1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
|
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/390223051): Remove C-library calls to fix the errors.
#pragma allow_unsafe_libc_calls
#endif
#ifndef MEDIA_GPU_V4L2_MT21_MT21_UTIL_H_
#define MEDIA_GPU_V4L2_MT21_MT21_UTIL_H_
// High performance implementation of the MT21 decompression algorithm. It is
// recommended reading the unoptimized implementation here before diving into
// this
// https://source.chromium.org/chromiumos/_/chromium/chromiumos/platform/drm-tests/+/94106a2845911104895c50aa5d70c6e5fc8972fc:pixel_formats/mt21_converter.c;drc=091692f34d333dec8fd3a8e375a4ad5a65682cb2;bpv=0;bpt=0
//
// This algorithm should achieve a throughput of about 156 megapixels per second
// on a single Cortex A72.
// This file contains a lot of SIMD built-ins. Thankfully we're only ever going
// to need this on certain SoCs, so we just wrap everything in a giant include
// guard.
//
// TODO(b/286891480): Convert these Neon intrinsics into Highway, which is more
// portable. We only used Neon because Highway's OrderedTruncate2To(), which we
// need for implementing NarrowToU8, was not released at the time of writing.
#include "build/build_config.h"
#if !defined(ARCH_CPU_ARM_FAMILY)
#error "MT21Decompressor is only intended to run on MT8173 (ARM)"
#endif
#if !(defined(COMPILER_GCC) || defined(__clang__))
#error "MT21Decompressor is only intended to be built with GCC or Clang"
#endif
#include <arm_neon.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <vector>
namespace media {
// This file is a little unusual in that it's a header that actually contains a
// bunch of function definitions. This is pretty ugly, but there's a good reason
// for it. When we're writing tight loops, we want the compiler to aggressively
// inline so we don't pay the performance penalty of managing the callstack. If
// we put the function definitions in a different translation unit, we won't get
// any inlining because the linker isn't smart enough for that.
//
// Just in case the compiler doesn't take the hint, we sprinkle some
// "always_inline" attributes in hot functions.
//
// The other alternative would be to just add all of these functions in one .cc
// file. We chose not to do this because then we wouldn't be able to write
// granular unit tests; we would just have to settle for one giant "decompress
// frame" integration test.
//
// This technique alone cuts our latency by ~40%.
namespace {
constexpr size_t kNumOutputLanes = 16;
constexpr size_t kMT21TileWidth = 16;
constexpr size_t kMT21TileHeight = 32;
constexpr size_t kMT21TileSize = kMT21TileWidth * kMT21TileHeight;
constexpr size_t kMT21BlockWidth = kMT21TileWidth;
constexpr size_t kMT21BlockHeight = kMT21TileHeight / 4;
constexpr size_t kMT21BlockSize = kMT21BlockWidth * kMT21BlockHeight;
constexpr size_t kMT21SubblocksInBlock = 2;
constexpr size_t kMT21SubblockWidth = kMT21BlockWidth;
constexpr size_t kMT21SubblockHeight = kMT21BlockHeight / kMT21SubblocksInBlock;
constexpr size_t kMT21SubblockSize = kMT21SubblockWidth * kMT21SubblockHeight;
// Loops can cause branch mispredictions, so we manually unroll them when
// practical.
//
// Of course, compilers have loop unrolling optimizations built into them, but
// these don't actually seem to trigger often in practice, even with -O2 and
// -funroll-loops. I suspect the compiler is actually shy about loop unrolling
// because it's worried about blowing up the I-cache. We have a good idea of
// where the program is going to spend most of its time, however, so we can
// manually unroll hotspots.
#define LOOPN(inner_block, N) \
{ \
_Pragma("clang loop unroll(full)") for (size_t i = 0; i < (N); i++) { \
inner_block \
} \
}
// We take two completely separate approaches to optimizing MT21 decompression:
// a scalar approach, and a vector approach. The vector approach is
// substantially faster than the scalar approach, but the vector approach
// requires us to have at least 16 compressed subblocks to process
// simultaneously. Any remainder subblocks need to go through the scalar
// algorithm.
//////////////////////
// Scalar Algorithm //
//////////////////////
// Efficient scalar class for reading MT21 bitstreams. We buffer the bitstream
// into a 64 bit accumulator and load into it 4 bytes at a time. Note that this
// means we cannot read more than 32 bits at a time.
class MT21BitstreamReader {
public:
MT21BitstreamReader(const uint8_t* buf);
// Look ahead N bits, but do not discard. Note that N cannot be 0.
int PeekNBits(int n);
// Discard N bits and possibly load more into the accumulator.
void DiscardNBits(int n);
// Combined peek and discard.
int ReadNBits(int n);
// Returns total number of consumed bits. Useful for filling in Golomb-Rice
// lookup tables.
size_t GetConsumedBits();
private:
const uint8_t* buf_;
size_t consumed_bits_;
uint64_t accumulator_;
size_t byte_idx_;
uint8_t outstanding_reads_;
// Responsible for keeping the accumulator full.
void MaybeRefillAccumulator();
};
MT21BitstreamReader::MT21BitstreamReader(const uint8_t* buf) {
buf_ = buf;
accumulator_ = *(uint64_t*)(buf + 8);
byte_idx_ = 4;
outstanding_reads_ = 0;
consumed_bits_ = 0;
}
void MT21BitstreamReader::MaybeRefillAccumulator() {
if (outstanding_reads_ >= 32) {
uint32_t next_dword = *(uint32_t*)(buf_ + byte_idx_);
outstanding_reads_ -= 32;
accumulator_ |= ((uint64_t)next_dword) << outstanding_reads_;
// Advance to the next row if we've exhausted the current one.
