1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "media/gpu/v4l2/legacy/v4l2_video_decode_accelerator.h"
#include <dlfcn.h>
#include <errno.h>
#include <fcntl.h>
#include <linux/videodev2.h>
#include <poll.h>
#include <string.h>
#include <sys/eventfd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <algorithm>
#include "base/command_line.h"
#include "base/functional/bind.h"
#include "base/functional/callback_helpers.h"
#include "base/numerics/safe_conversions.h"
#include "base/posix/eintr_wrapper.h"
#include "base/strings/stringprintf.h"
#include "base/task/single_thread_task_runner.h"
#include "base/time/time.h"
#include "base/trace_event/memory_dump_manager.h"
#include "base/trace_event/trace_event.h"
#include "build/build_config.h"
#include "media/base/media_switches.h"
#include "media/base/video_frame_layout.h"
#include "media/base/video_types.h"
#include "media/gpu/chromeos/fourcc.h"
#include "media/gpu/chromeos/native_pixmap_frame_resource.h"
#include "media/gpu/chromeos/platform_video_frame_utils.h"
#ifdef SUPPORT_MT21_PIXEL_FORMAT_SOFTWARE_DECOMPRESSION
#include "media/gpu/chromeos/video_frame_resource.h"
#endif
#include "media/gpu/macros.h"
#include "media/gpu/v4l2/v4l2_image_processor_backend.h"
#include "media/gpu/v4l2/v4l2_utils.h"
#include "media/gpu/v4l2/v4l2_vda_helpers.h"
#include "media/gpu/video_frame_mapper.h"
#include "media/gpu/video_frame_mapper_factory.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/native_pixmap_handle.h"
#define NOTIFY_ERROR(x) \
do { \
VLOGF(1) << "Setting error state:" << x; \
SetErrorState(x); \
} while (0)
#define IOCTL_OR_ERROR_RETURN_VALUE(type, arg, value, type_str) \
do { \
if (device_->Ioctl(type, arg) != 0) { \
PLOG(ERROR) << "ioctl() failed: " << type_str; \
NOTIFY_ERROR(PLATFORM_FAILURE); \
return value; \
} \
} while (0)
#define IOCTL_OR_ERROR_RETURN(type, arg) \
IOCTL_OR_ERROR_RETURN_VALUE(type, arg, ((void)0), #type)
#define IOCTL_OR_ERROR_RETURN_FALSE(type, arg) \
IOCTL_OR_ERROR_RETURN_VALUE(type, arg, false, #type)
#define IOCTL_OR_LOG_ERROR(type, arg) \
do { \
if (device_->Ioctl(type, arg) != 0) \
VPLOGF(1) << "ioctl() failed: " << #type; \
} while (0)
namespace media {
namespace {
bool IsVp9KSVCStream(uint32_t input_format_fourcc,
const DecoderBuffer& decoder_buffer) {
return input_format_fourcc == V4L2_PIX_FMT_VP9 &&
decoder_buffer.side_data() &&
!decoder_buffer.side_data()->spatial_layers.empty();
}
} // namespace
static const std::vector<uint32_t> kSupportedInputFourCCs = {
V4L2_PIX_FMT_H264,
V4L2_PIX_FMT_VP8,
V4L2_PIX_FMT_VP9,
};
// static
base::AtomicRefCount V4L2VideoDecodeAccelerator::num_instances_(0);
struct V4L2VideoDecodeAccelerator::BitstreamBufferRef {
BitstreamBufferRef(
base::WeakPtr<Client>& client,
scoped_refptr<base::SequencedTaskRunner>& client_task_runner,
scoped_refptr<DecoderBuffer> buffer,
int32_t input_id);
~BitstreamBufferRef();
const base::WeakPtr<Client> client;
const scoped_refptr<base::SequencedTaskRunner> client_task_runner;
scoped_refptr<DecoderBuffer> buffer;
size_t bytes_used;
const int32_t input_id;
};
V4L2VideoDecodeAccelerator::BitstreamBufferRef::BitstreamBufferRef(
base::WeakPtr<Client>& client,
scoped_refptr<base::SequencedTaskRunner>& client_task_runner,
scoped_refptr<DecoderBuffer> buffer,
int32_t input_id)
: client(client),
client_task_runner(client_task_runner),
buffer(std::move(buffer)),
bytes_used(0),
input_id(input_id) {}
V4L2VideoDecodeAccelerator::BitstreamBufferRef::~BitstreamBufferRef() {
if (input_id >= 0) {
client_task_runner->PostTask(
FROM_HERE,
base::BindOnce(&Client::NotifyEndOfBitstreamBuffer, client, input_id));
}
}
V4L2VideoDecodeAccelerator::OutputRecord::OutputRecord()
: picture_id(-1), cleared(false) {}
V4L2VideoDecodeAccelerator::OutputRecord::OutputRecord(OutputRecord&&) =
default;
V4L2VideoDecodeAccelerator::OutputRecord::~OutputRecord() {}
V4L2VideoDecodeAccelerator::PictureRecord::PictureRecord(bool cleared,
const Picture& picture)
: cleared(cleared), picture(picture) {}
V4L2VideoDecodeAccelerator::PictureRecord::~PictureRecord() {}
V4L2VideoDecodeAccelerator::V4L2VideoDecodeAccelerator(
scoped_refptr<V4L2Device> device)
: can_use_decoder_(num_instances_.Increment() < kMaxNumOfInstances),
child_task_runner_(base::SingleThreadTaskRunner::GetCurrentDefault()),
decoder_thread_("V4L2DecoderThread"),
decoder_state_(kUninitialized),
output_mode_(Config::OutputMode::kAllocate),
device_(std::move(device)),
decoder_delay_bitstream_buffer_id_(-1),
decoder_decode_buffer_tasks_scheduled_(0),
decoder_flushing_(false),
decoder_cmd_supported_(false),
flush_awaiting_last_output_buffer_(false),
reset_pending_(false),
output_dpb_size_(0),
picture_clearing_count_(0),
device_poll_thread_("V4L2DevicePollThread"),
input_format_fourcc_(0),
weak_this_factory_(this) {
weak_this_ = weak_this_factory_.GetWeakPtr();
}
V4L2VideoDecodeAccelerator::~V4L2VideoDecodeAccelerator() {
DCHECK(!decoder_thread_.IsRunning());
DCHECK(!device_poll_thread_.IsRunning());
DVLOGF(2);
// These maps have members that should be manually destroyed, e.g. file
// descriptors, mmap() segments, etc.
DCHECK(output_buffer_map_.empty());
num_instances_.Decrement();
}
bool V4L2VideoDecodeAccelerator::Initialize(const Config& config,
Client* client) {
VLOGF(2) << "profile: " << config.profile
<< ", output_mode=" << static_cast<int>(config.output_mode);
DCHECK(child_task_runner_->BelongsToCurrentThread());
DCHECK_EQ(decoder_state_, kUninitialized);
if (!can_use_decoder_) {
VLOGF(1) << "Reached the maximum number of decoder instances";
return false;
}
if (config.is_encrypted()) {
NOTREACHED() << "Encrypted streams are not supported for this VDA";
}
if (config.output_mode != Config::OutputMode::kAllocate &&
config.output_mode != Config::OutputMode::kImport) {
NOTREACHED() << "Only ALLOCATE and IMPORT OutputModes are supported";
}
client_ptr_factory_.reset(new base::WeakPtrFactory<Client>(client));
client_ = client_ptr_factory_->GetWeakPtr();
// If we haven't been set up to decode on separate sequence via
// TryToSetupDecodeOnSeparateSequence(), use the main thread/client for
// decode tasks.
if (!decode_task_runner_) {
decode_task_runner_ = child_task_runner_;
DCHECK(!decode_client_);
decode_client_ = client_;
}
decoder_state_ = kInitialized;
if (!decoder_thread_.Start()) {
LOG(ERROR) << "decoder thread failed to start";
return false;
}
bool result = false;
base::WaitableEvent done;
decoder_thread_.task_runner()->PostTask(
FROM_HERE,
base::BindOnce(&V4L2VideoDecodeAccelerator::InitializeTask,
base::Unretained(this), config, &result, &done));
done.Wait();
return result;
}
void V4L2VideoDecodeAccelerator::InitializeTask(const Config& config,
bool* result,
base::WaitableEvent* done) {
DVLOGF(3);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(result, nullptr);
DCHECK_NE(done, nullptr);
DCHECK_EQ(decoder_state_, kInitialized);
TRACE_EVENT0("media,gpu", "V4L2VDA::InitializeTask");
// The client can keep going as soon as the configuration is checked.
// Store the result to the local value to see the result even after |*result|
// is released.
bool config_result = CheckConfig(config);
*result = config_result;
done->Signal();
// No need to keep going is configuration is not supported.
if (!config_result)
return;
container_color_space_ = config.container_color_space;
frame_splitter_ =
v4l2_vda_helpers::InputBufferFragmentSplitter::CreateFromProfile(
config.profile);
if (!frame_splitter_) {
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
base::trace_event::MemoryDumpManager::GetInstance()->RegisterDumpProvider(
this, "media::V4l2VideoDecodeAccelerator", decoder_thread_.task_runner());
// Subscribe to the resolution change event.
struct v4l2_event_subscription sub;
memset(&sub, 0, sizeof(sub));
sub.type = V4L2_EVENT_SOURCE_CHANGE;
IOCTL_OR_ERROR_RETURN(VIDIOC_SUBSCRIBE_EVENT, &sub);
if (!CreateInputBuffers()) {
LOG(ERROR) << "Failed CreatingInputBuffers()";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
decoder_cmd_supported_ = IsDecoderCmdSupported();
StartDevicePoll();
}
bool V4L2VideoDecodeAccelerator::CheckConfig(const Config& config) {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
input_format_fourcc_ = VideoCodecProfileToV4L2PixFmt(config.profile, false);
if (input_format_fourcc_ == V4L2_PIX_FMT_INVALID ||
!device_->Open(V4L2Device::Type::kDecoder, input_format_fourcc_)) {
VLOGF(1) << "Failed to open device for profile: " << config.profile
<< " fourcc: " << FourccToString(input_format_fourcc_);
return false;
}
// Capabilities check.
struct v4l2_capability caps;
const __u32 kCapsRequired = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_QUERYCAP, &caps);
if ((caps.capabilities & kCapsRequired) != kCapsRequired) {
VLOGF(1) << "ioctl() failed: VIDIOC_QUERYCAP"
<< ", caps check failed: 0x" << std::hex << caps.capabilities;
return false;
}
output_mode_ = config.output_mode;
input_queue_ = device_->GetQueue(V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
if (!input_queue_)
return false;
output_queue_ = device_->GetQueue(V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
if (!output_queue_)
return false;
if (!SetupFormats())
return false;
// We have confirmed that |config| is supported, tell the good news to the
// client.
return true;
}
void V4L2VideoDecodeAccelerator::Decode(BitstreamBuffer bitstream_buffer) {
Decode(bitstream_buffer.ToDecoderBuffer(), bitstream_buffer.id());
}
void V4L2VideoDecodeAccelerator::Decode(scoped_refptr<DecoderBuffer> buffer,
int32_t bitstream_id) {
DVLOGF(4) << "input_id=" << bitstream_id
<< ", size=" << (buffer ? buffer->size() : 0);
DCHECK(decode_task_runner_->RunsTasksInCurrentSequence());
if (bitstream_id < 0) {
LOG(ERROR) << "Invalid bitstream buffer, id: " << bitstream_id;
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
// DecodeTask() will take care of running a DecodeBufferTask().
