOrEventFinishedOnUIThread(
base::TimeTicks queue_time,
base::TimeTicks execution_start_time,
base::TimeTicks execution_finish_time) {
DCHECK_CURRENTLY_ON(BrowserThread::UI);
DCHECK_GE(execution_start_time, queue_time);
if (execution_finish_time - queue_time >= kCongestionThreshold) {
GetCongestionOnUIThread().emplace_back(queue_time, execution_finish_time);
if (execution_finish_time - execution_start_time >= kCongestionThreshold) {
GetExecutionCongestionOnUIThread().emplace_back(execution_start_time,
execution_finish_time);
}
}
// We rely on the assumption that |finish_time| is the current time.
CalculateResponsivenessIfNecessary(/*current_time=*/execution_finish_time);
}
void Calculator::TaskOrEventFinishedOnIOThread(
base::TimeTicks queue_time,
base::TimeTicks execution_start_time,
base::TimeTicks execution_finish_time) {
DCHECK_CURRENTLY_ON(BrowserThread::IO);
DCHECK_GE(execution_start_time, queue_time);
if (execution_finish_time - queue_time >= kCongestionThreshold) {
base::AutoLock lock(io_thread_lock_);
congestion_on_io_thread_.emplace_back(queue_time, execution_finish_time);
if (execution_finish_time - execution_start_time >= kCongestionThreshold) {
execution_congestion_on_io_thread_.emplace_back(execution_start_time,
execution_finish_time);
}
}
}
void Calculator::OnFirstIdle() {
DCHECK_CURRENTLY_ON(BrowserThread::UI);
DCHECK(!past_first_idle_);
past_first_idle_ = true;
}
void Calculator::EmitResponsiveness(CongestionType congestion_type,
size_t num_congested_slices,
StartupStage startup_stage,
uint64_t event_id) {
DCHECK_CURRENTLY_ON(BrowserThread::UI);
static constexpr size_t kMaxCongestedSlices =
kMeasurementPeriod / kCongestionThreshold;
static constexpr size_t kBucketCount = 50;
DCHECK_LE(num_congested_slices, kMaxCongestedSlices);
base::trace_event::HistogramScope scoped_event(event_id);
switch (congestion_type) {
case CongestionType::kExecutionOnly: {
base::UmaHistogramCustomCounts(
"Browser.MainThreadsCongestion.RunningOnly", num_congested_slices, 1,
1000, kBucketCount);
// Only kFirstInterval and kPeriodic are reported with a suffix, stages
// in between are only part of the unsuffixed histogram.
if (startup_stage_ == StartupStage::kFirstInterval) {
base::UmaHistogramCustomCounts(
"Browser.MainThreadsCongestion.RunningOnly.Initial",
num_congested_slices, 1, 1000, kBucketCount);
} else if (startup_stage_ == StartupStage::kPeriodic) {
base::UmaHistogramCustomCounts(
"Browser.MainThreadsCongestion.RunningOnly.Periodic",
num_congested_slices, 1, 1000, kBucketCount);
}
break;
}
case CongestionType::kQueueAndExecution: {
// Queuing congestion doesn't count before OnFirstIdle().
if (startup_stage_ == StartupStage::kFirstInterval ||
startup_stage_ == StartupStage::kFirstIntervalDoneWithoutFirstIdle) {
break;
}
base::UmaHistogramCustomCounts("Browser.MainThreadsCongestion",
num_congested_slices, 1,
kMaxCongestedSlices, kBucketCount);
if (delegate_) {
delegate_->OnResponsivenessEmitted(num_congested_slices, 1,
kMaxCongestedSlices, kBucketCount);
}
if (startup_stage_ == StartupStage::kFirstIntervalAfterFirstIdle) {
base::UmaHistogramCustomCounts("Browser.MainThreadsCongestion.Initial",
num_congested_slices, 1,
kMaxCongestedSlices, kBucketCount);
} else if (startup_stage_ == StartupStage::kPeriodic) {
base::UmaHistogramCustomCounts("Browser.MainThreadsCongestion.Periodic",
num_congested_slices, 1,
kMaxCongestedSlices, kBucketCount);
}
break;
}
}
}
void Calculator::EmitResponsivenessTraceEvents(
CongestionType congestion_type,
StartupStage startup_stage,
base::TimeTicks start_time,
base::TimeTicks end_time,
const std::set<int>& congested_slices,
uint64_t event_id) {
// Only output kCongestedIntervalsMeasurementEvent event when there are
// congested slices during the measurement.
if (congested_slices.empty()) {
return;
}
// Emit a trace event to highlight the duration of congested intervals
// measurement.
if (congestion_type == CongestionType::kQueueAndExecution) {
EmitCongestedIntervalsMeasurementTraceEvent(
startup_stage, start_time, end_time, congested_slices.size(), event_id);
// Since a lot of startup tasks are queue and then released, queuing
// congestion is very noisy and thus ignored before OnFirstIdle().
if (startup_stage == StartupStage::kFirstInterval ||
startup_stage == StartupStage::kFirstIntervalDoneWithoutFirstIdle) {
return;
}
}
// |congested_slices| contains the id of congested slices, e.g.
