1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/390223051): Remove C-library calls to fix the errors.
#pragma allow_unsafe_libc_calls
#endif
#include "build/build_config.h"
#if BUILDFLAG(IS_CHROMEOS) && defined(ARCH_CPU_ARM_FAMILY) && \
(defined(COMPILER_GCC) || defined(__clang__))
#include "media/gpu/v4l2/mt21/mt21_decompressor.h"
#include <stdlib.h>
#include <unistd.h>
#include <algorithm>
#include "base/bits.h"
#include "base/command_line.h"
#include "base/test/launcher/unit_test_launcher.h"
#include "base/test/test_suite.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/perf/perf_result_reporter.h"
#include "third_party/libyuv/include/libyuv/planar_functions.h"
namespace media {
namespace {
constexpr size_t kBitsInByte = 8;
constexpr size_t kMT21SubblockWidth = 16;
constexpr size_t kMT21SubblockHeight = 4;
constexpr size_t kMT21SubblockSize = kMT21SubblockWidth * kMT21SubblockHeight;
constexpr size_t kMT21BlockSize = 2 * kMT21SubblockSize;
constexpr size_t kMT21TileHeight = 32;
constexpr size_t kMT21YFooterAlignment = 4096;
constexpr size_t kMT21UVFooterAlignment = kMT21YFooterAlignment / 2;
// Utility class to write a compressed MT21 block. We use this for generating
// synthetic compressed frames.
class MT21BlockWriter {
public:
MT21BlockWriter(uint8_t* block);
bool WriteBit(bool bit);
bool WriteNBits(int val, int n);
void PadToRow();
size_t GetNumRows();
void SetPos(size_t bit_idx);
size_t GetPos();
private:
uint8_t* block_;
size_t bit_idx_;
};
MT21BlockWriter::MT21BlockWriter(uint8_t* block) {
block_ = block;
bit_idx_ = 0;
}
bool MT21BlockWriter::WriteBit(bool bit) {
size_t byte_idx = bit_idx_ / kBitsInByte;
if (byte_idx >= kMT21BlockSize) {
return false;
}
size_t row = byte_idx / kMT21SubblockWidth;
size_t col = (kMT21SubblockWidth - 1) - (byte_idx % kMT21SubblockWidth);
byte_idx = row * kMT21SubblockWidth + col;
block_[byte_idx] |= (int)bit
<< ((kBitsInByte - 1) - (bit_idx_ % kBitsInByte));
bit_idx_++;
return true;
}
bool MT21BlockWriter::WriteNBits(int val, int n) {
for (int i = n - 1; i >= 0; i--) {
if (!WriteBit((val >> i) & 0x1)) {
return false;
}
}
return true;
}
void MT21BlockWriter::PadToRow() {
bit_idx_ = base::bits::AlignUp(bit_idx_, kMT21SubblockWidth * kBitsInByte);
}
size_t MT21BlockWriter::GetNumRows() {
return base::bits::AlignUp(bit_idx_, kMT21SubblockWidth * kBitsInByte) /
(kMT21SubblockWidth * kBitsInByte);
}
void MT21BlockWriter::SetPos(size_t bit_idx) {
bit_idx_ = bit_idx;
}
size_t MT21BlockWriter::GetPos() {
return bit_idx_;
}
// Get a random number according to a double sided geometric distribution. This
// means that outputs further away from zero will be exponentially less likely.