decoder_thread_.task_runner()->PostTask(
FROM_HERE,
base::BindOnce(&V4L2VideoDecodeAccelerator::DecodeTask,
base::Unretained(this), std::move(buffer), bitstream_id));
}
void V4L2VideoDecodeAccelerator::AssignPictureBuffers(
const std::vector<PictureBuffer>& buffers) {
VLOGF(2) << "buffer_count=" << buffers.size();
DCHECK(child_task_runner_->BelongsToCurrentThread());
decoder_thread_.task_runner()->PostTask(
FROM_HERE,
base::BindOnce(&V4L2VideoDecodeAccelerator::AssignPictureBuffersTask,
base::Unretained(this), buffers));
}
void V4L2VideoDecodeAccelerator::AssignPictureBuffersTask(
const std::vector<PictureBuffer>& buffers) {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_EQ(decoder_state_, kAwaitingPictureBuffers);
DCHECK(output_queue_);
TRACE_EVENT1("media,gpu", "V4L2VDA::AssignPictureBuffersTask", "buffers_size",
buffers.size());
if (IsDestroyPending())
return;
uint32_t req_buffer_count = output_dpb_size_ + kDpbOutputBufferExtraCount;
if (image_processor_device_)
req_buffer_count += kDpbOutputBufferExtraCountForImageProcessor;
if (buffers.size() < req_buffer_count) {
LOG(ERROR) << "Failed to provide requested picture buffers. (Got "
<< buffers.size() << ", requested " << req_buffer_count << ")";
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
const bool prefer_software_mt21 =
#ifdef SUPPORT_MT21_PIXEL_FORMAT_SOFTWARE_DECOMPRESSION
base::FeatureList::IsEnabled(media::kPreferSoftwareMT21);
#else
false;
#endif
enum v4l2_memory memory;
if (!image_processor_device_ && !prefer_software_mt21 &&
output_mode_ == Config::OutputMode::kImport) {
memory = V4L2_MEMORY_DMABUF;
} else {
memory = V4L2_MEMORY_MMAP;
}
if (output_queue_->AllocateBuffers(buffers.size(), memory,
prefer_software_mt21) == 0) {
LOG(ERROR) << "Failed to request buffers!";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
if (output_queue_->AllocatedBuffersCount() != buffers.size()) {
LOG(ERROR) << "Could not allocate requested number of output buffers";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
DCHECK(output_buffer_map_.empty());
DCHECK(output_wait_map_.empty());
output_buffer_map_.resize(buffers.size());
if (image_processor_device_ && output_mode_ == Config::OutputMode::kAllocate) {
if (!CreateImageProcessor())
return;
}
// Reserve all buffers until ImportBufferForPictureTask() is called
std::vector<V4L2WritableBufferRef> v4l2_buffers;
while (auto buffer_opt = output_queue_->GetFreeBuffer())
v4l2_buffers.push_back(std::move(*buffer_opt));
// Now setup the output record for each buffer and import it if needed.
for (auto&& buffer : v4l2_buffers) {
const int i = buffer.BufferId();
OutputRecord& output_record = output_buffer_map_[i];
DCHECK_EQ(output_record.picture_id, -1);
DCHECK(!output_record.cleared);
output_record.picture_id = buffers[i].id();
// We move the buffer into output_wait_map_, so get a reference to
// its video frame if we need it to create the native pixmap for import.
scoped_refptr<FrameResource> frame;
if (output_mode_ == Config::OutputMode::kAllocate &&
!image_processor_device_)
frame = buffer.GetFrameResource();
// The buffer will remain here until ImportBufferForPicture is called,
// either by the client, or by ourselves, if we are allocating.
DCHECK_EQ(output_wait_map_.count(buffers[i].id()), 0u);
output_wait_map_.emplace(buffers[i].id(), std::move(buffer));
if (output_mode_ == Config::OutputMode::kAllocate) {
gfx::NativePixmapHandle native_pixmap;
// If we are using an image processor, the DMABufs that we need to import
// are those of the image processor's buffers, not the decoders. So
// pass an empty native pixmap in that case.
if (!image_processor_device_) {
// TODO(nhebert): drop usage of CreateGpuMemoryBufferHandle(), which
// duplicates FD's, when a NativePixmap-based FrameResource is
// available.
native_pixmap =
frame->CreateGpuMemoryBufferHandle().native_pixmap_handle();
}
ImportBufferForPictureTask(output_record.picture_id,
std::move(native_pixmap));
} // else we'll get triggered via ImportBufferForPicture() from client.
DVLOGF(3) << "buffer[" << i << "]: picture_id=" << output_record.picture_id;
}
if (output_mode_ == Config::OutputMode::kAllocate) {
ScheduleDecodeBufferTaskIfNeeded();
}
}
void V4L2VideoDecodeAccelerator::ImportBufferForPicture(
int32_t picture_buffer_id,
VideoPixelFormat pixel_format,
gfx::GpuMemoryBufferHandle gpu_memory_buffer_handle) {
DVLOGF(3) << "picture_buffer_id=" << picture_buffer_id;
DCHECK(child_task_runner_->BelongsToCurrentThread());
if (output_mode_ != Config::OutputMode::kImport) {
LOG(ERROR) << "Cannot import in non-import mode";
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
decoder_thread_.task_runner()->PostTask(
FROM_HERE,
base::BindOnce(
&V4L2VideoDecodeAccelerator::ImportBufferForPictureForImportTask,
base::Unretained(this), picture_buffer_id, pixel_format,
std::move(gpu_memory_buffer_handle).native_pixmap_handle()));
}
void V4L2VideoDecodeAccelerator::ImportBufferForPictureForImportTask(
int32_t picture_buffer_id,
VideoPixelFormat pixel_format,
gfx::NativePixmapHandle handle) {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
// |output_format_fourcc_| is the output format of the decoder. It is not
// the final output format from the image processor (if exists).
// Use |egl_image_format_fourcc_|, it will be the final output format.
if (pixel_format != egl_image_format_fourcc_->ToVideoPixelFormat()) {
LOG(ERROR) << "Unsupported import format: " << pixel_format << ", expected "
<< VideoPixelFormatToString(
egl_image_format_fourcc_->ToVideoPixelFormat());
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
for (const auto& plane : handle.planes) {
DVLOGF(3) << ": offset=" << plane.offset << ", stride=" << plane.stride;
}
ImportBufferForPictureTask(picture_buffer_id, std::move(handle));
}
void V4L2VideoDecodeAccelerator::ImportBufferForPictureTask(
int32_t picture_buffer_id,
gfx::NativePixmapHandle handle) {
DVLOGF(3) << "picture_buffer_id=" << picture_buffer_id
<< ", handle.planes.size()=" << handle.planes.size();
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
TRACE_EVENT2("media,gpu", "V4L2VDA::ImportBufferForPictureTask",
"picture_buffer_id", picture_buffer_id, "handle.planes",
handle.planes.size());
if (IsDestroyPending())
return;
const auto iter = std::ranges::find(output_buffer_map_, picture_buffer_id,
&OutputRecord::picture_id);
if (iter == output_buffer_map_.end()) {
// It's possible that we've already posted a DismissPictureBuffer for this
// picture, but it has not yet executed when this ImportBufferForPicture was
// posted to us by the client. In that case just ignore this (we've already
// dismissed it and accounted for that).
DVLOGF(3) << "got picture id=" << picture_buffer_id
<< " not in use (anymore?).";
return;
}
if (!output_wait_map_.count(iter->picture_id)) {
LOG(ERROR) << "Passed buffer is not waiting to be imported";
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
// TODO(crbug.com/41469754): ARC++ may adjust the size of the buffer due to
// allocator constraints, but the VDA API does not provide a way for it to
// communicate the actual buffer size. If we are importing, make sure that the
// actual buffer size is coherent with what we expect, and adjust our size if
// needed.
if (output_mode_ == Config::OutputMode::kImport) {
DCHECK_GT(handle.planes.size(), 0u);
const gfx::Size handle_size = v4l2_vda_helpers::NativePixmapSizeFromHandle(
handle, *egl_image_format_fourcc_, egl_image_size_);
// If this is the first picture, then adjust the EGL width.
// Otherwise just check that it remains the same.
if (decoder_state_ == kAwaitingPictureBuffers) {
DCHECK_GE(handle_size.width(), egl_image_size_.width());
DVLOGF(3) << "Original egl_image_size=" << egl_image_size_.ToString()
<< ", adjusted buffer size=" << handle_size.ToString();
egl_image_size_ = handle_size;
}
DCHECK_EQ(egl_image_size_, handle_size);
#ifdef SUPPORT_MT21_PIXEL_FORMAT_SOFTWARE_DECOMPRESSION
if (base::FeatureList::IsEnabled(media::kPreferSoftwareMT21) &&
!mt21_decompressor_) {
mt21_decompressor_ = std::make_unique<MT21Decompressor>(coded_size_);
}
#endif
// For allocate mode, the IP will already have been created in
// AssignPictureBuffersTask.
// Note: usage of the MT21 software decompressor disables the image
// processor.
if (image_processor_device_ && !image_processor_
#ifdef SUPPORT_MT21_PIXEL_FORMAT_SOFTWARE_DECOMPRESSION
&& !mt21_decompressor_
#endif
) {
DCHECK_EQ(kAwaitingPictureBuffers, decoder_state_);
// This is the first buffer import. Create the image processor and change
// the decoder state. The client may adjust the coded width. We don't have
// the final coded size in AssignPictureBuffers yet. Use the adjusted
// coded width to create the image processor.
if (!CreateImageProcessor())
return;
}
}
if (reset_pending_) {
FinishReset();
}
if (decoder_state_ == kAwaitingPictureBuffers) {
decoder_state_ = kDecoding;
DVLOGF(3) << "Change state to kDecoding";
}
// If we are importing, create the output FrameResource that we will render
// into.
if (output_mode_ == Config::OutputMode::kImport) {
DCHECK_GT(handle.planes.size(), 0u);
DCHECK(!iter->output_frame);
// Duplicate the buffer FDs for the output frame.
