1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "media/gpu/v4l2/test/h264_decoder.h"
#include <linux/v4l2-controls.h>
#include <linux/videodev2.h>
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/notreached.h"
#include "media/gpu/macros.h"
#include "ui/gfx/geometry/rect.h"
namespace media {
namespace v4l2_test {
namespace {
constexpr uint32_t kDriverCodecFourcc = V4L2_PIX_FMT_H264_SLICE;
constexpr uint8_t zigzag_4x4[] = {0, 1, 4, 8, 5, 2, 3, 6,
9, 12, 13, 10, 7, 11, 14, 15};
constexpr uint8_t zigzag_8x8[] = {
0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63};
// TODO(b/234752983): Set number of buffers in CAPTURE queue dynamically.
// |18| is the minimum number of buffers in the CAPTURE queue required to
// successfully decode all ITUT baseline and main bitstreams.
constexpr uint32_t kNumberOfBuffersInCaptureQueue = 18;
// Comparator struct used for H.264 picture reordering
struct H264PicOrderCompare {
bool operator()(const H264SliceMetadata* a,
const H264SliceMetadata* b) const {
return a->pic_order_cnt < b->pic_order_cnt;
}
};
// Extracts bit depth to |bit_depth| from the SPS. Returns true if is able
// to successfully extract bit depth. Otherwise returns false.
bool ParseBitDepth(const H264SPS& sps, uint8_t& bit_depth) {
// Spec 7.4.2.1.1
if (sps.bit_depth_luma_minus8 != sps.bit_depth_chroma_minus8) {
VLOGF(4) << "H264Decoder doesn't support different bit depths between luma"
<< "and chroma, bit_depth_luma_minus8="
<< sps.bit_depth_luma_minus8
<< ", bit_depth_chroma_minus8=" << sps.bit_depth_chroma_minus8;
return false;
}
DCHECK_GE(sps.bit_depth_luma_minus8, 0);
DCHECK_LE(sps.bit_depth_luma_minus8, 6);
switch (sps.bit_depth_luma_minus8) {
case 0:
bit_depth = 8u;
break;
case 2:
bit_depth = 10u;
break;
case 4:
bit_depth = 12u;
break;
case 6:
bit_depth = 14u;
break;
default:
VLOGF(4) << "Invalid bit depth: "
<< base::checked_cast<int>(sps.bit_depth_luma_minus8 + 8);
return false;
}
return true;
}
// Translates SPS into h264 sps ctrl structure.
v4l2_ctrl_h264_sps SetupSPSCtrl(const H264SPS* sps) {
struct v4l2_ctrl_h264_sps v4l2_sps = {};
v4l2_sps.profile_idc = sps->profile_idc;
v4l2_sps.constraint_set_flags =
(sps->constraint_set0_flag ? V4L2_H264_SPS_CONSTRAINT_SET0_FLAG : 0) |
(sps->constraint_set1_flag ? V4L2_H264_SPS_CONSTRAINT_SET1_FLAG : 0) |
(sps->constraint_set2_flag ? V4L2_H264_SPS_CONSTRAINT_SET2_FLAG : 0) |
(sps->constraint_set3_flag ? V4L2_H264_SPS_CONSTRAINT_SET3_FLAG : 0) |
(sps->constraint_set4_flag ? V4L2_H264_SPS_CONSTRAINT_SET4_FLAG : 0) |
(sps->constraint_set5_flag ? V4L2_H264_SPS_CONSTRAINT_SET5_FLAG : 0);
v4l2_sps.level_idc = sps->level_idc;
v4l2_sps.seq_parameter_set_id = sps->seq_parameter_set_id;
v4l2_sps.chroma_format_idc = sps->chroma_format_idc;
v4l2_sps.bit_depth_luma_minus8 = sps->bit_depth_luma_minus8;
v4l2_sps.bit_depth_chroma_minus8 = sps->bit_depth_chroma_minus8;
v4l2_sps.log2_max_frame_num_minus4 = sps->log2_max_frame_num_minus4;
v4l2_sps.pic_order_cnt_type = sps->pic_order_cnt_type;
v4l2_sps.log2_max_pic_order_cnt_lsb_minus4 =
sps->log2_max_pic_order_cnt_lsb_minus4;
v4l2_sps.max_num_ref_frames = sps->max_num_ref_frames;
v4l2_sps.num_ref_frames_in_pic_order_cnt_cycle =
sps->num_ref_frames_in_pic_order_cnt_cycle;
// Check that SPS offsets for ref frames size matches v4l2 sps.