//
// The algorithm we use for generating numbers according to this distribution is
// to first generate a uniform random number, and then count the number of
// leading zeros. In a uniform distribution, every bit has an equal probability
// of being either 0 or 1. This means that the probability of the first N bits
// being 0 is 1/(2^N).
int GeometricRandomNum() {
uint32_t uniform_random_num = rand();
int ret = __builtin_clz(uniform_random_num);
// The above algorithm only generates positive numbers according to a
// geometric distribution, but we really want both positive and negative.
if (rand() & 1) {
return -1 * ret;
} else {
return ret;
}
}
// Encode a value using MT21's Golomb-Rice variant.
void GolombRiceEncode(MT21BlockWriter& writer, int symbol, int k) {
if (!symbol) {
writer.WriteNBits(0, k);
return;
}
int base = 1 << k;
if (symbol < 0) {
symbol = symbol * -2 + 1;
} else {
symbol *= 2;
}
int escape_sequence = 7 + k;
if (symbol / base >= escape_sequence) {
writer.WriteNBits((1 << escape_sequence) - 1, escape_sequence);
writer.WriteNBits(symbol - (escape_sequence * base), k >= 4 ? 7 : 8);
return;
}
while (symbol >= base) {
writer.WriteBit(1);
symbol -= base;
}
writer.WriteBit(0);
writer.WriteNBits(symbol, k);
}
// Unoptimized version of our pixel prediction algorithm. This is essentially a
// copy of the version here:
// https://source.chromium.org/chromiumos/chromiumos/codesearch/+/main:src/platform/drm-tests/pixel_formats/mt21_converter.c;drc=091692f34d333dec8fd3a8e375a4ad5a65682cb2;l=173
uint8_t PredictPixelValue(const uint8_t* subblock, int x, int y, int width) {
if (y == 0) {
return subblock[x + 1];
} else if (x == width - 1) {
return subblock[(y - 1) * width + x];
} else if (x == 0) {
int up_right = subblock[(y - 1) * width + x + 1];
int up = subblock[(y - 1) * width + x];
int right = subblock[y * width + x + 1];
int max_up_right = std::max(up, right);
int min_up_right = std::min(up, right);
if (up_right <= max_up_right && up_right >= min_up_right) {
return right + up - up_right;
} else if (up_right > max_up_right) {
return max_up_right;
} else {
return min_up_right;
}
} else {
int up_left = subblock[(y - 1) * width + x - 1];
int up_right = subblock[(y - 1) * width + x + 1];
int up = subblock[(y - 1) * width + x];
int right = subblock[y * width + x + 1];
int max_up_right = std::max(up, right);
int min_up_right = std::min(up, right);
if (up_right <= max_up_right && up_right >= min_up_right) {
return right + up - up_right;
} else if (up_left <= max_up_right && up_left >= min_up_right) {
return up - up_left + right;
} else if (up_left >= max_up_right) {
return max_up_right;
} else {
return min_up_right;
}
}
}
void GenerateRandomSubblock(MT21BlockWriter& writer,
uint8_t* golden_subblock,
int width) {
constexpr int k = 1;
uint8_t top_right = (rand() & 0x7F) + 0x7F;
golden_subblock[width - 1] = top_right;
writer.WriteNBits(k - 1, 3);
writer.WriteNBits(top_right, 8);
for (size_t y = 0; y < kMT21SubblockHeight; y++) {
for (int x = (y ? (width - 1) : (width - 2)); x >= 0; x--) {
int random_delta = GeometricRandomNum();
GolombRiceEncode(writer, random_delta, k);
golden_subblock[y * width + x] =
PredictPixelValue(golden_subblock, x, y, width) + random_delta;
}
}
}
void GenerateRandomYBlock(uint8_t* mt21_block,
uint8_t* mm21_block,
size_t& subblock_len1,
size_t& subblock_len2) {
MT21BlockWriter writer(mt21_block);
// There's a chance we generate a subblock that is too entropic to compress,
// so we just re-do until we get a good subblock.