std::vector<base::ScopedFD> duped_fds;
std::vector<ColorPlaneLayout> color_planes;
for (const gfx::NativePixmapPlane& plane : handle.planes) {
duped_fds.emplace_back(HANDLE_EINTR(dup(plane.fd.get())));
if (!duped_fds.back().is_valid()) {
PLOG(ERROR) << "Failed to duplicate plane FD!";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
color_planes.push_back(
ColorPlaneLayout(base::checked_cast<int32_t>(plane.stride),
base::checked_cast<size_t>(plane.offset),
base::checked_cast<size_t>(plane.size)));
}
auto layout = VideoFrameLayout::CreateWithPlanes(
egl_image_format_fourcc_->ToVideoPixelFormat(), egl_image_size_,
std::move(color_planes));
if (!layout) {
LOG(ERROR) << "Cannot create layout!";
NOTIFY_ERROR(INVALID_ARGUMENT);
return;
}
iter->output_frame = NativePixmapFrameResource::Create(
*layout, gfx::Rect(visible_size_), visible_size_, std::move(duped_fds),
base::TimeDelta());
}
// The buffer can now be used for decoding
DCHECK_EQ(output_wait_map_.count(picture_buffer_id), 1u);
output_wait_map_.erase(picture_buffer_id);
if (decoder_state_ != kChangingResolution) {
Enqueue();
ScheduleDecodeBufferTaskIfNeeded();
}
}
void V4L2VideoDecodeAccelerator::ReusePictureBuffer(int32_t picture_buffer_id) {
DVLOGF(4) << "picture_buffer_id=" << picture_buffer_id;
DCHECK(child_task_runner_->BelongsToCurrentThread());
decoder_thread_.task_runner()->PostTask(
FROM_HERE,
base::BindOnce(&V4L2VideoDecodeAccelerator::ReusePictureBufferTask,
base::Unretained(this), picture_buffer_id));
}
void V4L2VideoDecodeAccelerator::Flush() {
VLOGF(2);
DCHECK(child_task_runner_->BelongsToCurrentThread());
decoder_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoDecodeAccelerator::FlushTask,
base::Unretained(this)));
}
void V4L2VideoDecodeAccelerator::Reset() {
VLOGF(2);
DCHECK(child_task_runner_->BelongsToCurrentThread());
decoder_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoDecodeAccelerator::ResetTask,
base::Unretained(this)));
}
void V4L2VideoDecodeAccelerator::Destroy() {
VLOGF(2);
DCHECK(child_task_runner_->BelongsToCurrentThread());
// Signal any waiting/sleeping tasks to early exit as soon as possible to
// avoid waiting too long for the decoder_thread_ to Stop().
destroy_pending_.Signal();
// We're destroying; cancel all callbacks.
client_ptr_factory_.reset();
weak_this_factory_.InvalidateWeakPtrs();
// If the decoder thread is running, destroy using posted task.
if (decoder_thread_.IsRunning()) {
decoder_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoDecodeAccelerator::DestroyTask,
base::Unretained(this)));
// DestroyTask() will cause the decoder_thread_ to flush all tasks.
decoder_thread_.Stop();
}
delete this;
VLOGF(2) << "Destroyed.";
}
bool V4L2VideoDecodeAccelerator::TryToSetupDecodeOnSeparateSequence(
const base::WeakPtr<Client>& decode_client,
const scoped_refptr<base::SequencedTaskRunner>& decode_task_runner) {
VLOGF(2);
decode_client_ = decode_client;
decode_task_runner_ = decode_task_runner;
return true;
}
// static
VideoDecodeAccelerator::SupportedProfiles
V4L2VideoDecodeAccelerator::GetSupportedProfiles() {
auto device = base::MakeRefCounted<V4L2Device>();
return device->GetSupportedDecodeProfiles(kSupportedInputFourCCs);
}
void V4L2VideoDecodeAccelerator::DecodeTask(scoped_refptr<DecoderBuffer> buffer,
int32_t bitstream_id) {
DVLOGF(4) << "input_id=" << bitstream_id;
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(decoder_state_, kUninitialized);
if (IsDestroyPending())
return;
if (IsVp9KSVCStream(input_format_fourcc_, *buffer)) {
LOG(ERROR) << "VDA does not support decoding VP9 k-SVC stream";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
std::unique_ptr<BitstreamBufferRef> bitstream_record(new BitstreamBufferRef(
decode_client_, decode_task_runner_, std::move(buffer), bitstream_id));
// Skip empty buffer.
if (!bitstream_record->buffer)
return;
if (decoder_state_ == kResetting || decoder_flushing_) {
// In the case that we're resetting or flushing, we need to delay decoding
// the BitstreamBuffers that come after the Reset() or Flush() call. When
// we're here, we know that this DecodeTask() was scheduled by a Decode()
// call that came after (in the client thread) the Reset() or Flush() call;
// thus set up the delay if necessary.
if (decoder_delay_bitstream_buffer_id_ == -1)
decoder_delay_bitstream_buffer_id_ = bitstream_record->input_id;
} else if (decoder_state_ == kError) {
VLOGF(2) << "early out: kError state";
return;
}
decoder_input_queue_.push_back(std::move(bitstream_record));
decoder_decode_buffer_tasks_scheduled_++;
DecodeBufferTask();
}
void V4L2VideoDecodeAccelerator::DecodeBufferTask() {
DVLOGF(4);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(decoder_state_, kUninitialized);
TRACE_EVENT0("media,gpu", "V4L2VDA::DecodeBufferTask");
if (IsDestroyPending())
return;
decoder_decode_buffer_tasks_scheduled_--;
if (decoder_state_ != kInitialized && decoder_state_ != kDecoding) {
DVLOGF(3) << "early out: state=" << decoder_state_;
return;
}
if (decoder_current_bitstream_buffer_ == nullptr) {
if (decoder_input_queue_.empty()) {
// We're waiting for a new buffer -- exit without scheduling a new task.
return;
}
if (decoder_delay_bitstream_buffer_id_ ==
decoder_input_queue_.front()->input_id) {
// We're asked to delay decoding on this and subsequent buffers.
return;
}
// Setup to use the next buffer.
decoder_current_bitstream_buffer_ = std::move(decoder_input_queue_.front());
decoder_input_queue_.pop_front();
const auto& buffer = decoder_current_bitstream_buffer_->buffer;
if (buffer) {
DVLOGF(4) << "reading input_id="
<< decoder_current_bitstream_buffer_->input_id
<< ", addr=" << base::span(*buffer).data()
<< ", size=" << buffer->size();
} else {
DCHECK_EQ(decoder_current_bitstream_buffer_->input_id, kFlushBufferId);
DVLOGF(4) << "reading input_id=kFlushBufferId";
}
}
bool schedule_task = false;
size_t decoded_size = 0;
const auto& buffer = decoder_current_bitstream_buffer_->buffer;
if (!buffer) {
// This is a dummy buffer, queued to flush the pipe. Flush.
DCHECK_EQ(decoder_current_bitstream_buffer_->input_id, kFlushBufferId);
// Enqueue a buffer guaranteed to be empty. To do that, we flush the
// current input, enqueue no data to the next frame, then flush that down.
schedule_task = true;
if (current_input_buffer_ &&
current_input_buffer_->GetTimeStamp().tv_sec != kFlushBufferId)
schedule_task = FlushInputFrame();
if (schedule_task && AppendToInputFrame(nullptr, 0) && FlushInputFrame()) {
VLOGF(2) << "enqueued flush buffer";
schedule_task = true;
} else {
// If we failed to enqueue the empty buffer (due to pipeline
// backpressure), don't advance the bitstream buffer queue, and don't
// schedule the next task. This bitstream buffer queue entry will get
// reprocessed when the pipeline frees up.
schedule_task = false;
}
} else if (buffer->empty()) {
// This is a buffer queued from the client that has zero size. Skip.
// TODO(sandersd): This shouldn't be possible, empty buffers are never
// enqueued.
schedule_task = true;
} else {
// This is a buffer queued from the client, with actual contents. Decode.
auto buffer_span = base::span(*buffer).subspan(
decoder_current_bitstream_buffer_->bytes_used);
const uint8_t* const data = buffer_span.data();
const size_t data_size = buffer_span.size();
if (!frame_splitter_->AdvanceFrameFragment(data, data_size,
&decoded_size)) {
LOG(ERROR) << "Invalid Stream";
NOTIFY_ERROR(UNREADABLE_INPUT);
return;
}
// AdvanceFrameFragment should not return a size larger than the buffer
// size, even on invalid data.
CHECK_LE(decoded_size, data_size);
switch (decoder_state_) {
case kInitialized:
schedule_task = DecodeBufferInitial(data, decoded_size, &decoded_size);
break;
case kDecoding:
schedule_task = DecodeBufferContinue(data, decoded_size);
break;
default:
LOG(ERROR) << "Illegal State";
NOTIFY_ERROR(ILLEGAL_STATE);
return;
}
}
if (decoder_state_ == kError) {
// Failed during decode.
return;
}
if (schedule_task) {
decoder_current_bitstream_buffer_->bytes_used += decoded_size;
if ((buffer ? buffer->size() : 0) ==
decoder_current_bitstream_buffer_->bytes_used) {
// Our current bitstream buffer is done; return it.
int32_t input_id = decoder_current_bitstream_buffer_->input_id;
DVLOGF(4) << "finished input_id=" << input_id;
// BitstreamBufferRef destructor calls NotifyEndOfBitstreamBuffer().
decoder_current_bitstream_buffer_.reset();
}
ScheduleDecodeBufferTaskIfNeeded();
}
}
void V4L2VideoDecodeAccelerator::ScheduleDecodeBufferTaskIfNeeded() {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
// If we're behind on tasks, schedule another one.
int buffers_to_decode = decoder_input_queue_.size();
if (decoder_current_bitstream_buffer_ != nullptr) {
buffers_to_decode++;
}
if (decoder_decode_buffer_tasks_scheduled_ < buffers_to_decode) {
decoder_decode_buffer_tasks_scheduled_++;
decoder_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoDecodeAccelerator::DecodeBufferTask,
base::Unretained(this)));
}
}
bool V4L2VideoDecodeAccelerator::DecodeBufferInitial(const void* data,
size_t size,
size_t* endpos) {
DVLOGF(3) << "data=" << data << ", size=" << size;
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_EQ(decoder_state_, kInitialized);
// Initial decode. We haven't been able to get output stream format info yet.
// Get it, and start decoding.
// Copy in and send to HW.
if (!AppendToInputFrame(data, size))
return false;
// If we only have a partial frame, don't flush and process yet.
if (frame_splitter_->IsPartialFramePending())
return true;
if (!FlushInputFrame())
return false;
// Recycle buffers.
Dequeue();
*endpos = size;
// If an initial resolution change event is not done yet, a driver probably
// needs more stream to decode format.
// Return true and schedule next buffer without changing status to kDecoding.
// If the initial resolution change is done and coded size is known, we may
// still have to wait for AssignPictureBuffers() and output buffers to be
// allocated.
if (coded_size_.IsEmpty() || output_buffer_map_.empty()) {
return true;
}
decoder_state_ = kDecoding;
ScheduleDecodeBufferTaskIfNeeded();
return true;
}
bool V4L2VideoDecodeAccelerator::DecodeBufferContinue(const void* data,
size_t size) {
DVLOGF(4) << "data=" << data << ", size=" << size;
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_EQ(decoder_state_, kDecoding);
// Both of these calls will set kError state if they fail.
// Only flush the frame if it's complete.
return (AppendToInputFrame(data, size) &&
(frame_splitter_->IsPartialFramePending() || FlushInputFrame()));
}
bool V4L2VideoDecodeAccelerator::AppendToInputFrame(const void* data,
size_t size) {
DVLOGF(4);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(decoder_state_, kUninitialized);
DCHECK_NE(decoder_state_, kResetting);
DCHECK_NE(decoder_state_, kError);
// This routine can handle data == NULL and size == 0, which occurs when
// we queue an empty buffer for the purposes of flushing the pipe.