// {3,6,7,8,41,42}. As such if the slice following slice x is x+1, we coalesce
// it.
std::set<int>::const_iterator congested_slice_it = congested_slices.begin();
while (congested_slice_it != congested_slices.end()) {
const int start_slice = *congested_slice_it;
// Find the first slice that is not in the current sequence. After the loop,
// |congested_slice_it| will point to the first congested slice in the next
// sequence(or end() if at the end of the slices) while |current_slice|
// will point to the first non-congested slice number which correspond to
// the end of the current sequence.
int current_slice = start_slice;
do {
++congested_slice_it;
++current_slice;
} while (congested_slice_it != congested_slices.end() &&
*congested_slice_it == current_slice);
// Output a trace event for the range [start_slice, current_slice[.
EmitCongestedIntervalTraceEvent(
congestion_type, start_time + start_slice * kCongestionThreshold,
start_time + current_slice * kCongestionThreshold);
}
}
void Calculator::EmitCongestedIntervalsMeasurementTraceEvent(
StartupStage startup_stage,
base::TimeTicks start_time,
base::TimeTicks end_time,
size_t num_congested_slices,
uint64_t event_id) {
TRACE_EVENT_BEGIN(kLatencyEventCategory,
GetCongestedIntervalsMeasurementEvent(startup_stage),
congestion_track_, start_time);
TRACE_EVENT_END(kLatencyEventCategory, congestion_track_, end_time,
perfetto::Flow::Global(event_id));
}
void Calculator::EmitCongestedIntervalTraceEvent(CongestionType congestion_type,
base::TimeTicks start_time,
base::TimeTicks end_time) {
TRACE_EVENT_BEGIN(kLatencyEventCategory,
GetCongestedIntervalEvent(congestion_type),
congestion_track_, start_time);
TRACE_EVENT_END(kLatencyEventCategory, congestion_track_, end_time);
}
base::TimeTicks Calculator::GetLastCalculationTime() {
DCHECK_CURRENTLY_ON(BrowserThread::UI);
return last_calculation_time_;
}
void Calculator::CalculateResponsivenessIfNecessary(
base::TimeTicks current_time) {
DCHECK_CURRENTLY_ON(BrowserThread::UI);
base::TimeTicks last_activity_time = most_recent_activity_time_;
most_recent_activity_time_ = current_time;
// We intentionally dump all data if it appears that Chrome was suspended.
// [e.g. machine is asleep, process is backgrounded on Android]. We don't have
// an explicit signal for this. Instead, we rely on the assumption that when
// Chrome is not suspended, there is a steady stream of tasks and events on
// the UI thread. If there's been a significant amount of time since the last
// calculation, then it's likely because Chrome was suspended.
bool is_suspended = current_time - last_activity_time > kSuspendInterval;
#if BUILDFLAG(IS_ANDROID)
is_suspended |= !is_application_visible_;
#endif
if (is_suspended) {
// Notify the delegate that the interval ended so that it can reset its
// accumulated data for the current interval.
if (delegate_) {
delegate_->OnMeasurementIntervalEnded();
}
last_calculation_time_ = current_time;
GetExecutionCongestionOnUIThread().clear();
GetCongestionOnUIThread().clear();
{
base::AutoLock lock(io_thread_lock_);
execution_congestion_on_io_thread_.clear();
congestion_on_io_thread_.clear();
}
return;
}
base::TimeDelta time_since_last_calculation =
current_time - last_calculation_time_;
if (time_since_last_calculation <= kMeasurementPeriod)
return;
// At least |kMeasurementPeriod| time has passed, so we want to move forward
// |last_calculation_time_| and make measurements based on congestions in that
// interval.
const base::TimeTicks new_calculation_time =
current_time - (time_since_last_calculation % kMeasurementPeriod);
// Acquire the congestions in the measurement interval from the UI and IO
// threads.
