1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/390223051): Remove C-library calls to fix the errors.
#pragma allow_unsafe_libc_calls
#endif
#include "media/gpu/v4l2/mt21/mt21_decompressor.h"
#include <sched.h>
#include <stdlib.h>
#include "base/bits.h"
#include "base/memory/scoped_refptr.h"
#include "media/gpu/v4l2/mt21/mt21_util.h"
#include "third_party/libyuv/include/libyuv/planar_functions.h"
namespace media {
namespace {
template <class T>
void MT21ToMM21(const uint8_t* src,
const uint8_t* footer,
uint8_t* dest,
size_t start_offset,
size_t width,
size_t height,
const GolombRiceTableEntry* symbol_cache) {
std::vector<T> subblock_bins[2];
uint8_t scratch[kMT21ScratchMemorySize] __attribute__((aligned(16)));
for (size_t block_offset = 0; block_offset < width * height;
block_offset += kMT21BlockSize) {
BinSubblocks<T>(src, footer, dest, block_offset + start_offset,
subblock_bins);
}
// Handle high-entropy passthrough subblocks.
for (T& subblock : subblock_bins[1]) {
memcpy(subblock.dest, subblock.src, subblock.len);
}
// Vector decompress as many blocks as possible.
size_t i = 0;
for (; i + kNumOutputLanes - 1 < subblock_bins[0].size();
i += kNumOutputLanes) {
VectorDecompressSubblockHelper<T>(subblock_bins[0], i, scratch);
}
// Scalar decompress the remainder.
for (; i < subblock_bins[0].size(); i++) {
DecompressSubblockHelper<T>(subblock_bins[0][i], symbol_cache);
}
}
void DecompressAndDetile(const MT21DecompressionJob& job,
uint8_t* pivot,
const GolombRiceTableEntry* symbol_cache) {
if (job.is_chroma) {
MT21ToMM21<MT21UVSubblock>(job.src, job.footer, pivot, job.offset,
job.width, job.height, symbol_cache);
} else {
MT21ToMM21<MT21YSubblock>(job.src, job.footer, pivot, job.offset, job.width,
job.height, symbol_cache);
}
libyuv::DetilePlane(pivot + job.offset, job.width, job.dest + job.offset,
job.width, job.width, job.height,
job.is_chroma ? kMT21TileHeight / 2 : kMT21TileHeight);
}
// MT8173 has 2 Cortex A72s and 2 Cortex A53s
constexpr size_t kNumLittleThreads = 2;
constexpr size_t kNumBigThreads = 2;
void MT21WorkerEntry(cpu_set_t mask,
std::atomic_bool& should_shutdown,
const GolombRiceTableEntry* symbol_cache,
uint8_t* pivot,
scoped_refptr<MT21DecompressionJob> job) {
sched_setaffinity(0, sizeof(cpu_set_t), &mask);
while (true) {
job->wakeup_event.Wait();
if (should_shutdown) {
break;
}
DecompressAndDetile(*job, pivot, symbol_cache);
job->done_event.Signal();
}
}
} // namespace
MT21DecompressionJob::MT21DecompressionJob(const uint8_t* src,
const uint8_t* footer,
size_t offset,
uint8_t* dest,
size_t width,
size_t height,
bool is_chroma)
: wakeup_event(base::WaitableEvent::ResetPolicy::AUTOMATIC,
base::WaitableEvent::InitialState::NOT_SIGNALED),
done_event(base::WaitableEvent::ResetPolicy::AUTOMATIC,
base::WaitableEvent::InitialState::NOT_SIGNALED) {
this->src = src;
this->footer = footer;
this->offset = offset;
this->dest = dest;
this->width = width;
this->height = height;
this->is_chroma = is_chroma;
}
MT21Decompressor::MT21Decompressor(gfx::Size resolution) {
symbol_cache_ = new GolombRiceTableEntry[kGolombRiceCacheSize];
PopulateGolombRiceCache(symbol_cache_);
aligned_resolution_ =
gfx::Size(base::bits::AlignUp(static_cast<size_t>(resolution.width()),
kMT21TileWidth),
base::bits::AlignUp(static_cast<size_t>(resolution.height()),
kMT21TileHeight));
// Big cores are CPUs 2 and 3, while the little cores are 0 and 1.