// Flush if we're too big
if (current_input_buffer_) {
size_t plane_size = current_input_buffer_->GetPlaneSize(0);
size_t bytes_used = current_input_buffer_->GetPlaneBytesUsed(0);
if (bytes_used + size > plane_size) {
if (!FlushInputFrame())
return false;
}
}
// Try to get an available input buffer.
if (!current_input_buffer_) {
DCHECK(decoder_current_bitstream_buffer_ != nullptr);
DCHECK(input_queue_);
// See if we can get more free buffers from HW.
if (input_queue_->FreeBuffersCount() == 0)
Dequeue();
current_input_buffer_ = input_queue_->GetFreeBuffer();
if (!current_input_buffer_) {
// No buffer available yet.
DVLOGF(4) << "stalled for input buffers";
return false;
}
struct timeval timestamp = {
.tv_sec = decoder_current_bitstream_buffer_->input_id};
current_input_buffer_->SetTimeStamp(timestamp);
}
DCHECK(data != nullptr || size == 0);
if (size == 0) {
// If we asked for an empty buffer, return now. We return only after
// getting the next input buffer, since we might actually want an empty
// input buffer for flushing purposes.
return true;
}
// Copy in to the buffer.
size_t plane_size = current_input_buffer_->GetPlaneSize(0);
size_t bytes_used = current_input_buffer_->GetPlaneBytesUsed(0);
if (size > plane_size - bytes_used) {
LOG(ERROR) << "over-size frame, erroring";
NOTIFY_ERROR(UNREADABLE_INPUT);
return false;
}
void* mapping = current_input_buffer_->GetPlaneMapping(0);
memcpy(reinterpret_cast<uint8_t*>(mapping) + bytes_used, data, size);
current_input_buffer_->SetPlaneBytesUsed(0, bytes_used + size);
return true;
}
bool V4L2VideoDecodeAccelerator::FlushInputFrame() {
DVLOGF(4);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(decoder_state_, kUninitialized);
DCHECK_NE(decoder_state_, kResetting);
DCHECK_NE(decoder_state_, kError);
if (!current_input_buffer_)
return true;
const int32_t input_buffer_id = current_input_buffer_->GetTimeStamp().tv_sec;
DCHECK(input_buffer_id != kFlushBufferId ||
current_input_buffer_->GetPlaneBytesUsed(0) == 0);
// * if input_id >= 0, this input buffer was prompted by a bitstream buffer we
// got from the client. We can skip it if it is empty.
// * if input_id < 0 (should be kFlushBufferId in this case), this input
// buffer was prompted by a flush buffer, and should be queued even when
// empty.
if (input_buffer_id >= 0 &&
current_input_buffer_->GetPlaneBytesUsed(0) == 0) {
current_input_buffer_.reset();
return true;
}
// Queue it.
DVLOGF(4) << "submitting input_id=" << input_buffer_id;
input_ready_queue_.push(std::move(*current_input_buffer_));
current_input_buffer_.reset();
// Enqueue once since there's new available input for it.
Enqueue();
TRACE_COUNTER_ID1("media,gpu", "V4L2VDA input ready buffers", this,
input_ready_queue_.size());
return (decoder_state_ != kError);
}
void V4L2VideoDecodeAccelerator::ServiceDeviceTask(bool event_pending) {
DVLOGF(4);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(decoder_state_, kUninitialized);
TRACE_EVENT0("media,gpu", "V4L2VDA::ServiceDeviceTask");
if (IsDestroyPending())
return;
DCHECK(input_queue_);
DCHECK(output_queue_);
if (decoder_state_ == kResetting) {
DVLOGF(3) << "early out: kResetting state";
return;
} else if (decoder_state_ == kError) {
DVLOGF(3) << "early out: kError state";
return;
} else if (decoder_state_ == kChangingResolution) {
DVLOGF(3) << "early out: kChangingResolution state";
return;
}
bool resolution_change_pending = false;
if (event_pending)
resolution_change_pending = DequeueResolutionChangeEvent();
if (!resolution_change_pending && coded_size_.IsEmpty()) {
// Some platforms do not send an initial resolution change event.
// To work around this, we need to keep checking if the initial resolution
// is known already by explicitly querying the format after each decode,
// regardless of whether we received an event.
// This needs to be done on initial resolution change,
// i.e. when coded_size_.IsEmpty().
// Try GetFormatInfo to check if an initial resolution change can be done.
struct v4l2_format format;
gfx::Size visible_size;
bool again;
if (GetFormatInfo(&format, &visible_size, &again) && !again) {
resolution_change_pending = true;
DequeueResolutionChangeEvent();
}
}
Dequeue();
Enqueue();
// Clear the interrupt fd.
if (!device_->ClearDevicePollInterrupt()) {
LOG(ERROR) << "Failed Clear the interrupt fd";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
bool poll_device = false;
// Add fd, if we should poll on it.
// Can be polled as soon as either input or output buffers are queued.
if (input_queue_->QueuedBuffersCount() + output_queue_->QueuedBuffersCount() >
0)
poll_device = true;
// ServiceDeviceTask() should only ever be scheduled from DevicePollTask(),
// so either:
// * device_poll_thread_ is running normally
// * device_poll_thread_ scheduled us, but then a ResetTask() or DestroyTask()
// shut it down, in which case we're either in kResetting or kError states
// respectively, and we should have early-outed already.
DCHECK(device_poll_thread_.task_runner());
// Queue the DevicePollTask() now.
device_poll_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoDecodeAccelerator::DevicePollTask,
base::Unretained(this), poll_device));
DVLOGF(3) << "ServiceDeviceTask(): buffer counts: DEC["
<< decoder_input_queue_.size() << "->" << input_ready_queue_.size()
<< "] => DEVICE[" << input_queue_->FreeBuffersCount() << "+"
<< input_queue_->QueuedBuffersCount() << "/"
<< input_queue_->AllocatedBuffersCount() << "->"
<< output_queue_->FreeBuffersCount() << "+"
<< output_queue_->QueuedBuffersCount() << "/"
<< output_buffer_map_.size() << "] => PROCESSOR["
<< buffers_at_ip_.size() << "] => CLIENT["
<< buffers_at_client_.size() << "]";
ScheduleDecodeBufferTaskIfNeeded();
if (resolution_change_pending)
StartResolutionChange();
}
void V4L2VideoDecodeAccelerator::Enqueue() {
DVLOGF(4);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(decoder_state_, kUninitialized);
if (IsDestroyPending()) {
return;
}
// There's no reason why this class should attempt to enqueue buffers while
// it's in the process of a resolution change.
CHECK_NE(decoder_state_, kChangingResolution);
DCHECK(input_queue_);
DCHECK(output_queue_);
// Drain the pipe of completed decode buffers.
const int old_inputs_queued = input_queue_->QueuedBuffersCount();
while (!input_ready_queue_.empty()) {
bool flush_handled = false;
int32_t input_id = input_ready_queue_.front().GetTimeStamp().tv_sec;
if (input_id == kFlushBufferId) {
// Send the flush command after all input buffers are dequeued. This makes
// sure all previous resolution changes have been handled because the
// driver must hold the input buffer that triggers resolution change. The
// driver cannot decode data in it without new output buffers. If we send
// the flush now and a queued input buffer triggers resolution change
// later, the driver will send an output buffer that has
// V4L2_BUF_FLAG_LAST. But some queued input buffer have not been decoded
// yet. Also, V4L2VDA calls STREAMOFF and STREAMON after resolution
// change. They implicitly send a V4L2_DEC_CMD_STOP and V4L2_DEC_CMD_START
// to the decoder.
if (input_queue_->QueuedBuffersCount() > 0)
break;
if (coded_size_.IsEmpty() || !input_queue_->IsStreaming()) {
// In these situations, we should call NotifyFlushDone() immediately:
// (1) If coded_size_.IsEmpty(), no output buffer could have been
// allocated and there is nothing to flush.
// (2) If input stream is off, we will never get the output buffer
// with V4L2_BUF_FLAG_LAST.
VLOGF(2) << "Nothing to flush. Notify flush done directly.";
NotifyFlushDone();
flush_handled = true;
} else if (decoder_cmd_supported_) {
if (!SendDecoderCmdStop())
return;
flush_handled = true;
}
}
if (flush_handled) {
// Recycle the buffer directly if we already handled the flush request.
input_ready_queue_.pop();
} else {
// Enqueue an input buffer, or an empty flush buffer if decoder cmd
// is not supported and there may be buffers to be flushed.
auto buffer = std::move(input_ready_queue_.front());
input_ready_queue_.pop();
if (!EnqueueInputRecord(std::move(buffer)))
return;
}
}
if (old_inputs_queued == 0 && input_queue_->QueuedBuffersCount() != 0) {
// We just started up a previously empty queue.
// Queue state changed; signal interrupt.
if (!device_->SetDevicePollInterrupt()) {
PLOG(ERROR) << "SetDevicePollInterrupt failed";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
// Start VIDIOC_STREAMON if we haven't yet.
if (!input_queue_->Streamon()) {
LOG(ERROR) << "Failed Stream on input queue";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
}
// OUTPUT queue must be started before CAPTURE queue as per codec API.
if (!input_queue_->IsStreaming())
return;
// Enqueue all the outputs we can.
const int old_outputs_queued = output_queue_->QueuedBuffersCount();
while (auto buffer_opt = output_queue_->GetFreeBuffer()) {
if (!EnqueueOutputRecord(std::move(*buffer_opt)))
return;
}
if (old_outputs_queued == 0 && output_queue_->QueuedBuffersCount() != 0) {
// We just started up a previously empty queue.