// I experimented with eliminating this branch, but it doesn't seem to make
// much of a difference for efficiency.
if ((byte_idx_ & 0xF) == 0) {
byte_idx_ += 32;
}
// Rows are read right to left.
byte_idx_ -= 4;
}
}
int MT21BitstreamReader::PeekNBits(int n) {
// N cannot be 0, because shifting right by 64 bits is technically undefined
// behavior. One some platforms, this will return unexpected results.
return (int)(accumulator_ >> (64 - n));
}
void MT21BitstreamReader::DiscardNBits(int n) {
accumulator_ <<= n;
outstanding_reads_ += n;
consumed_bits_ += n;
MaybeRefillAccumulator();
}
int MT21BitstreamReader::ReadNBits(int n) {
if (!n) {
return 0;
}
int ret = PeekNBits(n);
DiscardNBits(n);
return ret;
}
size_t MT21BitstreamReader::GetConsumedBits() {
return consumed_bits_;
}
// "Slow" method of reading a Golomb-Rice symbol. Needed for miscellaneous
// functions like populating the lookup table and fallback logic if the symbol
// isn't in the table.
int ReadGolombRiceSymbol(MT21BitstreamReader& reader, int k) {
const int escape_sequence_num = 7 + k;
int num_ones = 0;
int ret = 0;
// Read the unary component.
while (1) {
const int curr_bit = reader.ReadNBits(1);
if (curr_bit) {
num_ones++;
if (num_ones == escape_sequence_num) {
break;
}
} else {
break;
}
}
if (num_ones == escape_sequence_num) {
// We've hit the escape sequence, so we switch to limited length mode.
ret = reader.ReadNBits(8 - (k >= 4));
ret += num_ones * (1 << k);
} else if (num_ones) {
ret = (num_ones * (1 << k)) + reader.ReadNBits(k);
} else {
// Special case unary components of 0, because 0 symbols don't have a sign
// bit.
ret = reader.ReadNBits(k - 1);
if (ret) {
ret <<= 1;
ret += reader.ReadNBits(1);
}
}
// Map unsigned symbol to signed symbol.
if (ret & 1) {
return -1 * (ret >> 1);
} else {
return ret >> 1;
}
}
} // namespace
// "Fast" method of reading Golomb-Rice symbols that uses a lookahead window and
// a lookup table. This will fall back to the slow method if the symbol exceeds
// kGolombRiceTableLookaheadLen, because we need to keep the size of the lookup
// table small enough to fit in L1.
//
// Note that we need to break this definition out of the anonymous namespace
// because we want to forward declare it in mt21_decompressor.h.
struct GolombRiceTableEntry {
// Size of the compressed symbol.
int8_t in_size;
// Value of the symbol.
int8_t symbol;
};
namespace {
constexpr size_t kMaxKValue = 8;
// Lookahead len chosen experimentally. We want it to be big enough that we
// maximize how often we hit the lookup table, but small enough to fit in the
// A72's L1 cache. Some testing indicated that 10 bits was the magic number.
constexpr size_t kGolombRiceTableLookaheadLen = 10;
constexpr size_t kGolombRiceTableSize = (1 << kGolombRiceTableLookaheadLen);
constexpr size_t kGolombRiceCacheSize = kGolombRiceTableSize * (kMaxKValue - 1);
constexpr size_t kBitsInByte = 8;
// Initializes the lookup tables for all possible k values
void PopulateGolombRiceCache(GolombRiceTableEntry* cache) {
uint8_t tmp_buf[kMT21SubblockSize];
for (size_t k = 1; k < kMaxKValue; k++) {
GolombRiceTableEntry* table = cache + (k - 1) * kGolombRiceTableSize;
for (size_t lookahead_val = 0;
lookahead_val < (1 << kGolombRiceTableLookaheadLen); lookahead_val++) {
GolombRiceTableEntry* entry = table + lookahead_val;
// Compressed symbol size 0 indicates a cache miss.
entry->in_size = 0;
// Create a fake Subblock that just contains our target value in the first
// 2 bytes.
tmp_buf[kMT21SubblockWidth - 1] =
lookahead_val >> (kGolombRiceTableLookaheadLen - kBitsInByte);
tmp_buf[kMT21SubblockWidth - 2] =
(lookahead_val << (kBitsInByte -
(kGolombRiceTableLookaheadLen - kBitsInByte))) &
0xFF;
MT21BitstreamReader reader(tmp_buf);
// Try to read a symbol. If it was small enough, put it in the lookup
// table.
int symbol = ReadGolombRiceSymbol(reader, k);
if (reader.GetConsumedBits() <= kGolombRiceTableLookaheadLen) {
entry->in_size = reader.GetConsumedBits();
entry->symbol = symbol;
}
}
}
}
int FastReadGolombRiceSymbol(MT21BitstreamReader& reader,
int k,
const GolombRiceTableEntry* table) {
const int lookahead_window = reader.PeekNBits(kGolombRiceTableLookaheadLen);
if (table[lookahead_window].in_size) {
reader.DiscardNBits(table[lookahead_window].in_size);
return table[lookahead_window].symbol;
} else {
// Cache miss, fall back to slow method.
return ReadGolombRiceSymbol(reader, k);
}
}
// Prediction functions for all 4 subblock regions. We split this logic up into
// separate functions rather than using "if" statements because the "if"
// statements were causing high rates of branch misprediction.
uint8_t FirstRowPrediction(uint8_t right) {
return right;
}
uint8_t LastColPrediction(uint8_t up) {
return up;
}
// We use a lookup table approach because, again, we want to avoid if statements
// to avoid branch mispredictions. It's cheaper to just compute all 3 possible
// prediction values and select which one we want to use later.