cpu_set_t mask;
CPU_ZERO(&mask);
for (size_t i = kNumLittleThreads; i < kNumLittleThreads + kNumBigThreads;
i++) {
CPU_SET(i, &mask);
}
big_core_pivot_ =
static_cast<uint8_t*>(aligned_alloc(16, aligned_resolution_.GetArea()));
for (size_t i = 0; i < kNumBigThreads; i++) {
scoped_refptr<MT21DecompressionJob> job =
base::MakeRefCounted<MT21DecompressionJob>(nullptr, nullptr, 0, nullptr,
0, 0, false);
big_core_jobs_.push_back(job);
big_core_threads_.emplace_back(MT21WorkerEntry, mask,
std::ref(should_shutdown_), symbol_cache_,
big_core_pivot_, job);
}
CPU_ZERO(&mask);
for (size_t i = 0; i < kNumLittleThreads; i++) {
CPU_SET(i, &mask);
}
little_core_pivot_ =
static_cast<uint8_t*>(aligned_alloc(16, aligned_resolution_.GetArea()));
for (size_t i = 0; i < kNumLittleThreads; i++) {
scoped_refptr<MT21DecompressionJob> job =
base::MakeRefCounted<MT21DecompressionJob>(nullptr, nullptr, 0, nullptr,
0, 0, true);
little_core_jobs_.push_back(job);
little_core_threads_.emplace_back(MT21WorkerEntry, mask,
std::ref(should_shutdown_), symbol_cache_,
little_core_pivot_, job);
}
// Experimental evidence shows that A53s decompress MT21 blocks at about half
// the speed of A72s. This conveniently means that if split the chroma plane
// between the A53s and the luma plane between the A72s, we should perfectly
// balance the load.
size_t uv_split_height = base::bits::AlignUp(
static_cast<size_t>(aligned_resolution_.height() / 2 / 2),
kMT21TileHeight / 2);
size_t uv_split_offset = uv_split_height * aligned_resolution_.width();
little_core_jobs_[0]->offset = 0;
little_core_jobs_[0]->width = aligned_resolution_.width();
little_core_jobs_[0]->height = uv_split_height;
little_core_jobs_[1]->offset = uv_split_offset;
little_core_jobs_[1]->width = aligned_resolution_.width();
little_core_jobs_[1]->height =
aligned_resolution_.height() / 2 - uv_split_height;
size_t y_split_height = base::bits::AlignUp(
static_cast<size_t>(aligned_resolution_.height() / 2), kMT21TileHeight);
size_t y_split_offset = y_split_height * aligned_resolution_.width();
big_core_jobs_[0]->offset = 0;
big_core_jobs_[0]->width = aligned_resolution_.width();
big_core_jobs_[0]->height = y_split_height;
big_core_jobs_[1]->offset = y_split_offset;
big_core_jobs_[1]->width = aligned_resolution_.width();
big_core_jobs_[1]->height = aligned_resolution_.height() - y_split_height;
}
MT21Decompressor::~MT21Decompressor() {
should_shutdown_ = true;
for (auto& job : little_core_jobs_) {
job->wakeup_event.Signal();
}
for (auto& job : big_core_jobs_) {
job->wakeup_event.Signal();
}
for (size_t i = 0; i < kNumLittleThreads; i++) {
little_core_threads_[i].join();
}
for (size_t i = 0; i < kNumBigThreads; i++) {
big_core_threads_[i].join();
}
delete little_core_pivot_;
delete big_core_pivot_;
delete symbol_cache_;
}
void MT21Decompressor::MT21ToNV12(const uint8_t* src_y,
const uint8_t* src_uv,
const size_t y_buf_size,
const size_t uv_buf_size,
uint8_t* dest_y,
uint8_t* dest_uv) {
const uint8_t* y_footer =
ComputeFooterOffset(aligned_resolution_.GetArea(), y_buf_size,
kMT21YFooterAlignment) +
src_y;
const uint8_t* uv_footer =
ComputeFooterOffset(aligned_resolution_.GetArea() / 2, uv_buf_size,
kMT21UVFooterAlignment) +
src_uv;
// Start little core jobs.
for (auto& job : little_core_jobs_) {
job->src = src_uv;
job->footer = uv_footer;
job->dest = dest_uv;
job->wakeup_event.Signal();
}
// Start big core jobs.
for (auto& job : big_core_jobs_) {
job->src = src_y;
job->footer = y_footer;
job->dest = dest_y;
job->wakeup_event.Signal();
}
// Wait for everything to finish.
for (auto& job : little_core_jobs_) {
job->done_event.Wait();
}
for (auto& job : big_core_jobs_) {
job->done_event.Wait();
}
}
} // namespace media
|