// Queue state changed; signal interrupt.
if (!device_->SetDevicePollInterrupt()) {
PLOG(ERROR) << "SetDevicePollInterrupt(): failed";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
if (!output_queue_->Streamon()) {
PLOG(ERROR) << "Failed Stream on output queue";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
}
}
bool V4L2VideoDecodeAccelerator::DequeueResolutionChangeEvent() {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(decoder_state_, kUninitialized);
DVLOGF(3);
while (std::optional<struct v4l2_event> event = device_->DequeueEvent()) {
if (event->type == V4L2_EVENT_SOURCE_CHANGE) {
if (event->u.src_change.changes & V4L2_EVENT_SRC_CH_RESOLUTION) {
VLOGF(2) << "got resolution change event.";
return true;
}
} else {
VLOGF(1) << "got an event (" << event->type
<< ") we haven't subscribed to.";
}
}
return false;
}
void V4L2VideoDecodeAccelerator::Dequeue() {
DVLOGF(4);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(decoder_state_, kUninitialized);
DCHECK(input_queue_);
DCHECK(output_queue_);
while (input_queue_->QueuedBuffersCount() > 0) {
if (!DequeueInputBuffer())
break;
}
while (output_queue_->QueuedBuffersCount() > 0) {
if (!DequeueOutputBuffer())
break;
}
NotifyFlushDoneIfNeeded();
}
bool V4L2VideoDecodeAccelerator::DequeueInputBuffer() {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK(input_queue_);
DCHECK_GT(input_queue_->QueuedBuffersCount(), 0u);
// Dequeue a completed input (VIDEO_OUTPUT) buffer, and recycle to the free
// list.
auto ret = input_queue_->DequeueBuffer();
if (ret.first == false) {
LOG(ERROR) << "Error in Dequeue input buffer";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
} else if (!ret.second) {
// we're just out of buffers to dequeue.
return false;
}
return true;
}
bool V4L2VideoDecodeAccelerator::DequeueOutputBuffer() {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK(output_queue_);
DCHECK_GT(output_queue_->QueuedBuffersCount(), 0u);
DCHECK(output_queue_->IsStreaming());
// Dequeue a completed output (VIDEO_CAPTURE) buffer, and queue to the
// completed queue.
auto ret = output_queue_->DequeueBuffer();
if (ret.first == false) {
LOG(ERROR) << "Error in Dequeue output buffer";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
if (!ret.second) {
return false;
}
V4L2ReadableBufferRef buf(std::move(ret.second));
DCHECK_LT(buf->BufferId(), output_buffer_map_.size());
OutputRecord& output_record = output_buffer_map_[buf->BufferId()];
DCHECK_NE(output_record.picture_id, -1);
// Zero-bytes buffers are returned as part of a flush and can be dismissed.
if (buf->GetPlaneBytesUsed(0) > 0) {
int32_t bitstream_buffer_id = buf->GetTimeStamp().tv_sec;
DCHECK_GE(bitstream_buffer_id, 0);
DVLOGF(4) << "Dequeue output buffer: dqbuf index=" << buf->BufferId()
<< " bitstream input_id=" << bitstream_buffer_id;
if (image_processor_device_
#ifdef SUPPORT_MT21_PIXEL_FORMAT_SOFTWARE_DECOMPRESSION
|| mt21_decompressor_
#endif
) {
if (!ProcessFrame(bitstream_buffer_id, buf)) {
LOG(ERROR) << "Processing frame failed";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
} else {
SendBufferToClient(buf->BufferId(), bitstream_buffer_id, buf);
}
}
if (buf->IsLast()) {
DVLOGF(3) << "Got last output buffer. Waiting last buffer="
<< flush_awaiting_last_output_buffer_;
if (flush_awaiting_last_output_buffer_) {
flush_awaiting_last_output_buffer_ = false;
struct v4l2_decoder_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd = V4L2_DEC_CMD_START;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_DECODER_CMD, &cmd);
}
}
return true;
}
bool V4L2VideoDecodeAccelerator::EnqueueInputRecord(
V4L2WritableBufferRef buffer) {
DVLOGF(4);
// Enqueue an input (VIDEO_OUTPUT) buffer.
int32_t input_id = buffer.GetTimeStamp().tv_sec;
size_t bytes_used = buffer.GetPlaneBytesUsed(0);
if (!std::move(buffer).QueueMMap()) {
LOG(ERROR) << "Error in Queue input buffer";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
DVLOGF(4) << "enqueued input_id=" << input_id << " size=" << bytes_used;
return true;
}
bool V4L2VideoDecodeAccelerator::EnqueueOutputRecord(
V4L2WritableBufferRef buffer) {
OutputRecord& output_record = output_buffer_map_[buffer.BufferId()];
DCHECK_NE(output_record.picture_id, -1);
bool ret = false;
switch (buffer.Memory()) {
case V4L2_MEMORY_MMAP:
ret = std::move(buffer).QueueMMap();
break;
case V4L2_MEMORY_DMABUF:
ret = std::move(buffer).QueueDMABuf(output_record.output_frame);
break;
default:
NOTREACHED();
}
if (!ret) {
LOG(ERROR) << "Error in Dequeue output buffer";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
return true;
}
void V4L2VideoDecodeAccelerator::ReusePictureBufferTask(
int32_t picture_buffer_id) {
DVLOGF(4) << "picture_buffer_id=" << picture_buffer_id;
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (IsDestroyPending())
return;
// We run ReusePictureBufferTask even if we're in kResetting.
if (decoder_state_ == kError) {
DVLOGF(4) << "early out: kError state";
return;
}
if (decoder_state_ == kChangingResolution) {
DVLOGF(4) << "early out: kChangingResolution";
return;
}
auto iter = buffers_at_client_.find(picture_buffer_id);
if (iter == buffers_at_client_.end()) {
// It's possible that we've already posted a DismissPictureBuffer for this
// picture, but it has not yet executed when this ReusePictureBuffer was
// posted to us by the client. In that case just ignore this (we've already
// dismissed it and accounted for that).
DVLOGF(3) << "got picture id= " << picture_buffer_id
<< " not in use (anymore?).";
return;
}
buffers_at_client_.erase(iter);
// We got a buffer back, so enqueue it back.
Enqueue();
TRACE_COUNTER_ID2(
"media,gpu", "V4L2 output buffers", this, "in client",
buffers_at_client_.size(), "in vda",
output_buffer_map_.size() - buffers_at_client_.size());
TRACE_COUNTER_ID2(
"media,gpu", "V4L2 output buffers in vda", this, "free",
output_queue_->FreeBuffersCount(), "in device or IP",
output_queue_->QueuedBuffersCount() + buffers_at_ip_.size());
}
void V4L2VideoDecodeAccelerator::FlushTask() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (IsDestroyPending())
return;
if (decoder_state_ == kError) {
VLOGF(2) << "early out: kError state";
return;
}
TRACE_EVENT_NESTABLE_ASYNC_BEGIN0("media,gpu", "V4L2VDA::FlushTask",
TRACE_ID_LOCAL(this));
// We don't support stacked flushing.
DCHECK(!decoder_flushing_);
// Queue up an empty buffer -- this triggers the flush.
decoder_input_queue_.push_back(std::make_unique<BitstreamBufferRef>(
decode_client_, decode_task_runner_, nullptr, kFlushBufferId));
decoder_flushing_ = true;
SendPictureReady(); // Send all pending PictureReady.
ScheduleDecodeBufferTaskIfNeeded();
}
void V4L2VideoDecodeAccelerator::NotifyFlushDoneIfNeeded() {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK(input_queue_);
if (!decoder_flushing_)
return;
// Pipeline is empty when:
// * Decoder input queue is empty of non-delayed buffers.
// * There is no currently filling input buffer.
// * Input holding queue is empty.
// * All input (VIDEO_OUTPUT) buffers are returned.
// * All image processor buffers are returned.
if (!decoder_input_queue_.empty()) {
if (decoder_input_queue_.front()->input_id !=
decoder_delay_bitstream_buffer_id_) {
DVLOGF(3) << "Some input bitstream buffers are not queued.";
return;
}
}
if (current_input_buffer_) {
DVLOGF(3) << "Current input buffer != -1";
return;
}
if ((input_ready_queue_.size() + input_queue_->QueuedBuffersCount()) != 0) {
DVLOGF(3) << "Some input buffers are not dequeued.";
return;
}
if (!buffers_at_ip_.empty()) {
DVLOGF(3) << "Waiting for image processor to complete.";
return;
}
if (flush_awaiting_last_output_buffer_) {
DVLOGF(3) << "Waiting for last output buffer.";
return;
}
// TODO(posciak): https://crbug.com/270039. Exynos requires a
// streamoff-streamon sequence after flush to continue, even if we are not
// resetting. This would make sense, because we don't really want to resume
// from a non-resume point (e.g. not from an IDR) if we are flushed.
// MSE player however triggers a Flush() on chunk end, but never Reset(). One
// could argue either way, or even say that Flush() is not needed/harmful when
// transitioning to next chunk.
// For now, do the streamoff-streamon cycle to satisfy Exynos and not freeze
// when doing MSE. This should be harmless otherwise.
if (!(StopDevicePoll() && StopOutputStream() && StopInputStream()))
return;
if (!StartDevicePoll())
return;
NotifyFlushDone();
// While we were flushing, we early-outed DecodeBufferTask()s.
ScheduleDecodeBufferTaskIfNeeded();
}
void V4L2VideoDecodeAccelerator::NotifyFlushDone() {
TRACE_EVENT_NESTABLE_ASYNC_END0("media,gpu", "V4L2VDA::FlushTask",
TRACE_ID_LOCAL(this));
decoder_delay_bitstream_buffer_id_ = -1;
decoder_flushing_ = false;
VLOGF(2) << "returning flush";
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&Client::NotifyFlushDone, client_));
}
bool V4L2VideoDecodeAccelerator::IsDecoderCmdSupported() {
// CMD_STOP should always succeed. If the decoder is started, the command can
// flush it. If the decoder is stopped, the command does nothing. We use this
// to know if a driver supports V4L2_DEC_CMD_STOP to flush.
struct v4l2_decoder_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd = V4L2_DEC_CMD_STOP;
if (device_->Ioctl(VIDIOC_TRY_DECODER_CMD, &cmd) != 0) {
VLOGF(2) "V4L2_DEC_CMD_STOP is not supported.";
return false;
}
return true;
}
bool V4L2VideoDecodeAccelerator::SendDecoderCmdStop() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK(!flush_awaiting_last_output_buffer_);
struct v4l2_decoder_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd = V4L2_DEC_CMD_STOP;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_DECODER_CMD, &cmd);
flush_awaiting_last_output_buffer_ = true;
return true;
}
void V4L2VideoDecodeAccelerator::ResetTask() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (IsDestroyPending())
return;
if (decoder_state_ == kError) {
VLOGF(2) << "early out: kError state";
return;
}
TRACE_EVENT_NESTABLE_ASYNC_BEGIN0("media,gpu", "V4L2VDA::ResetTask",
TRACE_ID_LOCAL(this));
decoder_current_bitstream_buffer_.reset();
while (!decoder_input_queue_.empty())
decoder_input_queue_.pop_front();
current_input_buffer_.reset();
// If we are in the middle of switching resolutions or awaiting picture
// buffers, postpone reset until it's done. We don't have to worry about
// timing of this wrt to decoding, because output pipe is already
// stopped if we are changing resolution. We will come back here after
// we are done.
DCHECK(!reset_pending_);
if (decoder_state_ == kChangingResolution ||
decoder_state_ == kAwaitingPictureBuffers) {
reset_pending_ = true;
return;
}
FinishReset();
}
void V4L2VideoDecodeAccelerator::FinishReset() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
reset_pending_ = false;
// After the output stream is stopped, the codec should not post any
// resolution change events. So we dequeue the resolution change event
// afterwards. The event could be posted before or while stopping the output
// stream. The codec will expect the buffer of new size after the seek, so
// we need to handle the resolution change event first.
if (!(StopDevicePoll() && StopOutputStream()))
return;
if (DequeueResolutionChangeEvent()) {
reset_pending_ = true;
StartResolutionChange();
return;
}
if (!StopInputStream())
return;
// Drop all buffers in image processor.
if (image_processor_ && !ResetImageProcessor()) {
LOG(ERROR) << "Fail to reset image processor";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
// If we were flushing, we'll never return any more BitstreamBuffers or
// PictureBuffers; they have all been dropped and returned by now.