uint8_t FirstColPrediction(uint8_t up, uint8_t up_right, uint8_t right) {
int max_up_right = up > right ? up : right;
int min_up_right = up > right ? right : up;
int horiz_grad_prediction = right + (up - up_right);
uint8_t ret[3];
int idx = ((up_right > max_up_right) << 1) | (up_right < min_up_right);
ret[0b00] = horiz_grad_prediction;
ret[0b01] = min_up_right;
ret[0b10] = max_up_right;
return ret[idx];
}
// Same deal as with first column prediction, but with 4 possible prediction
// values.
uint8_t BodyPrediction(uint8_t up_left,
uint8_t up,
uint8_t up_right,
uint8_t right) {
int max_up_right = up > right ? up : right;
int min_up_right = up > right ? right : up;
int right_grad = right + (up - up_right);
int left_grad = right + (up - up_left);
int use_right_grad = up_right <= max_up_right && up_right >= min_up_right;
int idx = (use_right_grad << 1 | use_right_grad) |
(up_left > max_up_right) << 1 | up_left < min_up_right;
uint8_t ret[4];
ret[0b00] = left_grad;
ret[0b01] = min_up_right;
ret[0b10] = max_up_right;
ret[0b11] = right_grad;
return ret[idx];
}
// Core (scalar) decompression functions.
//
// We're abusing templates rather than taking subblock dims as a parameter
// because we want to try to coax the compiler into evaluating as many
// expressions as possible during compile time and maybe even unrolling the
// loops.
struct MT21Subblock {
const uint8_t* src;
RAW_PTR_EXCLUSION uint8_t* dest;
size_t len;
};
struct MT21YSubblock : MT21Subblock {};
struct MT21UVSubblock : MT21Subblock {};
template <int width>
void DecompressSubblock(MT21BitstreamReader& reader,
uint8_t* dest,
const GolombRiceTableEntry* symbol_cache) {
int k = reader.ReadNBits(3) + 1;
dest[width - 1] = reader.ReadNBits(8);
if (k == 8) {
// This is a solid color block, set everything equal to the top right corner
// value.
memset(dest, dest[width - 1], width * kMT21SubblockHeight);
return;
}
// Find which table in the cache we should be using. Sometimes the compiler
// doesn't bother factoring this calculation out of the loop, so we do it
// manually.
const GolombRiceTableEntry* symbol_table =
symbol_cache + (k - 1) * kGolombRiceTableSize;
// Pixels get processed right to left, top to bottom.
uint8_t curr;
uint8_t up_left;
uint8_t up = dest[width - 1];
uint8_t up_right;
uint8_t right = up;
for (int x = width - 2; x >= 0; x--) {
curr = FirstRowPrediction(right) +
FastReadGolombRiceSymbol(reader, k, symbol_table);
right = curr;
dest[x] = curr;
}
for (size_t y = 1; y < kMT21SubblockHeight; y++) {
up = dest[y * width - 1];
curr = LastColPrediction(up) +
FastReadGolombRiceSymbol(reader, k, symbol_table);
dest[y * width + width - 1] = curr;
right = curr;
up_right = up;
up = dest[y * width - 2];
for (size_t x = width - 2; x >= 1; x--) {
up_left = dest[y * width - width + x - 1];
curr = BodyPrediction(up_left, up, up_right, right) +
FastReadGolombRiceSymbol(reader, k, symbol_table);
dest[y * width + x] = curr;
right = curr;
up_right = up;
up = up_left;
}
dest[y * width] = FirstColPrediction(up, up_right, right) +
FastReadGolombRiceSymbol(reader, k, symbol_table);
}
}
// UV subblocks are half the size of normal subblocks and are written one after
// another with no padding. We use the DecompressSubblockHelper template to help
// us differentiate this behavior.
template <typename T>
void DecompressSubblockHelper(T subblock,
const GolombRiceTableEntry* symbol_cache);
template <>
void DecompressSubblockHelper(MT21YSubblock subblock,
const GolombRiceTableEntry* symbol_cache) {
MT21BitstreamReader reader(subblock.src);
DecompressSubblock<kMT21SubblockWidth>(reader, subblock.dest, symbol_cache);
}
// Interleaves a U and V subblock into a combined UV subblock.
void InterleaveUVSubblock(const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dest_uv) {
uint8x16_t tmp_u, tmp_v;
uint8x16x2_t store_tmp;
LOOPN(
{
tmp_u = vld1q_u8(src_u);
src_u += 16;
tmp_v = vld1q_u8(src_v);
src_v += 16;
store_tmp.val[0] = tmp_u;
store_tmp.val[1] = tmp_v;
vst2q_u8(dest_uv, store_tmp);
dest_uv += 32;
},
2)
}
template <>
void DecompressSubblockHelper(MT21UVSubblock subblock,
const GolombRiceTableEntry* symbol_cache) {
MT21BitstreamReader reader(subblock.src);
uint8_t scratch_u[kMT21SubblockSize / 2] __attribute__((aligned(16)));
uint8_t scratch_v[kMT21SubblockSize / 2] __attribute__((aligned(16)));
DecompressSubblock<kMT21SubblockWidth / 2>(reader, scratch_v, symbol_cache);
DecompressSubblock<kMT21SubblockWidth / 2>(reader, scratch_u, symbol_cache);
InterleaveUVSubblock(scratch_u, scratch_v, subblock.dest);
}
/////////////////////////
// SIMD Implementation //
/////////////////////////
// This SIMD implementation operates on 16 subblocks at a time, even though we
// only have 4 lanes to work with since the accumulator needs to be 32-bit. This
// algorithm was originally developed to only operate on 4 subblocks at a time
// to match the number of lanes, but we had a lot of trouble keeping the
// Cortex A72's 2 Neon pipelines full. So, we manually unroll the loop a little
// and interleave operations from each iteration.