std::vector<CongestionList> execution_congestion_from_multiple_threads;
std::vector<CongestionList> congestion_from_multiple_threads;
execution_congestion_from_multiple_threads.push_back(
TakeCongestionsOlderThanTime(&GetExecutionCongestionOnUIThread(),
new_calculation_time));
congestion_from_multiple_threads.push_back(TakeCongestionsOlderThanTime(
&GetCongestionOnUIThread(), new_calculation_time));
{
base::AutoLock lock(io_thread_lock_);
execution_congestion_from_multiple_threads.push_back(
TakeCongestionsOlderThanTime(&execution_congestion_on_io_thread_,
new_calculation_time));
congestion_from_multiple_threads.push_back(TakeCongestionsOlderThanTime(
&congestion_on_io_thread_, new_calculation_time));
}
if (delegate_) {
delegate_->OnMeasurementIntervalEnded();
}
CalculateResponsiveness(CongestionType::kQueueAndExecution,
std::move(congestion_from_multiple_threads),
last_calculation_time_, new_calculation_time);
CalculateResponsiveness(CongestionType::kExecutionOnly,
std::move(execution_congestion_from_multiple_threads),
last_calculation_time_, new_calculation_time);
if (startup_stage_ == StartupStage::kFirstInterval)
startup_stage_ = StartupStage::kFirstIntervalDoneWithoutFirstIdle;
if (startup_stage_ == StartupStage::kFirstIntervalDoneWithoutFirstIdle &&
past_first_idle_) {
startup_stage_ = StartupStage::kFirstIntervalAfterFirstIdle;
} else if (startup_stage_ == StartupStage::kFirstIntervalAfterFirstIdle) {
startup_stage_ = StartupStage::kPeriodic;
}
last_calculation_time_ = new_calculation_time;
}
void Calculator::CalculateResponsiveness(
CongestionType congestion_type,
std::vector<CongestionList> congestions_from_multiple_threads,
base::TimeTicks start_time,
base::TimeTicks end_time) {
DCHECK_CURRENTLY_ON(BrowserThread::UI);
while (start_time < end_time) {
const base::TimeTicks current_interval_end_time =
start_time + kMeasurementPeriod;
// We divide the current measurement interval into slices. Each slice is
// given a monotonically increasing label, from 0 to |kNumberOfSlices - 1|.
// Example [all times in milliseconds since UNIX epoch]:
// The measurement interval is [50135, 80135].
// The slice [50135, 50235] is labeled 0.
// The slice [50235, 50335] is labeled 1.
// ...
// The slice [80035, 80135] is labeled 299.
std::set<int> congested_slices;
for (const CongestionList& congestions :
congestions_from_multiple_threads) {
for (const Congestion& congestion : congestions) {
AddCongestedSlices(&congested_slices, congestion, start_time,
current_interval_end_time);
}
}
uint64_t event_id = base::trace_event::GetNextGlobalTraceId();
EmitResponsiveness(congestion_type, congested_slices.size(), startup_stage_,
event_id);
// If the 'latency' tracing category is enabled and we are ready to observe
// queuing times (past first idle), emit trace events for the measurement
// duration and the congested slices.
bool latency_category_enabled;
TRACE_EVENT_CATEGORY_GROUP_ENABLED(kLatencyEventCategory,
&latency_category_enabled);
if (latency_category_enabled) {
EmitResponsivenessTraceEvents(congestion_type, startup_stage_, start_time,
current_interval_end_time, congested_slices,
event_id);
}
start_time = current_interval_end_time;
}
}
Calculator::CongestionList& Calculator::GetExecutionCongestionOnUIThread() {
DCHECK_CURRENTLY_ON(content::BrowserThread::UI);
return execution_congestion_on_ui_thread_;
}
Calculator::CongestionList& Calculator::GetCongestionOnUIThread() {
DCHECK_CURRENTLY_ON(content::BrowserThread::UI);
return congestion_on_ui_thread_;
}
#if BUILDFLAG(IS_ANDROID)
void Calculator::OnApplicationStateChanged(
base::android::ApplicationState state) {
DCHECK_CURRENTLY_ON(content::BrowserThread::UI);
switch (state) {
case base::android::APPLICATION_STATE_HAS_RUNNING_ACTIVITIES:
case base::android::APPLICATION_STATE_HAS_PAUSED_ACTIVITIES:
// The application is still visible and partially hidden in paused state.
is_application_visible_ = true;
break;
case base::android::APPLICATION_STATE_HAS_STOPPED_ACTIVITIES:
case base::android::APPLICATION_STATE_HAS_DESTROYED_ACTIVITIES:
is_application_visible_ = false;
break;
case base::android::APPLICATION_STATE_UNKNOWN:
break; // Keep in previous state.
}
}
#endif
// static
Calculator::CongestionList Calculator::TakeCongestionsOlderThanTime(
CongestionList* congestions,
base::TimeTicks end_time) {
// Find all congestions with Congestion.start_time < |end_time|.
auto it = std::partition(congestions->begin(), congestions->end(),
[&end_time](const Congestion& congestion) {
return congestion.start_time < end_time;
});
// Early exit. We don't need to remove any Congestions either, since
// Congestion.end_time
// >= Congestion.start_time.
if (it == congestions->begin())
return CongestionList();
CongestionList congestions_to_return(congestions->begin(), it);
// Remove all congestions with Congestion.end_time < |end_time|.
auto first_congestion_to_keep =
std::partition(congestions->begin(), congestions->end(),
[&end_time](const Congestion& congestion) {
return congestion.end_time < end_time;
});
congestions->erase(congestions->begin(), first_congestion_to_keep);
return congestions_to_return;
}
} // namespace responsiveness
} // namespace content
|