static_assert(std::extent<decltype(v4l2_sps.offset_for_ref_frame)>() ==
std::extent<decltype(sps->offset_for_ref_frame)>(),
"SPS Offsets for ref frames size must match");
for (size_t i = 0; i < std::size(v4l2_sps.offset_for_ref_frame); i++)
v4l2_sps.offset_for_ref_frame[i] = sps->offset_for_ref_frame[i];
v4l2_sps.offset_for_non_ref_pic = sps->offset_for_non_ref_pic;
v4l2_sps.offset_for_top_to_bottom_field = sps->offset_for_top_to_bottom_field;
v4l2_sps.pic_width_in_mbs_minus1 = sps->pic_width_in_mbs_minus1;
v4l2_sps.pic_height_in_map_units_minus1 = sps->pic_height_in_map_units_minus1;
v4l2_sps.flags = 0;
if (sps->separate_colour_plane_flag)
v4l2_sps.flags |= V4L2_H264_SPS_FLAG_SEPARATE_COLOUR_PLANE;
if (sps->qpprime_y_zero_transform_bypass_flag)
v4l2_sps.flags |= V4L2_H264_SPS_FLAG_QPPRIME_Y_ZERO_TRANSFORM_BYPASS;
if (sps->delta_pic_order_always_zero_flag)
v4l2_sps.flags |= V4L2_H264_SPS_FLAG_DELTA_PIC_ORDER_ALWAYS_ZERO;
if (sps->gaps_in_frame_num_value_allowed_flag)
v4l2_sps.flags |= V4L2_H264_SPS_FLAG_GAPS_IN_FRAME_NUM_VALUE_ALLOWED;
if (sps->frame_mbs_only_flag)
v4l2_sps.flags |= V4L2_H264_SPS_FLAG_FRAME_MBS_ONLY;
if (sps->mb_adaptive_frame_field_flag)
v4l2_sps.flags |= V4L2_H264_SPS_FLAG_MB_ADAPTIVE_FRAME_FIELD;
if (sps->direct_8x8_inference_flag)
v4l2_sps.flags |= V4L2_H264_SPS_FLAG_DIRECT_8X8_INFERENCE;
return v4l2_sps;
}
// Translates PPS into h264 pps ctrl structure.