//
// Generally the compiler and the CPU itself are good enough at instructions
// scheduling, but in this case, manually scheduling our instructions
// dramatically increases our throughput. There may be more optimizations to do
// yet in this regard; our current throughput is about 1.3 IPC, when it should
// actually be closer to 1.5 IPC.
static const uint8x16_t byte_literal_1 = vdupq_n_u8(1);
static const uint32x4_t dword_literal_1 = vdupq_n_u32(1);
static const uint32x4_t dword_literal_4 = vdupq_n_u32(4);
static const uint32x4_t dword_literal_7 = vdupq_n_u32(7);
static const uint32x4_t dword_literal_8 = vdupq_n_u32(8);
static const uint32x4_t dword_literal_11 = vdupq_n_u32(11);
static const uint32x4_t dword_literal_31 = vdupq_n_u32(31);
static const uint32x4_t dword_literal_32 = vdupq_n_u32(32);
// Helpful utility for taking 4 vectors with uint32_t elements and combining
// them into 1 vector with uint8_t elements. Note that this necessarily discards
// the upper 24 bits of each element. Our accumulators need to be 32-bit because
// our longest Golomb-Rice code is 20 bits, but we can narrow for other parts of
// the algorithm.
__attribute__((always_inline)) uint8x16_t NarrowToU8(uint32x4_t& vec1,
uint32x4_t& vec2,
uint32x4_t& vec3,
uint32x4_t& vec4) {
return vcombine_u8(vmovn_u16(vcombine_u16(vmovn_u32(vec1), vmovn_u32(vec2))),
vmovn_u16(vcombine_u16(vmovn_u32(vec3), vmovn_u32(vec4))));
}
// 32-bit ARM machines don't actually support unaligned memory access. The
// accumulator management code was originally written for Aarch64, which
// supports unaligned accesses without issue. In order to make that code work
// with Chrome, we need this hacky workaround. If performance is drastically
// different between the Aarch64 prototype and the production version of the
// code, this portion of the code is a good place to start poking. Supposedly
// there was a penalty for unaligned reads on Aarch64 as well, but I can't find
// any documentation for how many cycles that is on a Cortex A72 or A53.
__attribute__((always_inline)) uint32_t LoadUnalignedDword(uint32_t* ptr) {
uint32_t ret;
memcpy(&ret, ptr, sizeof(uint32_t));
return ret;
}
// Helpful utility for managing the accumulator. This function effectively
// discards |discard_size| bits and loads in more bytes from the bitstream as
// needed.
__attribute__((always_inline)) void VectorManageAccumulator(
uint32x4_t* accumulator,
uint32x4_t* outstanding_reads,
const uint32x4_t& discard_size,
int i,
uint8_t** compressed_ptr) {
// We always load in a fresh dword. Often it will be from the same offsets.
// This is inefficient, but it's offset by the speedup of vectorization.
outstanding_reads[i] = vaddq_u32(outstanding_reads[i], discard_size);
uint32x4_t offsets = vshrq_n_u32(outstanding_reads[i], 3);
compressed_ptr[i * 4] -= offsets[0];
compressed_ptr[i * 4 + 1] -= offsets[1];
compressed_ptr[i * 4 + 2] -= offsets[2];
compressed_ptr[i * 4 + 3] -= offsets[3];
outstanding_reads[i] = vandq_u32(outstanding_reads[i], dword_literal_7);
accumulator[i][0] = LoadUnalignedDword((uint32_t*)compressed_ptr[i * 4]);
accumulator[i][1] = LoadUnalignedDword((uint32_t*)compressed_ptr[i * 4 + 1]);
accumulator[i][2] = LoadUnalignedDword((uint32_t*)compressed_ptr[i * 4 + 2]);
accumulator[i][3] = LoadUnalignedDword((uint32_t*)compressed_ptr[i * 4 + 3]);
accumulator[i] =
vshlq_u32(accumulator[i], vreinterpretq_s32_u32(outstanding_reads[i]));
}
// Golomb-Rice decompression. The core algorithm looks like this:
// 1. escape_seq = k + 7
// 2. unary_component = min(count_leading_zero(~accumulator), escape_seq)
// 3. unary_len = unary_component + (unary_component == escape_seq)
// 5. binary_len = (unary_component == escape_seq) ? 8 : k
// 6. binary_component = (accumulator << unary_len) >> (32 - binary_len)
// 7. symbol = (k == 8) ? 0 : (unary_component << k) + binary_component
// 8. symbol = symbol / 2 * (symbol % 2 ? -1 : 1)
__attribute__((always_inline)) uint8x16_t VectorReadGolombRiceSymbol(
uint32x4_t* accumulator,
uint32x4_t* outstanding_reads,
uint32x4_t* escape_codes,
uint32x4_t* escape_binary_len_diff,
uint32x4_t* k_vals,
uint32x4_t* dword_solid_color_mask,
uint8_t** compressed_ptr) {
// leading_ones = min(count_leading_zero(~accumulator), escape_codes)
// escape_lanes = leading_ones == escape_codes
uint32x4_t leading_ones[4];
uint32x4_t escape_lanes[4];
LOOPN(
{
leading_ones[i] =
vminq_u32(vclzq_u32(vmvnq_u32(accumulator[i])), escape_codes[i]);
escape_lanes[i] = vceqq_u32(leading_ones[i], escape_codes[i]);
},
4)
// binary_len = k + (escape_lanes * (8 - k))
// unary_len = leading_ones + !escape_lanes
uint32x4_t binary_len[4];
uint32x4_t unary_len[4];
LOOPN(
{
binary_len[i] = vaddq_u32(
k_vals[i], vandq_u32(escape_lanes[i], escape_binary_len_diff[i]));
unary_len[i] =
vaddq_u32(leading_ones[i],
vandq_u32(dword_literal_1, vmvnq_u32(escape_lanes[i])));
},
4)
// output = (leading_ones << k)
// output += ((accumulator << unary_len) >> (32 - binary_len)
uint32x4_t dword_output[4];
LOOPN(
{
dword_output[i] =
vshlq_u32(leading_ones[i], vreinterpretq_s32_u32(k_vals[i]));
dword_output[i] = vaddq_u32(
dword_output[i],
vshlq_u32(
vshlq_u32(accumulator[i], vreinterpretq_s32_u32(unary_len[i])),
vsubq_s32(vreinterpretq_s32_u32(binary_len[i]),
dword_literal_32)));
},
4)
// total_len = unary_len + binary_len - (output <= 1)
// total_len = solid_color_mask ? total_len : 0
uint32x4_t total_len[4];
LOOPN(
{
total_len[i] =
vsubq_u32(vaddq_u32(unary_len[i], binary_len[i]),
vandq_u32(dword_literal_1,
vcleq_u32(dword_output[i], dword_literal_1)));
total_len[i] = vandq_u32(total_len[i], dword_solid_color_mask[i]);
},
4)
// Handle accumulator.