NotifyFlushDoneIfNeeded();
// Mark that we're resetting, then enqueue a ResetDoneTask(). All intervening
// jobs will early-out in the kResetting state.
decoder_state_ = kResetting;
SendPictureReady(); // Send all pending PictureReady.
decoder_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoDecodeAccelerator::ResetDoneTask,
base::Unretained(this)));
}
void V4L2VideoDecodeAccelerator::ResetDoneTask() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (IsDestroyPending())
return;
if (decoder_state_ == kError) {
VLOGF(2) << "early out: kError state";
return;
}
TRACE_EVENT_NESTABLE_ASYNC_END0("media,gpu", "V4L2VDA::ResetTask",
TRACE_ID_LOCAL(this));
// Start poll thread if NotifyFlushDoneIfNeeded has not already.
if (!device_poll_thread_.IsRunning()) {
if (!StartDevicePoll())
return;
}
frame_splitter_->Reset();
// Jobs drained, we're finished resetting.
DCHECK_EQ(decoder_state_, kResetting);
decoder_state_ = kInitialized;
decoder_delay_bitstream_buffer_id_ = -1;
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&Client::NotifyResetDone, client_));
// While we were resetting, we early-outed DecodeBufferTask()s.
ScheduleDecodeBufferTaskIfNeeded();
}
void V4L2VideoDecodeAccelerator::DestroyTask() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
TRACE_EVENT0("media,gpu", "V4L2VDA::DestroyTask");
// DestroyTask() should run regardless of decoder_state_.
decoder_state_ = kDestroying;
StopDevicePoll();
StopOutputStream();
StopInputStream();
decoder_current_bitstream_buffer_.reset();
current_input_buffer_.reset();
decoder_decode_buffer_tasks_scheduled_ = 0;
while (!decoder_input_queue_.empty())
decoder_input_queue_.pop_front();
decoder_flushing_ = false;
// First liberate all the frames held by the client.
buffers_at_client_.clear();
// The image processor's thread was the user of the image processor device,
// so let it keep the last reference and destroy it in its own thread.
image_processor_device_ = nullptr;
image_processor_ = nullptr;
while (!buffers_at_ip_.empty())
buffers_at_ip_.pop();
#ifdef SUPPORT_MT21_PIXEL_FORMAT_SOFTWARE_DECOMPRESSION
mt21_decompressor_ = nullptr;
#endif
DestroyInputBuffers();
DestroyOutputBuffers();
input_queue_ = nullptr;
output_queue_ = nullptr;
frame_splitter_ = nullptr;
// Clear the V4L2 devices in the decoder thread so the V4L2Device's
// destructor is called from the thread that used it.
device_ = nullptr;
base::trace_event::MemoryDumpManager::GetInstance()->UnregisterDumpProvider(
this);
}
bool V4L2VideoDecodeAccelerator::StartDevicePoll() {
DVLOGF(3);
DCHECK(!device_poll_thread_.IsRunning());
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
// Start up the device poll thread and schedule its first DevicePollTask().
if (!device_poll_thread_.Start()) {
LOG(ERROR) << "Device thread failed to start";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
cancelable_service_device_task_.Reset(base::BindRepeating(
&V4L2VideoDecodeAccelerator::ServiceDeviceTask, base::Unretained(this)));
cancelable_service_device_task_callback_ =
cancelable_service_device_task_.callback();
device_poll_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoDecodeAccelerator::DevicePollTask,
base::Unretained(this), 0));
return true;
}
bool V4L2VideoDecodeAccelerator::StopDevicePoll() {
DVLOGF(3);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (!device_poll_thread_.IsRunning())
return true;
// Signal the DevicePollTask() to stop, and stop the device poll thread.
if (!device_->SetDevicePollInterrupt()) {
PLOG(ERROR) << "SetDevicePollInterrupt(): failed";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
device_poll_thread_.Stop();
// Must be done after the Stop() above to ensure
// |cancelable_service_device_task_callback_| is not copied.
cancelable_service_device_task_.Cancel();
cancelable_service_device_task_callback_ = base::NullCallback();
// Clear the interrupt now, to be sure.
if (!device_->ClearDevicePollInterrupt()) {
PLOG(ERROR) << "ClearDevicePollInterrupt: failed";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
DVLOGF(3) << "device poll stopped";
return true;
}
bool V4L2VideoDecodeAccelerator::StopOutputStream() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (!output_queue_ || !output_queue_->IsStreaming())
return true;
if (!output_queue_->Streamoff()) {
VLOGF(1) << "Failed streaming off output queue";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
// Output stream is stopped. No need to wait for the buffer anymore.
flush_awaiting_last_output_buffer_ = false;
return true;
}
bool V4L2VideoDecodeAccelerator::StopInputStream() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (!input_queue_ || !input_queue_->IsStreaming())
return true;
if (!input_queue_->Streamoff()) {
LOG(ERROR) << "Failed streaming off input queue";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
// Reset accounting info for input.
while (!input_ready_queue_.empty())
input_ready_queue_.pop();
return true;
}
void V4L2VideoDecodeAccelerator::StartResolutionChange() {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_NE(decoder_state_, kUninitialized);
DCHECK_NE(decoder_state_, kResetting);
VLOGF(2) << "Initiate resolution change";
if (!(StopDevicePoll() && StopOutputStream()))
return;
decoder_state_ = kChangingResolution;
SendPictureReady(); // Send all pending PictureReady.
if (!buffers_at_ip_.empty()) {
VLOGF(2) << "Wait image processor to finish before destroying buffers.";
return;
}
buffers_at_client_.clear();
image_processor_ = nullptr;
#ifdef SUPPORT_MT21_PIXEL_FORMAT_SOFTWARE_DECOMPRESSION
mt21_decompressor_ = nullptr;
#endif
if (!DestroyOutputBuffers()) {
LOG(ERROR) << "Failed destroying output buffers.";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
FinishResolutionChange();
}
void V4L2VideoDecodeAccelerator::FinishResolutionChange() {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_EQ(decoder_state_, kChangingResolution);
VLOGF(2);
if (decoder_state_ == kError) {
VLOGF(2) << "early out: kError state";
return;
}
struct v4l2_format format;
bool again;
gfx::Size visible_size;
bool ret = GetFormatInfo(&format, &visible_size, &again);
if (!ret || again) {
LOG(ERROR) << "Couldn't get format information after resolution change";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
if (!CreateBuffersForFormat(format, visible_size)) {
LOG(ERROR) << "Couldn't reallocate buffers after resolution change";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
if (!StartDevicePoll())
return;
}
void V4L2VideoDecodeAccelerator::DevicePollTask(bool poll_device) {
DVLOGF(4);
DCHECK(device_poll_thread_.task_runner()->BelongsToCurrentThread());
TRACE_EVENT0("media,gpu", "V4L2VDA::DevicePollTask");
bool event_pending = false;
if (!device_->Poll(poll_device, &event_pending)) {
LOG(ERROR) << "Failed during poll";
NOTIFY_ERROR(PLATFORM_FAILURE);
return;
}
// All processing should happen on ServiceDeviceTask(), since we shouldn't
// touch decoder state from this thread.
decoder_thread_.task_runner()->PostTask(
FROM_HERE,
base::BindOnce(cancelable_service_device_task_callback_, event_pending));
}
bool V4L2VideoDecodeAccelerator::IsDestroyPending() {
return destroy_pending_.IsSignaled();
}
void V4L2VideoDecodeAccelerator::NotifyError(Error error) {
VLOGF(1);
// Notifying the client should only happen from the client's thread.
if (!child_task_runner_->BelongsToCurrentThread()) {
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoDecodeAccelerator::NotifyError,
weak_this_, error));
return;
}
// Notify the decoder's client an error has occurred.
if (client_) {
client_->NotifyError(error);
client_ptr_factory_.reset();
}
}
void V4L2VideoDecodeAccelerator::SetErrorState(Error error) {
// We can touch decoder_state_ only if this is the decoder thread or the
// decoder thread isn't running.
if (decoder_thread_.task_runner() &&
!decoder_thread_.task_runner()->BelongsToCurrentThread()) {
decoder_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoDecodeAccelerator::SetErrorState,
base::Unretained(this), error));
return;
}
// Notifying the client of an error will only happen if we are already
// initialized, as the API does not allow doing so before that. Subsequent
// errors and errors while destroying will be suppressed.
if (decoder_state_ != kError && decoder_state_ != kUninitialized &&
decoder_state_ != kDestroying)
NotifyError(error);
decoder_state_ = kError;
}
bool V4L2VideoDecodeAccelerator::GetFormatInfo(struct v4l2_format* format,
gfx::Size* visible_size,
bool* again) {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
*again = false;
auto ret = output_queue_->GetFormat();
switch (ret.second) {
case 0:
*format = *ret.first;
break;
case EINVAL:
// EINVAL means we haven't seen sufficient stream to decode the format.
*again = true;
return true;
default:
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
// Make sure we are still getting the format we set on initialization.
if (format->fmt.pix_mp.pixelformat != output_format_fourcc_->ToV4L2PixFmt()) {
VLOGF(1) << "Unexpected format from G_FMT on output";
return false;
}
gfx::Size coded_size(format->fmt.pix_mp.width, format->fmt.pix_mp.height);
if (visible_size != nullptr)
*visible_size = GetVisibleSize(coded_size);
return true;
}
bool V4L2VideoDecodeAccelerator::CreateBuffersForFormat(
const struct v4l2_format& format,
const gfx::Size& visible_size) {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
size_t egl_image_planes_count;
coded_size_.SetSize(format.fmt.pix_mp.width, format.fmt.pix_mp.height);
visible_size_ = visible_size;
egl_image_size_ = coded_size_;
if (image_processor_device_) {
egl_image_planes_count = 0;
auto output_size = coded_size_;
if (!V4L2ImageProcessorBackend::TryOutputFormat(
output_format_fourcc_->ToV4L2PixFmt(),
egl_image_format_fourcc_->ToV4L2PixFmt(), coded_size_, &output_size,
&egl_image_planes_count)) {
VLOGF(1) << "Fail to get output size and plane count of processor";
return false;
}
// This is very restrictive because it assumes the IP has the same alignment
// criteria as the video decoder that will produce the input video frames.
// In practice, this applies to all Image Processors, i.e. Mediatek devices.
DCHECK_EQ(coded_size_, output_size);
} else {
egl_image_planes_count = format.fmt.pix_mp.num_planes;
}
VLOGF(2) << "new resolution: " << coded_size_.ToString()
<< ", visible size: " << visible_size_.ToString()
<< ", decoder output planes count: " << format.fmt.pix_mp.num_planes
<< ", EGLImage size: " << egl_image_size_.ToString()
<< ", EGLImage plane count: " << egl_image_planes_count;
return CreateOutputBuffers();
}
gfx::Size V4L2VideoDecodeAccelerator::GetVisibleSize(
const gfx::Size& coded_size) {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
auto ret = output_queue_->GetVisibleRect();
if (!ret) {
return coded_size;
}
gfx::Rect rect = std::move(*ret);
DVLOGF(3) << "visible rectangle is " << rect.ToString();
if (!gfx::Rect(coded_size).Contains(rect)) {
DVLOGF(3) << "visible rectangle " << rect.ToString()
<< " is not inside coded size " << coded_size.ToString();
return coded_size;
}
if (rect.IsEmpty()) {
VLOGF(1) << "visible size is empty";
return coded_size;
}
// Chrome assume picture frame is coded at (0, 0).
if (!rect.origin().IsOrigin()) {
VLOGF(1) << "Unexpected visible rectangle " << rect.ToString()
<< ", top-left is not origin";
return coded_size;
}
return rect.size();
}
bool V4L2VideoDecodeAccelerator::CreateInputBuffers() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
// We always run this as we prepare to initialize.
