1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/browser/storage_partition_impl_map.h"
#include <unordered_set>
#include <utility>
#include "base/barrier_closure.h"
#include "base/command_line.h"
#include "base/containers/contains.h"
#include "base/containers/map_util.h"
#include "base/files/file_enumerator.h"
#include "base/files/file_path.h"
#include "base/files/file_util.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/functional/callback_helpers.h"
#include "base/location.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/task/single_thread_task_runner.h"
#include "base/task/thread_pool.h"
#include "build/build_config.h"
#include "content/browser/background_fetch/background_fetch_context.h"
#include "content/browser/blob_storage/chrome_blob_storage_context.h"
#include "content/browser/code_cache/generated_code_cache_context.h"
#include "content/browser/cookie_store/cookie_store_manager.h"
#include "content/browser/file_system/browser_file_system_helper.h"
#include "content/browser/loader/subresource_proxying_url_loader_service.h"
#include "content/browser/resource_context_impl.h"
#include "content/browser/storage_partition_impl.h"
#include "content/browser/webui/url_data_manager_backend.h"
#include "content/public/browser/browser_context.h"
#include "content/public/browser/browser_task_traits.h"
#include "content/public/browser/browser_thread.h"
#include "content/public/browser/content_browser_client.h"
#include "content/public/browser/storage_partition.h"
#include "content/public/common/content_client.h"
#include "content/public/common/content_features.h"
#include "content/public/common/content_switches.h"
#include "content/public/common/url_constants.h"
#include "crypto/hash.h"
#include "services/network/public/cpp/features.h"
#include "storage/browser/blob/blob_storage_context.h"
#include "third_party/blink/public/common/storage_key/storage_key.h"
namespace content {
namespace {
// These constants are used to create the directory structure under the profile
// where renderers with a non-default storage partition keep their persistent
// state. This will contain a set of directories that partially mirror the
// directory structure of BrowserContext::GetPath().
//
// The kStoragePartitionDirname contains an extensions directory which is
// further partitioned by extension id, followed by another level of directories
// for the "default" extension storage partition and one directory for each
// persistent partition used by a webview tag. Example:
//
// Storage/ext/ABCDEF/def
// Storage/ext/ABCDEF/hash(partition name)
//
// The code in GetStoragePartitionPath() constructs these path names.
//
// TODO(nasko): Move extension related path code out of content.
const base::FilePath::CharType kStoragePartitionDirname[] =
FILE_PATH_LITERAL("Storage");
const base::FilePath::CharType kExtensionsDirname[] =
FILE_PATH_LITERAL("ext");
const base::FilePath::CharType kDefaultPartitionDirname[] =
FILE_PATH_LITERAL("def");
const base::FilePath::CharType kTrashDirname[] =
FILE_PATH_LITERAL("trash");
const base::FilePath::CharType kWebSQLDirname[] =
FILE_PATH_LITERAL("databases");
// Because partition names are user specified, they can be arbitrarily long
// which makes them unsuitable for paths names. We use a truncation of a
// SHA256 hash to perform a deterministic shortening of the string. The
// kPartitionNameHashBytes constant controls the length of the truncation.
// We use 6 bytes, which gives us 99.999% reliability against collisions over
// 1 million partition domains.
//
// Analysis:
// We assume that all partition names within one partition domain are
// controlled by the the same entity. Thus there is no chance for adverserial
// attack and all we care about is accidental collision. To get 5 9s over
// 1 million domains, we need the probability of a collision in any one domain
// to be
//
// p < nroot(1000000, .99999) ~= 10^-11
//
// We use the following birthday attack approximation to calculate the max
// number of unique names for this probability:
//
// n(p,H) = sqrt(2*H * ln(1/(1-p)))
//
// For a 6-byte hash, H = 2^(6*8). n(10^-11, H) ~= 75
//
// An average partition domain is likely to have less than 10 unique
// partition names which is far lower than 75.
//
// Note, that for 4 9s of reliability, the limit is 237 partition names per
// partition domain.
const int kPartitionNameHashBytes = 6;
// Needed for selecting all files in ObliterateOneDirectory() below.