LOOPN(
{
VectorManageAccumulator(accumulator, outstanding_reads, total_len[i], i,
compressed_ptr);
},
4)
// output = (output / 2) * (output % 2 ? -1 : 1)
// This is a hack that relies on how two's complement arithmetic works.
uint8x16_t output = NarrowToU8(dword_output[0], dword_output[1],
dword_output[2], dword_output[3]);
uint8x16_t negative_lanes = vandq_u8(output, byte_literal_1);
output = vaddq_u8(
veorq_u8(vshrq_n_u8(output, 1), vtstq_u8(negative_lanes, negative_lanes)),
negative_lanes);
return output;
}
// Initializes the accumulator with the first 4 bytes of compressed data.
__attribute__((always_inline)) void VectorInitializeAccumulator(
uint32x4_t* accumulator,
uint8_t** compressed_ptr) {
LOOPN(
{
accumulator[i][0] =
LoadUnalignedDword((uint32_t*)compressed_ptr[i * 4]);
accumulator[i][1] =
LoadUnalignedDword((uint32_t*)compressed_ptr[i * 4 + 1]);
accumulator[i][2] =
LoadUnalignedDword((uint32_t*)compressed_ptr[i * 4 + 2]);
accumulator[i][3] =
LoadUnalignedDword((uint32_t*)compressed_ptr[i * 4 + 3]);
},
4);
}
// Reads the 11 bit header on the compressed data and initializes some important
// vectors.
__attribute__((always_inline)) uint8x16_t VectorReadCompressedHeader(
uint32x4_t* accumulator,
uint32x4_t* outstanding_reads,
uint32x4_t* escape_codes,
uint32x4_t* escape_binary_len_diff,
uint32x4_t* k_vals,
uint32x4_t* dword_solid_color_mask,
uint8x16_t& solid_color_mask,
uint8_t** compressed_ptr) {
// Parse out our K value.
// k = (accumulator >> 29) + 1
// 29 comes from 32 - 3, since 32 is the size of the accumulator and 3 is the
// size of k.
LOOPN(
{
k_vals[i] =
vaddq_u32(vshrq_n_u32(accumulator[i], 32 - 3), dword_literal_1);
},
4)
// Calculate what our escape code should be for each lane based on the K
// values.
// escape_codes = k + 7
LOOPN({ escape_codes[i] = vaddq_u32(k_vals[i], dword_literal_7); }, 4)
// Compute the length of the binary components of "escaped" symbols.
// Note that we abuse the fact that 0xFFFFFFFF == -1
// escaped_binary_len_diff = 8 - k - (k >= 4)
LOOPN(
{
escape_binary_len_diff[i] =
vaddq_u32(vsubq_u32(dword_literal_8, k_vals[i]),
vcgeq_u32(k_vals[i], dword_literal_4));
},
4)
// Figure out which lanes are actually operating in solid color mode. Yes, we
// do a lot of wasted computation and then throw away the results for solid
// color blocks. Unfortunately this is also the price we pay for
// vectorization.
// solid_color_mask = 0xFF * (k < 8)
LOOPN({ dword_solid_color_mask[i] = vcltq_u32(k_vals[i], dword_literal_8); },
4)
solid_color_mask =
NarrowToU8(dword_solid_color_mask[0], dword_solid_color_mask[1],
dword_solid_color_mask[2], dword_solid_color_mask[3]);
// Parse the top right pixel value
// accumulator <<= 3
// top_right = accumulator >> 24
// accumulator <<= 8
uint32x4_t top_right[4];
LOOPN(
{
accumulator[i] = vshlq_n_u32(accumulator[i], 3);
top_right[i] = vshrq_n_u32(accumulator[i], 24);
accumulator[i] = vshlq_n_u32(accumulator[i], 8);
},
4)
// Manage the accumulator (shift in new bits if possible). For Y subblocks,
// this isn't strictly necessary because the longest prefix code is 20 bits,
// and we've only consumed 11 bits, so we should technically have enough to
// read the first Golomb-Rice symbol. But U subblocks are appended directly to
// the end of V subblocks with no padding, so it's possible that the subblock
// we are currently decompressing does not start at a byte boundary, so we can
// no longer make this assumption.
LOOPN(
{
VectorManageAccumulator(accumulator, outstanding_reads,
dword_literal_11, i, compressed_ptr);
},
4)
return NarrowToU8(top_right[0], top_right[1], top_right[2], top_right[3]);
}
// Straightforward vector implementations of the prediction methods. The only
// hangup is that we don't use a lookup table exactly. Neon actually has a
// lookup table instruction, and the first iteration of the code used that, but
// it turns out that using a series of ternary instructions (vbslq_u8) is
// slightly faster.