DCHECK_EQ(decoder_state_, kInitialized);
DCHECK(input_queue_);
if (input_queue_->AllocateBuffers(kInputBufferCount, V4L2_MEMORY_MMAP,
/*incoherent=*/false) == 0) {
LOG(ERROR) << "Failed allocating input buffers";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
return true;
}
bool V4L2VideoDecodeAccelerator::SetupFormats() {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_EQ(decoder_state_, kInitialized);
DCHECK(!input_queue_->IsStreaming());
DCHECK(!output_queue_->IsStreaming());
size_t input_size;
gfx::Size max_resolution, min_resolution;
GetSupportedResolution(base::BindRepeating(&V4L2Device::Ioctl, device_),
input_format_fourcc_, &min_resolution,
&max_resolution);
if (max_resolution.width() > 1920 && max_resolution.height() > 1088)
input_size = kInputBufferMaxSizeFor4k;
else
input_size = kInputBufferMaxSizeFor1080p;
struct v4l2_fmtdesc fmtdesc;
memset(&fmtdesc, 0, sizeof(fmtdesc));
fmtdesc.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
bool is_format_supported = false;
while (device_->Ioctl(VIDIOC_ENUM_FMT, &fmtdesc) == 0) {
if (fmtdesc.pixelformat == input_format_fourcc_) {
is_format_supported = true;
break;
}
++fmtdesc.index;
}
if (!is_format_supported) {
VLOGF(1) << "Input fourcc " << input_format_fourcc_
<< " not supported by device.";
return false;
}
struct v4l2_format format;
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
format.fmt.pix_mp.pixelformat = input_format_fourcc_;
format.fmt.pix_mp.plane_fmt[0].sizeimage = input_size;
format.fmt.pix_mp.num_planes = 1;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_S_FMT, &format);
DCHECK_EQ(format.fmt.pix_mp.pixelformat, input_format_fourcc_);
// We have to set up the format for output, because the driver may not allow
// changing it once we start streaming; whether it can support our chosen
// output format or not may depend on the input format.
memset(&fmtdesc, 0, sizeof(fmtdesc));
fmtdesc.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
while (device_->Ioctl(VIDIOC_ENUM_FMT, &fmtdesc) == 0) {
auto fourcc = Fourcc::FromV4L2PixFmt(fmtdesc.pixelformat);
if (fourcc && device_->CanCreateEGLImageFrom(*fourcc)) {
output_format_fourcc_ = *fourcc;
break;
}
++fmtdesc.index;
}
DCHECK(!image_processor_device_);
if (!output_format_fourcc_) {
VLOGF(2) << "Could not find a usable output format. Try image processor";
#ifdef SUPPORT_MT21_PIXEL_FORMAT_SOFTWARE_DECOMPRESSION
if (base::FeatureList::IsEnabled(media::kPreferSoftwareMT21)) {
output_format_fourcc_ = Fourcc(Fourcc::MT21);
egl_image_format_fourcc_ = Fourcc(Fourcc::NV12);
} else {
#else
{
#endif
if (!V4L2ImageProcessorBackend::IsSupported()) {
VLOGF(1) << "Image processor not available";
return false;
}
output_format_fourcc_ =
v4l2_vda_helpers::FindImageProcessorInputFormat(device_.get());
if (!output_format_fourcc_) {
VLOGF(1) << "Can't find a usable input format from image processor";
return false;
}
egl_image_format_fourcc_ =
v4l2_vda_helpers::FindImageProcessorOutputFormat(device_.get());
if (!egl_image_format_fourcc_) {
VLOGF(1) << "Can't find a usable output format from image processor";
return false;
}
image_processor_device_ = base::MakeRefCounted<V4L2Device>();
}
} else {
egl_image_format_fourcc_ = output_format_fourcc_;
}
VLOGF(2) << "Output format=" << output_format_fourcc_->ToString();
// Just set the fourcc for output; resolution, etc., will come from the
// driver once it extracts it from the stream.
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
format.fmt.pix_mp.pixelformat = output_format_fourcc_->ToV4L2PixFmt();
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_S_FMT, &format);
DCHECK_EQ(format.fmt.pix_mp.pixelformat,
output_format_fourcc_->ToV4L2PixFmt());
return true;
}
bool V4L2VideoDecodeAccelerator::ResetImageProcessor() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (!image_processor_->Reset())
return false;
while (!buffers_at_ip_.empty())
buffers_at_ip_.pop();
return true;
}
bool V4L2VideoDecodeAccelerator::CreateImageProcessor() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK(!image_processor_);
const ImageProcessor::OutputMode image_processor_output_mode =
(output_mode_ == Config::OutputMode::kAllocate
? ImageProcessor::OutputMode::ALLOCATE
: ImageProcessor::OutputMode::IMPORT);
// Start with a brand new image processor device, since the old one was
// already opened and attempting to open it again is not supported.
image_processor_device_ = base::MakeRefCounted<V4L2Device>();
image_processor_ = v4l2_vda_helpers::CreateImageProcessor(
*output_format_fourcc_, *egl_image_format_fourcc_, coded_size_,
coded_size_, gfx::Rect(visible_size_),
VideoFrame::StorageType::STORAGE_DMABUFS, output_buffer_map_.size(),
image_processor_device_, image_processor_output_mode,
decoder_thread_.task_runner(),
// Unretained(this) is safe for ErrorCB because |decoder_thread_| is owned
// by this V4L2VideoDecodeAccelerator and |this| must be valid when
// ErrorCB is executed.
base::BindRepeating(&V4L2VideoDecodeAccelerator::ImageProcessorError,
base::Unretained(this)));
if (!image_processor_) {
VLOGF(1) << "Error creating image processor";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
VLOGF(2) << "ImageProcessor is created: " << image_processor_->backend_type();
return true;
}
bool V4L2VideoDecodeAccelerator::ProcessFrame(int32_t bitstream_buffer_id,
V4L2ReadableBufferRef buf) {
DVLOGF(4);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
OutputRecord& output_record = output_buffer_map_[buf->BufferId()];
// Keep reference to the IP input until the frame is processed
buffers_at_ip_.push(std::make_pair(bitstream_buffer_id, buf));
#ifdef SUPPORT_MT21_PIXEL_FORMAT_SOFTWARE_DECOMPRESSION
if (base::FeatureList::IsEnabled(media::kPreferSoftwareMT21)) {
if (!mt21_decompressor_) {
LOG(ERROR) << "PreferSoftwareMT21 enabled, but MT21 decompressor was not "
"created!";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
if (output_mode_ != Config::OutputMode::kImport) {
LOG(ERROR) << "Software MT21 does not support ALLOCATE output mode!";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
if (buf->PlanesCount() != 2) {
LOG(ERROR) << "Wrong number of planes for MT21!";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
std::unique_ptr<VideoFrameMapper> output_frame_mapper;
output_frame_mapper = VideoFrameMapperFactory::CreateMapper(
PIXEL_FORMAT_NV12, VideoFrame::STORAGE_DMABUFS,
/*force_linear_buffer_mapper=*/true);
if (!output_frame_mapper) {
output_frame_mapper = VideoFrameMapperFactory::CreateMapper(
PIXEL_FORMAT_NV12, VideoFrame::STORAGE_GPU_MEMORY_BUFFER,
/*force_linear_buffer_mapper=*/true);
}
if (!output_frame_mapper) {
LOG(ERROR) << "Failed to instantiate MT21 frame mapper!";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
scoped_refptr<FrameResource> mapped_output_frame =
VideoFrameResource::Create(output_frame_mapper->MapFrame(
output_record.output_frame, PROT_READ | PROT_WRITE));
if (!mapped_output_frame) {
LOG(ERROR) << "Failed to map MT21 frame!";
NOTIFY_ERROR(PLATFORM_FAILURE);
return false;
}
{
TRACE_EVENT0("media,gpu", "V4L2VDA::MT21ToNV12");
mt21_decompressor_->MT21ToNV12(
static_cast<const uint8_t*>(buf->GetPlaneMapping(0)),
static_cast<const uint8_t*>(buf->GetPlaneMapping(1)),
buf->GetPlaneBytesUsed(0), buf->GetPlaneBytesUsed(1),
mapped_output_frame->GetWritableVisibleData(VideoFrame::Plane::kY),
mapped_output_frame->GetWritableVisibleData(VideoFrame::Plane::kUV));
}
FrameProcessed(bitstream_buffer_id, buf->BufferId(), mapped_output_frame);
return true;
}
#endif
scoped_refptr<FrameResource> input_frame = buf->GetFrameResource();
if (!input_frame) {
VLOGF(1) << "Could not get the input frame for the image processor!";
return false;
}
// The |input_frame| has a potentially incorrect visible rectangle and natural
// size: that frame gets created by V4L2Buffer::CreateVideoFrame() which uses
// v4l2_format::fmt.pix_mp.width and v4l2_format::fmt.pix_mp.height as the
// visible rectangle and natural size. However, those dimensions actually
// correspond to the coded size. Therefore, we should wrap |input_frame| into
// another frame with the right visible rectangle and natural size.
DCHECK(input_frame->visible_rect().origin().IsOrigin());
const gfx::Rect visible_rect = image_processor_->input_config().visible_rect;
const gfx::Size natural_size = visible_rect.size();
if (!gfx::Rect(input_frame->coded_size()).Contains(visible_rect) ||
!input_frame->visible_rect().Contains(visible_rect)) {
VLOGF(1) << "The visible size is too large!";
return false;
}
if (!gfx::Rect(input_frame->natural_size())
.Contains(gfx::Rect(natural_size))) {
VLOGF(1) << "The natural size is too large!";
return false;
}
scoped_refptr<FrameResource> cropped_input_frame =
input_frame->CreateWrappingFrame(visible_rect, natural_size);
if (!cropped_input_frame) {
VLOGF(1) << "Could not wrap the input frame for the image processor!";
return false;
}
// Unretained(this) is safe for FrameReadyCB because |decoder_thread_| is
// owned by this V4L2VideoDecodeAccelerator and |this| must be valid when
// FrameReadyCB is executed.
if (image_processor_->output_mode() == ImageProcessor::OutputMode::IMPORT) {
image_processor_->Process(
std::move(cropped_input_frame), output_record.output_frame,
base::BindOnce(&V4L2VideoDecodeAccelerator::FrameProcessed,
base::Unretained(this), bitstream_buffer_id,
buf->BufferId()));
} else {
image_processor_->Process(
std::move(cropped_input_frame),
base::BindOnce(&V4L2VideoDecodeAccelerator::FrameProcessed,
base::Unretained(this), bitstream_buffer_id));
}
return true;
}
bool V4L2VideoDecodeAccelerator::CreateOutputBuffers() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK(decoder_state_ == kInitialized ||
decoder_state_ == kChangingResolution);
DCHECK(output_queue_);
DCHECK(!output_queue_->IsStreaming());
DCHECK(output_buffer_map_.empty());
// Number of output buffers we need.
auto ctrl = device_->GetCtrl(V4L2_CID_MIN_BUFFERS_FOR_CAPTURE);
if (!ctrl)
return false;
output_dpb_size_ = ctrl->value;
// Output format setup in Initialize().
uint32_t buffer_count = output_dpb_size_ + kDpbOutputBufferExtraCount;
if (image_processor_device_)
buffer_count += kDpbOutputBufferExtraCountForImageProcessor;
DVLOGF(3) << "buffer_count=" << buffer_count
<< ", coded_size=" << coded_size_.ToString();
// With ALLOCATE mode the client can sample it as RGB and doesn't need to
// know the precise format.