#if BUILDFLAG(IS_POSIX)
const int kAllFileTypes = base::FileEnumerator::FILES |
base::FileEnumerator::DIRECTORIES |
base::FileEnumerator::SHOW_SYM_LINKS;
#else
const int kAllFileTypes = base::FileEnumerator::FILES |
base::FileEnumerator::DIRECTORIES;
#endif
base::FilePath GetStoragePartitionDomainPath(
const std::string& partition_domain) {
CHECK(base::IsStringUTF8(partition_domain));
return base::FilePath(kStoragePartitionDirname).Append(kExtensionsDirname)
.Append(base::FilePath::FromUTF8Unsafe(partition_domain));
}
// Helper function for doing a depth-first deletion of the data on disk.
// Examines paths directly in |current_dir| (no recursion) and tries to
// delete from disk anything that is in, or isn't a parent of something in
// |paths_to_keep|. Paths that need further expansion are added to
// |paths_to_consider|.
void ObliterateOneDirectory(const base::FilePath& current_dir,
const std::vector<base::FilePath>& paths_to_keep,
std::vector<base::FilePath>* paths_to_consider) {
CHECK(current_dir.IsAbsolute());
base::FileEnumerator enumerator(current_dir, false, kAllFileTypes);
for (base::FilePath to_delete = enumerator.Next(); !to_delete.empty();
to_delete = enumerator.Next()) {
// Enum tracking which of the 3 possible actions to take for |to_delete|.
enum { kSkip, kEnqueue, kDelete } action = kDelete;
for (auto to_keep = paths_to_keep.begin(); to_keep != paths_to_keep.end();
++to_keep) {
if (to_delete == *to_keep) {
action = kSkip;
break;
} else if (to_delete.IsParent(*to_keep)) {
// |to_delete| contains a path to keep. Add to stack for further
// processing.
action = kEnqueue;
break;
}
}
switch (action) {
case kDelete:
base::DeletePathRecursively(to_delete);
break;
case kEnqueue:
paths_to_consider->push_back(to_delete);
break;
case kSkip:
break;
}
}
}
// Synchronously attempts to delete |unnormalized_root|, preserving only
// entries in |paths_to_keep|. If there are no entries in |paths_to_keep| on
// disk, then it completely removes |unnormalized_root|. All paths must be
// absolute paths.
void BlockingObliteratePath(
const base::FilePath& unnormalized_browser_context_root,
const base::FilePath& unnormalized_root,
const std::vector<base::FilePath>& paths_to_keep,
const scoped_refptr<base::TaskRunner>& closure_runner,
base::OnceClosure on_gc_required) {
// Early exit required because MakeAbsoluteFilePath() will fail on POSIX
// if |unnormalized_root| does not exist. This is safe because there is
// nothing to do in this situation anwyays.
if (!base::PathExists(unnormalized_root)) {
return;
}
// Never try to obliterate things outside of the browser context root or the
// browser context root itself. Die hard.
base::FilePath root = base::MakeAbsoluteFilePath(unnormalized_root);
base::FilePath browser_context_root =
base::MakeAbsoluteFilePath(unnormalized_browser_context_root);
CHECK(!root.empty());
CHECK(!browser_context_root.empty());
CHECK(browser_context_root.IsParent(root) && browser_context_root != root);
// Reduce |paths_to_keep| set to those under the root and actually on disk.
std::vector<base::FilePath> valid_paths_to_keep;
for (auto it = paths_to_keep.begin(); it != paths_to_keep.end(); ++it) {
if (root.IsParent(*it) && base::PathExists(*it))
valid_paths_to_keep.push_back(*it);
}
// If none of the |paths_to_keep| are valid anymore then we just whack the
// root and be done with it. Otherwise, signal garbage collection and do
// a best-effort delete of the on-disk structures.
if (valid_paths_to_keep.empty()) {
base::DeletePathRecursively(root);
return;
}
closure_runner->PostTask(FROM_HERE, std::move(on_gc_required));
// Otherwise, start at the root and delete everything that is not in
// |valid_paths_to_keep|.
std::vector<base::FilePath> paths_to_consider;
paths_to_consider.push_back(root);
while(!paths_to_consider.empty()) {
base::FilePath path = paths_to_consider.back();
paths_to_consider.pop_back();
ObliterateOneDirectory(path, valid_paths_to_keep, &paths_to_consider);
}
}
// Ensures each path in |active_paths| is a direct child of storage_root.
void NormalizeActivePaths(const base::FilePath& storage_root,
std::unordered_set<base::FilePath>* active_paths) {
std::unordered_set<base::FilePath> normalized_active_paths;
for (auto iter = active_paths->begin(); iter != active_paths->end(); ++iter) {
base::FilePath relative_path;
if (!storage_root.AppendRelativePath(*iter, &relative_path))
continue;
std::vector<base::FilePath::StringType> components =
relative_path.GetComponents();
DCHECK(!relative_path.empty());
normalized_active_paths.insert(storage_root.Append(components.front()));
}
active_paths->swap(normalized_active_paths);
}
// Deletes all entries inside the |storage_root| that are not in the
// |active_paths|. Deletion is done in 2 steps:
//
// (1) Moving all garbage collected paths into a trash directory.