__attribute__((always_inline)) uint8x16_t VectorFirstRowPrediction(
const uint8x16_t& right) {
return right;
}
__attribute__((always_inline)) uint8x16_t VectorLastColPrediction(
const uint8x16_t& up) {
return up;
}
__attribute__((always_inline)) uint8x16_t VectorFirstColPrediction(
const uint8x16_t& up,
const uint8x16_t& up_right,
const uint8x16_t& right) {
const uint8x16_t min_pred = vminq_u8(up, right);
const uint8x16_t max_pred = vmaxq_u8(up, right);
const uint8x16_t right_grad = vreinterpretq_u8_s8(vaddq_s8(
right, vsubq_s8(vreinterpretq_s8_u8(up), vreinterpretq_s8_u8(up_right))));
const uint8x16_t up_right_above_max = vcgtq_u8(up_right, max_pred);
const uint8x16_t up_right_below_min = vcltq_u8(up_right, min_pred);
uint8x16_t pred = vbslq_u8(up_right_above_max, max_pred, min_pred);
pred = vbslq_u8(vorrq_u8(up_right_above_max, up_right_below_min), pred,
right_grad);
return pred;
}
__attribute__((always_inline)) uint8x16_t VectorBodyPrediction(
const uint8x16_t& up_left,
const uint8x16_t& up,
const uint8x16_t& up_right,
const uint8x16_t& right) {
uint8x16_t min_pred = vminq_u8(up, right);
uint8x16_t max_pred = vmaxq_u8(up, right);
uint8x16_t right_grad = vreinterpretq_u8_s8(vaddq_s8(
vreinterpretq_s8_u8(right),
vsubq_s8(vreinterpretq_s8_u8(up), vreinterpretq_s8_u8(up_right))));
uint8x16_t left_grad = vreinterpretq_u8_s8(vaddq_s8(
vreinterpretq_s8_u8(right),
vsubq_s8(vreinterpretq_s8_u8(up), vreinterpretq_s8_u8(up_left))));
uint8x16_t up_left_above_max = vcgtq_u8(up_left, max_pred);
uint8x16_t up_left_below_min = vcltq_u8(up_left, min_pred);
uint8x16_t use_right_grad =
vandq_u8(vcleq_u8(up_right, max_pred), vcgeq_u8(up_right, min_pred));
uint8x16_t pred = vbslq_u8(up_left_above_max, max_pred, min_pred);
pred =
vbslq_u8(vorrq_u8(up_left_above_max, up_left_below_min), pred, left_grad);
pred = vbslq_u8(use_right_grad, right_grad, pred);
return pred;
}
// In order for our vectorized accumulator management to work, we have to
// flip our subblocks vertically. Our decompression routine always decrements
// the compressed data pointer to avoid having to deal with moving to the next
// row. This is a routine for taking all 16 target subblocks, flipping them, and
// copying them into scratch memory.
constexpr size_t kMT21ScratchMemorySize = 4096;
constexpr size_t kMT21RedZoneSize = 1024;
template <class T>
void SubblockGather(const std::vector<T>& subblock_list,
int start_idx,
uint8_t* aligned_scratch_memory,
uint8_t** compressed_ptr) {
// Our scratch memory is 4096 bytes. We use the first and last 1KB as a "red
// zone" to catch any overread from malformed bitstreams. This is much more
// performant than bounds checking. Our longest Golomb-Rice code is 20-bits,
// so really our red zone only needs to be
// 20/8*kMT21SubblockHeight*kMT21SubblockWidth = 160 bytes. We can consider
// relaxing the red zone size if memory becomes more of an issue.
aligned_scratch_memory += kMT21RedZoneSize;
for (size_t i = 0; i < kNumOutputLanes; i++) {
compressed_ptr[i] = aligned_scratch_memory;
aligned_scratch_memory += kMT21SubblockSize;
for (size_t j = 0; j < subblock_list[i + start_idx].len;
j += kMT21SubblockWidth) {
memcpy(compressed_ptr[i] + 3 * kMT21SubblockWidth - j,
subblock_list[i + start_idx].src + j, kMT21SubblockWidth);
}
compressed_ptr[i] += kMT21SubblockSize - sizeof(uint32_t);
}
}
// We compute 1 output per lane with the SIMD decompression algorithm. We could
// store lane individually, but instead we batch the output of all 16
// subblocks, and then do 4 16x16 transposes and write out the results of our
// decompression row by row. This is substantially faster because it's fewer
// instructions and it takes advantage of the write combiner.
//
// The transpose algorithm we use is to break the data into 4x4 blocks, where
// each block is stored in its own register. We then perform 4x4 transposes on
// all 16 of the 4x4 blocks. Then, we rearrange the blocks to complete the
// transpose.
//
// We actually have to transpose the 4x4 blocks in 2 64-bit registers because
// 32-bit ARM lacks a vqtbl1q_u8 instruction. I actually don't know if this is
// terrible for performance since the A72 has the Neon throughput capped at 3
// 64-bit vector registers per cycle anyway. But if we see a drop in performance
// compared to our Aarch64 benchmarks, this may be worth looking into.
static const uint8x8_t kTableTranspose4x4UpperIndices = {
0, 4, 8, 12, 1, 5, 9, 13,
};
static const uint8x8_t kTableTranspose4x4LowerIndices = {
2, 6, 10, 14, 3, 7, 11, 15,
};
void SubblockTransposeScatter(uint8_t*& src, uint8_t** decompressed_ptr) {
uint32x4x4_t load_regs[4];
uint32x4x4_t store_regs[4];
// Load 4x4 blocks
LOOPN(
{
load_regs[i] = vld4q_u32((uint32_t*)src);
src += 64;
},
4)
// Move the source pointer to the next row.
src -= 2 * kMT21SubblockWidth * kNumOutputLanes;
// 4x4 transposes using lookup table
LOOPN(
{
uint8x8x2_t table;
table.val[0] =
vget_low_u8(vreinterpretq_u8_u32(load_regs[i / 4].val[i % 4]));
table.val[1] =
vget_high_u8(vreinterpretq_u8_u32(load_regs[i / 4].val[i % 4]));
load_regs[i / 4].val[i % 4] =
vcombine_u32(vreinterpret_u32_u8(
vtbl2_u8(table, kTableTranspose4x4UpperIndices)),
vreinterpret_u32_u8(
vtbl2_u8(table, kTableTranspose4x4LowerIndices)));
},
16)
// Rearrange 4x4 blocks. This probably won't generate any instructions since
// we're basically just renaming some registers?