VideoPixelFormat pixel_format =
(output_mode_ == Config::OutputMode::kImport)
? egl_image_format_fourcc_->ToVideoPixelFormat()
: PIXEL_FORMAT_UNKNOWN;
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&Client::ProvidePictureBuffersWithVisibleRect,
client_, buffer_count, pixel_format,
egl_image_size_, gfx::Rect(visible_size_)));
// Go into kAwaitingPictureBuffers to prevent us from doing any more decoding
// or event handling while we are waiting for AssignPictureBuffers(). Not
// having Pictures available would not have prevented us from making decoding
// progress entirely e.g. in the case of H.264 where we could further decode
// non-slice NALUs and could even get another resolution change before we were
// done with this one. After we get the buffers, we'll go back into kIdle and
// kick off further event processing, and eventually go back into kDecoding
// once no more events are pending (if any).
decoder_state_ = kAwaitingPictureBuffers;
return true;
}
void V4L2VideoDecodeAccelerator::DestroyInputBuffers() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
if (!input_queue_)
return;
if (!input_queue_->DeallocateBuffers()) {
VLOGF(1) << "Failed deallocating V4L2 input buffers";
NOTIFY_ERROR(PLATFORM_FAILURE);
}
}
bool V4L2VideoDecodeAccelerator::DestroyOutputBuffers() {
VLOGF(2);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK(!output_queue_ || !output_queue_->IsStreaming());
bool success = true;
if (!output_queue_ || output_buffer_map_.empty())
return true;
// Release all buffers waiting for an import buffer event
output_wait_map_.clear();
for (size_t i = 0; i < output_buffer_map_.size(); ++i) {
OutputRecord& output_record = output_buffer_map_[i];
DVLOGF(3) << "dismissing PictureBuffer id=" << output_record.picture_id;
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&Client::DismissPictureBuffer, client_,
output_record.picture_id));
}
if (!output_queue_->DeallocateBuffers()) {
LOG(ERROR) << "Failed deallocating output buffers";
NOTIFY_ERROR(PLATFORM_FAILURE);
success = false;
}
output_buffer_map_.clear();
return success;
}
void V4L2VideoDecodeAccelerator::SendBufferToClient(
size_t output_buffer_index,
int32_t bitstream_buffer_id,
V4L2ReadableBufferRef vda_buffer,
scoped_refptr<FrameResource> frame) {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_GE(bitstream_buffer_id, 0);
OutputRecord& output_record = output_buffer_map_[output_buffer_index];
DCHECK_EQ(buffers_at_client_.count(output_record.picture_id), 0u);
// We need to keep the VDA buffer for now, as the IP still needs to be told
// which buffer to use so we cannot use this buffer index before the client
// has returned the corresponding IP buffer.
buffers_at_client_.emplace(
output_record.picture_id,
std::make_pair(std::move(vda_buffer), std::move(frame)));
const Picture picture(output_record.picture_id, bitstream_buffer_id,
gfx::Rect(visible_size_));
pending_picture_ready_.emplace(output_record.cleared, picture);
SendPictureReady();
// This picture will be cleared next time we see it.
output_record.cleared = true;
}
void V4L2VideoDecodeAccelerator::SendPictureReady() {
DVLOGF(4);
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
bool send_now = (decoder_state_ == kChangingResolution ||
decoder_state_ == kResetting || decoder_flushing_);
while (pending_picture_ready_.size() > 0) {
bool cleared = pending_picture_ready_.front().cleared;
const Picture& picture = pending_picture_ready_.front().picture;
if (cleared && picture_clearing_count_ == 0) {
// This picture is cleared. It can be posted to a thread different than
// the main GPU thread to reduce latency. This should be the case after
// all pictures are cleared at the beginning.
decode_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&Client::PictureReady, decode_client_, picture));
pending_picture_ready_.pop();
} else if (!cleared || send_now) {
DVLOGF(4) << "cleared=" << pending_picture_ready_.front().cleared
<< ", decoder_state_=" << decoder_state_
<< ", decoder_flushing_=" << decoder_flushing_
<< ", picture_clearing_count_=" << picture_clearing_count_;
// If the picture is not cleared, post it to the child thread because it
// has to be cleared in the child thread. A picture only needs to be
// cleared once. If the decoder is changing resolution, resetting or
// flushing, send all pictures to ensure PictureReady arrive before
// ProvidePictureBuffers, NotifyResetDone, or NotifyFlushDone.
child_task_runner_->PostTaskAndReply(
FROM_HERE, base::BindOnce(&Client::PictureReady, client_, picture),
// Unretained is safe. If Client::PictureReady gets to run, |this| is
// alive. Destroy() will wait the decode thread to finish.
base::BindOnce(&V4L2VideoDecodeAccelerator::PictureCleared,
base::Unretained(this)));
picture_clearing_count_++;
pending_picture_ready_.pop();
} else {
// This picture is cleared. But some pictures are about to be cleared on
// the child thread. To preserve the order, do not send this until those
// pictures are cleared.
break;
}
}
}
void V4L2VideoDecodeAccelerator::PictureCleared() {
DVLOGF(4) << "clearing count=" << picture_clearing_count_;
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
DCHECK_GT(picture_clearing_count_, 0);
picture_clearing_count_--;
SendPictureReady();
}
void V4L2VideoDecodeAccelerator::FrameProcessed(
int32_t bitstream_buffer_id,
size_t ip_buffer_index,
scoped_refptr<FrameResource> frame) {
DVLOGF(4) << "ip_buffer_index=" << ip_buffer_index
<< ", bitstream_buffer_id=" << bitstream_buffer_id;
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
// TODO(crbug.com/40609453): Remove this workaround once reset callback is
// implemented.
if (buffers_at_ip_.empty() ||
buffers_at_ip_.front().first != bitstream_buffer_id ||
output_buffer_map_.empty()) {
// This can happen if image processor is reset.
// V4L2VideoDecodeAccelerator::Reset() makes
// |buffers_at_ip_| empty.
// During ImageProcessor::Reset(), some FrameProcessed() can have been
// posted to |decoder_thread|. |bitsream_buffer_id| is pushed to
// |buffers_at_ip_| in ProcessFrame(). Although we
// are not sure a new bitstream buffer id is pushed after Reset() and before
// FrameProcessed(), We should skip the case of mismatch of bitstream buffer
// id for safety.
// For |output_buffer_map_|, it is cleared in Destroy(). Destroy() destroys
// ImageProcessor which may call FrameProcessed() in parallel similar to
// Reset() case.
DVLOGF(4) << "Ignore processed frame for bitstream_buffer_id="
<< bitstream_buffer_id;
return;
}
DCHECK_GE(ip_buffer_index, 0u);
DCHECK_LT(ip_buffer_index, output_buffer_map_.size());
// This is the output record for the buffer received from the IP, which index
// may differ from the buffer used by the VDA.
OutputRecord& ip_output_record = output_buffer_map_[ip_buffer_index];
DVLOGF(4) << "picture_id=" << ip_output_record.picture_id;
DCHECK_NE(ip_output_record.picture_id, -1);
// Remove our job from the IP jobs queue
DCHECK_GT(buffers_at_ip_.size(), 0u);
DCHECK(buffers_at_ip_.front().first == bitstream_buffer_id);
// This is the VDA buffer used as input of the IP.
V4L2ReadableBufferRef vda_buffer = std::move(buffers_at_ip_.front().second);
buffers_at_ip_.pop();
SendBufferToClient(ip_buffer_index, bitstream_buffer_id,
std::move(vda_buffer), std::move(frame));
// Flush or resolution change may be waiting image processor to finish.
if (buffers_at_ip_.empty()) {
NotifyFlushDoneIfNeeded();
if (decoder_state_ == kChangingResolution)
StartResolutionChange();
}
}
void V4L2VideoDecodeAccelerator::ImageProcessorError() {
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
VLOGF(1) << "Image processor error";
NOTIFY_ERROR(PLATFORM_FAILURE);
}
bool V4L2VideoDecodeAccelerator::OnMemoryDump(
const base::trace_event::MemoryDumpArgs& args,
base::trace_event::ProcessMemoryDump* pmd) {
// OnMemoryDump() must be performed on |decoder_thread_|.
DCHECK(decoder_thread_.task_runner()->BelongsToCurrentThread());
// |input_queue| and |output_queue| are owned by |decoder_thread_|.
size_t input_queue_buffers_count = 0;
size_t input_queue_memory_usage = 0;
std::string input_queue_buffers_memory_type;
if (input_queue_) {
input_queue_buffers_count = input_queue_->AllocatedBuffersCount();
input_queue_buffers_memory_type =
V4L2MemoryToString(input_queue_->GetMemoryType());
if (output_queue_->GetMemoryType() == V4L2_MEMORY_MMAP)
input_queue_memory_usage = input_queue_->GetMemoryUsage();
}
size_t output_queue_buffers_count = 0;
size_t output_queue_memory_usage = 0;
std::string output_queue_buffers_memory_type;
if (output_queue_) {
output_queue_buffers_count = output_queue_->AllocatedBuffersCount();
output_queue_buffers_memory_type =
V4L2MemoryToString(output_queue_->GetMemoryType());
if (output_queue_->GetMemoryType() == V4L2_MEMORY_MMAP)
output_queue_memory_usage = output_queue_->GetMemoryUsage();
}
const size_t total_usage =
input_queue_memory_usage + output_queue_memory_usage;
using ::base::trace_event::MemoryAllocatorDump;
auto dump_name = base::StringPrintf("gpu/v4l2/decoder/0x%" PRIxPTR,
reinterpret_cast<uintptr_t>(this));
MemoryAllocatorDump* dump = pmd->CreateAllocatorDump(dump_name);
dump->AddScalar(MemoryAllocatorDump::kNameSize,
MemoryAllocatorDump::kUnitsBytes,
static_cast<uint64_t>(total_usage));
dump->AddScalar("input_queue_memory_usage", MemoryAllocatorDump::kUnitsBytes,
static_cast<uint64_t>(input_queue_memory_usage));
dump->AddScalar("input_queue_buffers_count",
MemoryAllocatorDump::kUnitsObjects,
static_cast<uint64_t>(input_queue_buffers_count));
dump->AddString("input_queue_buffers_memory_type", "",
input_queue_buffers_memory_type);
dump->AddScalar("output_queue_memory_usage", MemoryAllocatorDump::kUnitsBytes,
static_cast<uint64_t>(output_queue_memory_usage));
dump->AddScalar("output_queue_buffers_count",
MemoryAllocatorDump::kUnitsObjects,
static_cast<uint64_t>(output_queue_buffers_count));
dump->AddString("output_queue_buffers_memory_type", "",
output_queue_buffers_memory_type);
return true;
}
} // namespace media
|