// (2) Asynchronously deleting the trash directory.
//
// The deletion is asynchronous because after (1) completes, calling code can
// safely continue to use the paths that had just been garbage collected
// without fear of race conditions.
//
// This code also ignores failed moves rather than attempting a smarter retry.
// Moves shouldn't fail here unless there is some out-of-band error (eg.,
// FS corruption). Retry logic is dangerous in the general case because
// there is not necessarily a guaranteed case where the logic may succeed.
//
// This function is still named BlockingGarbageCollect() because it does
// execute a few filesystem operations synchronously.
void BlockingGarbageCollect(
const base::FilePath& storage_root,
const scoped_refptr<base::TaskRunner>& file_access_runner,
std::unordered_set<base::FilePath> active_paths) {
CHECK(storage_root.IsAbsolute());
NormalizeActivePaths(storage_root, &active_paths);
base::FileEnumerator enumerator(storage_root, false, kAllFileTypes);
base::FilePath trash_directory;
if (!base::CreateTemporaryDirInDir(storage_root, kTrashDirname,
&trash_directory)) {
// Unable to continue without creating the trash directory so give up.
return;
}
for (base::FilePath path = enumerator.Next(); !path.empty();
path = enumerator.Next()) {
if (!base::Contains(active_paths, path) && path != trash_directory) {
// Since |trash_directory| is unique for each run of this function there
// can be no colllisions on the move.
base::Move(path, trash_directory.Append(path.BaseName()));
}
}
file_access_runner->PostTask(
FROM_HERE, base::GetDeletePathRecursivelyCallback(trash_directory));
}
} // namespace
// static
base::FilePath StoragePartitionImplMap::GetStoragePartitionPath(
const std::string& partition_domain,
const std::string& partition_name) {
if (partition_domain.empty())
return base::FilePath();
base::FilePath path = GetStoragePartitionDomainPath(partition_domain);
// TODO(ajwong): Mangle in-memory into this somehow, either by putting
// it into the partition_name, or by manually adding another path component
// here. Otherwise, it's possible to have an in-memory StoragePartition and
// a persistent one that return the same FilePath for GetPath().
if (!partition_name.empty()) {
// For analysis of why we can ignore collisions, see the comment above
// kPartitionNameHashBytes.
auto hash = crypto::hash::Sha256(partition_name);
auto truncated_hash = base::span(hash).first<kPartitionNameHashBytes>();
return path.AppendASCII(base::HexEncode(truncated_hash));
}
return path.Append(kDefaultPartitionDirname);
}
StoragePartitionImplMap::StoragePartitionImplMap(
BrowserContext* browser_context)
: browser_context_(browser_context),
file_access_runner_(base::ThreadPool::CreateSequencedTaskRunner(
{base::MayBlock(), base::TaskPriority::BEST_EFFORT})),
resource_context_initialized_(false) {}
StoragePartitionImplMap::~StoragePartitionImplMap() {
}
StoragePartitionImpl* StoragePartitionImplMap::Get(
const StoragePartitionConfig& partition_config,
bool can_create) {
// Find the previously created partition if it's available.
if (auto* partition = base::FindPtrOrNull(partitions_, partition_config)) {
return partition;
}
if (!can_create)
return nullptr;
base::FilePath relative_partition_path = GetStoragePartitionPath(
partition_config.partition_domain(), partition_config.partition_name());
std::optional<StoragePartitionConfig> fallback_config =
partition_config.GetFallbackForBlobUrls();
StoragePartitionImpl* fallback_for_blob_urls =
fallback_config.has_value() ? Get(*fallback_config, /*can_create=*/false)
: nullptr;
std::unique_ptr<StoragePartitionImpl> partition_ptr(
StoragePartitionImpl::Create(browser_context_, partition_config,
relative_partition_path));
StoragePartitionImpl* partition = partition_ptr.get();
partitions_[partition_config] = std::move(partition_ptr);
partition->Initialize(fallback_for_blob_urls);
// Arm the serviceworker cookie change observation API.