LOOPN({ store_regs[i / 4].val[i % 4] = load_regs[i % 4].val[i / 4]; }, 16)
// Store the rows.
// Apparently vst4q_lane_u32 requires a constant integer for the third
// argument and clang isn't smart enough to realize that unrolling the loop
// would make the third argument const. So, ctrl-c, ctrl-v.
vst4q_lane_u32((uint32_t*)decompressed_ptr[0], store_regs[0], 0);
vst4q_lane_u32((uint32_t*)decompressed_ptr[1], store_regs[0], 1);
vst4q_lane_u32((uint32_t*)decompressed_ptr[2], store_regs[0], 2);
vst4q_lane_u32((uint32_t*)decompressed_ptr[3], store_regs[0], 3);
vst4q_lane_u32((uint32_t*)decompressed_ptr[4], store_regs[1], 0);
vst4q_lane_u32((uint32_t*)decompressed_ptr[5], store_regs[1], 1);
vst4q_lane_u32((uint32_t*)decompressed_ptr[6], store_regs[1], 2);
vst4q_lane_u32((uint32_t*)decompressed_ptr[7], store_regs[1], 3);
vst4q_lane_u32((uint32_t*)decompressed_ptr[8], store_regs[2], 0);
vst4q_lane_u32((uint32_t*)decompressed_ptr[9], store_regs[2], 1);
vst4q_lane_u32((uint32_t*)decompressed_ptr[10], store_regs[2], 2);
vst4q_lane_u32((uint32_t*)decompressed_ptr[11], store_regs[2], 3);
vst4q_lane_u32((uint32_t*)decompressed_ptr[12], store_regs[3], 0);
vst4q_lane_u32((uint32_t*)decompressed_ptr[13], store_regs[3], 1);
vst4q_lane_u32((uint32_t*)decompressed_ptr[14], store_regs[3], 2);
vst4q_lane_u32((uint32_t*)decompressed_ptr[15], store_regs[3], 3);
}
// Decompresses a sublock. We take width and stride parameters to let us recycle
// code between Y subblock and UV subblock decompression routines. UV subblocks
// just halve the width, but skip every other pixel.
template <class T, int width, int stride>
void VectorDecompressSubblock(const std::vector<T>& subblock_list,
int start_idx,
uint8_t** compressed_ptr,
uint8_t* output_buf,
uint32x4_t* outstanding_reads,
uint32x4_t* accumulator) {
static const int pixel_distance = stride / width;
uint32x4_t escape_codes[4];
uint32x4_t escape_binary_len_diff[4];
uint32x4_t k_vals[4];
uint32x4_t dword_solid_color_mask[4];
uint8x16_t solid_color_mask;
uint8x16_t output, up_left, up, up_right, right;
output = VectorReadCompressedHeader(
accumulator, outstanding_reads, escape_codes, escape_binary_len_diff,
k_vals, dword_solid_color_mask, solid_color_mask, compressed_ptr);
right = output;
vst1q_u8(output_buf, output);
output_buf -= pixel_distance * kNumOutputLanes;
for (int i = 0; i < width - 1; i++) {
// Handle first row
output = VectorReadGolombRiceSymbol(
accumulator, outstanding_reads, escape_codes, escape_binary_len_diff,
k_vals, dword_solid_color_mask, compressed_ptr);
output = vandq_u8(output, solid_color_mask);
output = vaddq_u8(output, VectorFirstRowPrediction(right));
right = output;
vst1q_u8(output_buf, output);
output_buf -= pixel_distance * kNumOutputLanes;
}
for (size_t y = 1; y < kMT21SubblockHeight; y++) {
// Handle last col
up = vld1q_u8(output_buf + stride * kNumOutputLanes);
output = VectorReadGolombRiceSymbol(
accumulator, outstanding_reads, escape_codes, escape_binary_len_diff,
k_vals, dword_solid_color_mask, compressed_ptr);
output = vandq_u8(output, solid_color_mask);
output = vaddq_u8(output, VectorLastColPrediction(up));
up_right = up;
right = output;
vst1q_u8(output_buf, output);
output_buf -= pixel_distance * kNumOutputLanes;
up = vld1q_u8(output_buf + stride * kNumOutputLanes);
for (int x = width - 2; x >= 1; x--) {
// Handle body
up_left =
vld1q_u8(output_buf + (stride - pixel_distance) * kNumOutputLanes);
output = VectorReadGolombRiceSymbol(
accumulator, outstanding_reads, escape_codes, escape_binary_len_diff,
k_vals, dword_solid_color_mask, compressed_ptr);
output = vandq_u8(output, solid_color_mask);
output =
vaddq_u8(output, VectorBodyPrediction(up_left, up, up_right, right));
right = output;
up_right = up;
up = up_left;
vst1q_u8(output_buf, output);
output_buf -= pixel_distance * kNumOutputLanes;
}
// Handle first col
output = VectorReadGolombRiceSymbol(
accumulator, outstanding_reads, escape_codes, escape_binary_len_diff,
k_vals, dword_solid_color_mask, compressed_ptr);
output = vandq_u8(output, solid_color_mask);
output = vaddq_u8(output, VectorFirstColPrediction(up, up_right, right));
vst1q_u8(output_buf, output);
output_buf -= pixel_distance * kNumOutputLanes;
}
}
// Main entrypoint for vector decompression.