do {
writer.SetPos(0);
GenerateRandomSubblock(writer, mm21_block, kMT21SubblockWidth);
} while (writer.GetNumRows() >= kMT21SubblockHeight);
subblock_len1 = writer.GetNumRows();
writer.PadToRow();
int bit_idx = writer.GetPos();
do {
writer.SetPos(bit_idx);
GenerateRandomSubblock(writer, mm21_block + kMT21SubblockSize,
kMT21SubblockWidth);
} while (writer.GetNumRows() - subblock_len1 >= kMT21SubblockHeight);
subblock_len2 = writer.GetNumRows() - subblock_len1;
}
void InterleaveUV(uint8_t* mm21_subblock,
uint8_t* u_subblock,
uint8_t* v_subblock) {
for (size_t i = 0; i < kMT21SubblockWidth * kMT21SubblockHeight / 2; i++) {
*mm21_subblock = *u_subblock;
mm21_subblock++;
u_subblock++;
*mm21_subblock = *v_subblock;
mm21_subblock++;
v_subblock++;
}
}
void GenerateRandomUVBlock(uint8_t* mt21_block,
uint8_t* mm21_block,
size_t& subblock_len1,
size_t& subblock_len2) {
MT21BlockWriter writer(mt21_block);
uint8_t v_subblock[kMT21SubblockWidth / 2 * kMT21SubblockHeight];
uint8_t u_subblock[kMT21SubblockWidth / 2 * kMT21SubblockHeight];
do {
writer.SetPos(0);
GenerateRandomSubblock(writer, v_subblock, kMT21SubblockWidth / 2);
GenerateRandomSubblock(writer, u_subblock, kMT21SubblockWidth / 2);
} while (writer.GetNumRows() >= kMT21SubblockHeight);
writer.PadToRow();
subblock_len1 = writer.GetNumRows();
InterleaveUV(mm21_block, u_subblock, v_subblock);
int bit_idx = writer.GetPos();
do {
writer.SetPos(bit_idx);
GenerateRandomSubblock(writer, v_subblock, kMT21SubblockWidth / 2);
GenerateRandomSubblock(writer, u_subblock, kMT21SubblockWidth / 2);
} while (writer.GetNumRows() - subblock_len1 >= kMT21SubblockHeight);
subblock_len2 = writer.GetNumRows() - subblock_len1;
InterleaveUV(mm21_block + kMT21SubblockSize, u_subblock, v_subblock);
}
void GenerateRandomCompressedFrame(uint8_t* mt21_frame_y,
uint8_t* mt21_frame_uv,
uint8_t* mt21_footer_y,
uint8_t* mt21_footer_uv,
uint8_t* nv12_frame_y,
uint8_t* nv12_frame_uv,
int width,
int height) {
uint8_t* mm21_frame_y =
static_cast<uint8_t*>(aligned_alloc(16, width * height));
uint8_t* mm21_frame_uv =
static_cast<uint8_t*>(aligned_alloc(16, width * height / 2));
uint8_t* mm21_block = mm21_frame_y;
size_t subblock_len1;
size_t subblock_len2;
for (int i = 0; i < width * height; i += kMT21BlockSize) {
GenerateRandomYBlock(mt21_frame_y, mm21_block, subblock_len1,
subblock_len2);
mt21_frame_y += kMT21BlockSize;
mm21_block += kMT21BlockSize;
subblock_len1--;
subblock_len2--;
if ((i / kMT21BlockSize) % 2 == 0) {
mt21_footer_y[i / kMT21BlockSize / 2] |=
subblock_len1 | (subblock_len2 << 2);
} else {
mt21_footer_y[i / kMT21BlockSize / 2] |=
(subblock_len1 << 4) | (subblock_len2 << 6);
}
}
mm21_block = mm21_frame_uv;
for (int i = 0; i < width * height / 2; i += kMT21BlockSize) {
GenerateRandomUVBlock(mt21_frame_uv, mm21_block, subblock_len1,
subblock_len2);
mt21_frame_uv += kMT21BlockSize;
mm21_block += kMT21BlockSize;
subblock_len1--;
subblock_len2--;
if ((i / kMT21BlockSize) % 2 == 0) {
mt21_footer_uv[i / kMT21BlockSize / 2] |=
subblock_len1 | (subblock_len2 << 2);
} else {