partition->GetCookieStoreManager()->ListenToCookieChanges(
partition->GetNetworkContext(), base::DoNothing());
PostCreateInitialization(partition, partition_config.in_memory());
return partition;
}
void StoragePartitionImplMap::AsyncObliterate(
const std::string& partition_domain,
base::OnceClosure on_gc_required,
base::OnceClosure done_callback) {
// Find the active partitions for the domain. Because these partitions are
// active, it is not possible to just delete the directories that contain
// the backing data structures without causing the browser to crash. Instead,
// of deleteing the directory, we tell each storage context later to
// remove any data they have saved. This will leave the directory structure
// intact but it will only contain empty databases.
std::vector<StoragePartitionImpl*> active_partitions;
std::vector<base::FilePath> paths_to_keep;
for (PartitionMap::const_iterator it = partitions_.begin();
it != partitions_.end();
++it) {
const StoragePartitionConfig& config = it->first;
if (config.partition_domain() == partition_domain) {
active_partitions.push_back(it->second.get());
if (!config.in_memory()) {
paths_to_keep.push_back(it->second->GetPath());
}
}
}
// Create a barrier closure for keeping track of the callbacks in
// AsyncObliterate(). We have one callback for each active partition that is
// cleared and an additional one for BlockingObliteratePath()'s task reply.
int num_tasks = active_partitions.size() + 1;
auto subtask_done_callback =
base::BarrierClosure(num_tasks, std::move(done_callback));
for (auto*& active_partition : active_partitions) {
active_partition->ClearData(
// All except shader cache.
~StoragePartition::REMOVE_DATA_MASK_SHADER_CACHE,
StoragePartition::QUOTA_MANAGED_STORAGE_MASK_ALL, blink::StorageKey(),
base::Time(), base::Time::Max(), subtask_done_callback);
}
// Start a best-effort delete of the on-disk storage excluding paths that are
// known to still be in use. This is to delete any previously created
// StoragePartition state that just happens to not have been used during this
// run of the browser.
base::FilePath domain_root = browser_context_->GetPath().Append(
GetStoragePartitionDomainPath(partition_domain));
base::ThreadPool::PostTaskAndReply(
FROM_HERE, {base::MayBlock(), base::TaskPriority::BEST_EFFORT},
base::BindOnce(&BlockingObliteratePath, browser_context_->GetPath(),
domain_root, paths_to_keep,
base::SingleThreadTaskRunner::GetCurrentDefault(),
std::move(on_gc_required)),
subtask_done_callback);
}
void StoragePartitionImplMap::GarbageCollect(
std::unordered_set<base::FilePath> active_paths,
base::OnceClosure done) {
// Include all paths for current StoragePartitions in the active_paths since
// they cannot be deleted safely.
for (const auto& part : partitions_) {
const StoragePartitionConfig& config = part.first;
if (!config.in_memory())
active_paths.insert(part.second->GetPath());
}
// Find the directory holding the StoragePartitions and delete everything in
// there that isn't considered active.
base::FilePath storage_root = browser_context_->GetPath().Append(
GetStoragePartitionDomainPath(std::string()));
file_access_runner_->PostTaskAndReply(
FROM_HERE,
base::BindOnce(&BlockingGarbageCollect, storage_root, file_access_runner_,
std::move(active_paths)),
std::move(done));
}
void StoragePartitionImplMap::ForEach(
base::FunctionRef<void(StoragePartition*)> fn) {
for (const auto& [config, partition] : partitions_) {
fn(partition.get());
}
}
void StoragePartitionImplMap::PostCreateInitialization(
StoragePartitionImpl* partition,
bool in_memory) {
// TODO(ajwong): ResourceContexts no longer have any storage related state.
// We should move this into a place where it is called once per
// BrowserContext creation rather than piggybacking off the default context
// creation.
// Note: moving this into Get() before partitions_[] is set causes reentrency.
if (!resource_context_initialized_) {
resource_context_initialized_ = true;
InitializeResourceContext(browser_context_);
}
if (!in_memory) {
// Clean up any lingering WebSQL user data on disk, now that WebSQL
// has been deprecated and removed for all platforms.
base::ThreadPool::PostTask(
FROM_HERE, {base::MayBlock(), base::TaskPriority::BEST_EFFORT},
base::BindOnce(
[](const base::FilePath& dir) { base::DeletePathRecursively(dir); },
partition->GetPath().Append(kWebSQLDirname)));
}
partition->GetBackgroundFetchContext()->Initialize();
}
} // namespace content
|