template <class T>
void VectorDecompressSubblockHelper(const std::vector<T>& subblock_list,
int start_idx,
uint8_t* aligned_scratch) {}
template <>
void VectorDecompressSubblockHelper(
const std::vector<MT21YSubblock>& subblock_list,
int start_idx,
uint8_t* aligned_scratch) {
uint8_t* compressed_ptr[kNumOutputLanes];
uint8_t* decompressed_ptr[kNumOutputLanes];
uint8_t* output_buf = aligned_scratch + 2 * kMT21RedZoneSize +
kNumOutputLanes * kMT21SubblockSize - kNumOutputLanes;
uint32x4_t outstanding_reads[4] = {{0}};
uint32x4_t accumulator[4];
SubblockGather<MT21YSubblock>(subblock_list, start_idx, aligned_scratch,
compressed_ptr);
for (size_t i = 0; i < kNumOutputLanes; i++) {
decompressed_ptr[i] = subblock_list[start_idx + i].dest;
}
VectorInitializeAccumulator(accumulator, compressed_ptr);
VectorDecompressSubblock<MT21YSubblock, kMT21SubblockWidth,
kMT21SubblockWidth>(subblock_list, start_idx,
compressed_ptr, output_buf,
outstanding_reads, accumulator);
output_buf -= kNumOutputLanes * kMT21SubblockWidth - kNumOutputLanes;
for (int i = 0; i < 4; i++) {
SubblockTransposeScatter(output_buf, decompressed_ptr);
for (int j = 0; j < 16; j++) {
decompressed_ptr[j] += kMT21SubblockWidth;
}
}
}
template <>
void VectorDecompressSubblockHelper(
const std::vector<MT21UVSubblock>& subblock_list,
int start_idx,
uint8_t* aligned_scratch) {
uint8_t* compressed_ptr[16];
uint8_t* decompressed_ptr[16];
uint8_t* output_buf = aligned_scratch + 2 * kMT21RedZoneSize +
kNumOutputLanes * kMT21SubblockSize - kNumOutputLanes;
uint32x4_t outstanding_reads[4] = {{0}};
uint32x4_t accumulator[4];
SubblockGather<MT21UVSubblock>(subblock_list, start_idx, aligned_scratch,
compressed_ptr);
for (int i = 0; i < 16; i++) {
decompressed_ptr[i] = subblock_list[start_idx + i].dest;
}
VectorInitializeAccumulator(accumulator, compressed_ptr);
VectorDecompressSubblock<MT21UVSubblock, kMT21SubblockWidth / 2,
kMT21SubblockWidth>(subblock_list, start_idx,
compressed_ptr, output_buf,
outstanding_reads, accumulator);
VectorDecompressSubblock<MT21UVSubblock, kMT21SubblockWidth / 2,
kMT21SubblockWidth>(subblock_list, start_idx,
compressed_ptr, output_buf - 16,
outstanding_reads, accumulator);
output_buf -= 16 * 16 - 16;
for (int i = 0; i < 4; i++) {
SubblockTransposeScatter(output_buf, decompressed_ptr);
for (int j = 0; j < 16; j++) {
decompressed_ptr[j] += kMT21SubblockWidth;
}
}
}
////////////////////
// Footer Parsing //
////////////////////
constexpr uint64_t kMT21YFooterAlignment = 4096;
constexpr uint64_t kMT21UVFooterAlignment = 2048;
// MT21 always puts the footer for the Y plane at the beginning of the last page
// in the buffer. For some reason, it puts the UV plane at the beginning of the
// last half-page, meaning the UV footer buffer is 2048 bytes aligned.
size_t ComputeFooterOffset(size_t plane_size,
size_t buf_size,
size_t alignment) {
size_t footer_size = plane_size / kMT21BlockSize / 2;
return ((buf_size - footer_size) & (~(alignment - 1)));
}
// The footer consists of packed 2-bit fields indicating the size of every
// subblock in 16 byte rows.
void ParseBlockMetadata(const uint8_t* footer,
size_t block_offset,
size_t& subblock1_len,
size_t& subblock2_len) {
// Footer metadata is packed in 2-bit pairs from LSB to MSB. This means we can
// pack 4 subblocks, or 2 blocks into every byte of footer.
const size_t block_idx = block_offset / kMT21BlockSize;
subblock1_len =
kMT21BlockWidth *
(((footer[block_idx / 2] >> ((block_idx % 2) * 4)) & 0x3) + 1);
subblock2_len =
kMT21BlockWidth *
(((footer[block_idx / 2] >> ((block_idx % 2) * 4 + 2)) & 0x3) + 1);
}
// Subblocks with a compressed size of 64 bytes are actually passthrough
// subblocks. This is a handy function for sorting subblocks into passthrough
// and non-passthrough bins. We can just use a memcpy for passthrough, which is
// cheaper than somehow incorporating passthrough logic into our decompression
// routines.
template <class T>
void BinSubblocks(const uint8_t* src,
const uint8_t* footer,
uint8_t* dest,
size_t block_offset,
std::vector<T>* subblock_bins) {
size_t subblock1_len, subblock2_len;
ParseBlockMetadata(footer, block_offset, subblock1_len, subblock2_len);
T subblock1 = {src + block_offset, dest + block_offset, subblock1_len};
T subblock2 = {src + block_offset + subblock1_len,
dest + block_offset + kMT21SubblockSize, subblock2_len};
int subblock1_type = subblock1_len == kMT21SubblockSize;
int subblock2_type = subblock2_len == kMT21SubblockSize;
subblock_bins[subblock1_type].push_back(subblock1);
subblock_bins[subblock2_type].push_back(subblock2);
}
} // namespace
} // namespace media
#endif // MEDIA_GPU_V4L2_MT21_MT21_UTIL_H_
|