mt21_footer_uv[i / kMT21BlockSize / 2] |=
(subblock_len1 << 4) | (subblock_len2 << 6);
}
}
libyuv::DetilePlane(mm21_frame_y, width, nv12_frame_y, width, width, height,
kMT21TileHeight);
libyuv::DetilePlane(mm21_frame_uv, width, nv12_frame_uv, width, width,
height / 2, kMT21TileHeight / 2);
free(mm21_frame_y);
free(mm21_frame_uv);
}
void AllocateMT21Plane(gfx::Size& resolution,
bool is_chroma,
size_t& plane_size,
uint8_t** plane,
size_t& footer_offset) {
plane_size = resolution.GetArea();
if (is_chroma) {
plane_size /= 2;
footer_offset = base::bits::AlignUp(
plane_size, static_cast<size_t>(kMT21UVFooterAlignment));
} else {
footer_offset = base::bits::AlignUp(
plane_size, static_cast<size_t>(kMT21YFooterAlignment));
}
size_t footer_size = base::bits::AlignUp(plane_size / kMT21SubblockSize * 2,
static_cast<size_t>(kBitsInByte)) /
kBitsInByte;
plane_size = footer_offset + footer_size;
*plane = static_cast<uint8_t*>(aligned_alloc(16, plane_size));
}
TEST(MT21DecompressorTest, TestMT21DecompressorPerfTest) {
gfx::Size resolution(1920, 1088);
uint8_t* golden_y =
static_cast<uint8_t*>(aligned_alloc(16, resolution.GetArea()));
uint8_t* decompressed_y =
static_cast<uint8_t*>(aligned_alloc(16, resolution.GetArea()));
uint8_t* golden_uv =
static_cast<uint8_t*>(aligned_alloc(16, resolution.GetArea() / 2));
uint8_t* decompressed_uv =
static_cast<uint8_t*>(aligned_alloc(16, resolution.GetArea() / 2));
uint8_t* mt21_y;
uint8_t* mt21_uv;
size_t mt21_y_size, mt21_uv_size, mt21_y_footer_offset, mt21_uv_footer_offset;
AllocateMT21Plane(resolution, false, mt21_y_size, &mt21_y,
mt21_y_footer_offset);
AllocateMT21Plane(resolution, true, mt21_uv_size, &mt21_uv,
mt21_uv_footer_offset);
GenerateRandomCompressedFrame(mt21_y, mt21_uv, mt21_y + mt21_y_footer_offset,
mt21_uv + mt21_uv_footer_offset, golden_y,
golden_uv, resolution.width(),
resolution.height());
MT21Decompressor decompressor(resolution);
perf_test::PerfResultReporter reporter("MT21Decompressor", "Uncapped Test");
reporter.RegisterImportantMetric(".decompress_latency", "us");
memset(decompressed_y, 0, resolution.GetArea());
memset(decompressed_uv, 0, resolution.GetArea() / 2);
constexpr int kNumIterations = 1000;
auto start_time = base::TimeTicks::Now();
for (int i = 0; i < kNumIterations; i++) {
decompressor.MT21ToNV12(mt21_y, mt21_uv, mt21_y_size, mt21_uv_size,
decompressed_y, decompressed_uv);
}
auto end_time = base::TimeTicks::Now();
auto delta_time = end_time - start_time;
reporter.AddResult(
".decompress_latency",
static_cast<size_t>(delta_time.InMicroseconds() / kNumIterations));
for (int i = 0; i < resolution.GetArea(); i++) {
ASSERT_TRUE(decompressed_y[i] == golden_y[i]);
}
for (int i = 0; i < resolution.GetArea() / 2; i++) {
ASSERT_TRUE(decompressed_uv[i] == golden_uv[i]);
}
free(golden_y);
free(decompressed_y);
free(golden_uv);
free(decompressed_uv);
free(mt21_y);
free(mt21_uv);
}
} // namespace
} // namespace media
int main(int argc, char** argv) {
base::CommandLine::Init(argc, argv);
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
#endif
|