v4l2_ctrl_h264_pps SetupPPSCtrl(const H264PPS* pps) {
struct v4l2_ctrl_h264_pps v4l2_pps = {};
v4l2_pps.pic_parameter_set_id = pps->pic_parameter_set_id;
v4l2_pps.seq_parameter_set_id = pps->seq_parameter_set_id;
v4l2_pps.num_slice_groups_minus1 = pps->num_slice_groups_minus1;
v4l2_pps.num_ref_idx_l0_default_active_minus1 =
pps->num_ref_idx_l0_default_active_minus1;
v4l2_pps.num_ref_idx_l1_default_active_minus1 =
pps->num_ref_idx_l1_default_active_minus1;
v4l2_pps.weighted_bipred_idc = pps->weighted_bipred_idc;
v4l2_pps.pic_init_qp_minus26 = pps->pic_init_qp_minus26;
v4l2_pps.pic_init_qs_minus26 = pps->pic_init_qs_minus26;
v4l2_pps.chroma_qp_index_offset = pps->chroma_qp_index_offset;
v4l2_pps.second_chroma_qp_index_offset = pps->second_chroma_qp_index_offset;
v4l2_pps.flags = 0;
if (pps->entropy_coding_mode_flag)
v4l2_pps.flags |= V4L2_H264_PPS_FLAG_ENTROPY_CODING_MODE;
if (pps->bottom_field_pic_order_in_frame_present_flag)
v4l2_pps.flags |=
V4L2_H264_PPS_FLAG_BOTTOM_FIELD_PIC_ORDER_IN_FRAME_PRESENT;
if (pps->weighted_pred_flag)
v4l2_pps.flags |= V4L2_H264_PPS_FLAG_WEIGHTED_PRED;
if (pps->deblocking_filter_control_present_flag)
v4l2_pps.flags |= V4L2_H264_PPS_FLAG_DEBLOCKING_FILTER_CONTROL_PRESENT;
if (pps->constrained_intra_pred_flag)
v4l2_pps.flags |= V4L2_H264_PPS_FLAG_CONSTRAINED_INTRA_PRED;
if (pps->redundant_pic_cnt_present_flag)
v4l2_pps.flags |= V4L2_H264_PPS_FLAG_REDUNDANT_PIC_CNT_PRESENT;
if (pps->transform_8x8_mode_flag)
v4l2_pps.flags |= V4L2_H264_PPS_FLAG_TRANSFORM_8X8_MODE;
if (pps->pic_scaling_matrix_present_flag)
v4l2_pps.flags |= V4L2_H264_PPS_FLAG_SCALING_MATRIX_PRESENT;
return v4l2_pps;
}
// Sets up the h264 scaling matrix ctrl and checks against sps
// and pps scaling matrix sizes.
v4l2_ctrl_h264_scaling_matrix SetupScalingMatrix(const H264SPS* sps,
const H264PPS* pps) {
struct v4l2_ctrl_h264_scaling_matrix matrix = {};
// Makes sure that the size of the matrix scaling lists correspond
// to the PPS scaling matrix sizes.
static_assert(std::extent<decltype(matrix.scaling_list_4x4)>() <=
std::extent<decltype(pps->scaling_list4x4)>() &&
std::extent<decltype(matrix.scaling_list_4x4[0])>() <=
std::extent<decltype(pps->scaling_list4x4[0])>() &&
std::extent<decltype(matrix.scaling_list_8x8)>() <=
std::extent<decltype(pps->scaling_list8x8)>() &&
std::extent<decltype(matrix.scaling_list_8x8[0])>() <=
std::extent<decltype(pps->scaling_list8x8[0])>(),
"PPS scaling_lists must be of correct size");
// Makes sure that the size of the matrix scaling lists correspond
// to the SPS scaling matrix sizes.
static_assert(std::extent<decltype(matrix.scaling_list_4x4)>() <=
std::extent<decltype(sps->scaling_list4x4)>() &&
std::extent<decltype(matrix.scaling_list_4x4[0])>() <=
std::extent<decltype(sps->scaling_list4x4[0])>() &&
std::extent<decltype(matrix.scaling_list_8x8)>() <=
std::extent<decltype(sps->scaling_list8x8)>() &&
std::extent<decltype(matrix.scaling_list_8x8[0])>() <=
std::extent<decltype(sps->scaling_list8x8[0])>(),
"SPS scaling_lists must be of correct size");
const auto* scaling_list4x4 = &sps->scaling_list4x4[0];
const auto* scaling_list8x8 = &sps->scaling_list8x8[0];
if (pps->pic_scaling_matrix_present_flag) {
scaling_list4x4 = &pps->scaling_list4x4[0];
scaling_list8x8 = &pps->scaling_list8x8[0];
}
static_assert(std::extent<decltype(matrix.scaling_list_4x4), 1>() ==
std::extent<decltype(zigzag_4x4)>());
for (size_t i = 0; i < std::size(matrix.scaling_list_4x4); ++i) {
for (size_t j = 0; j < std::size(matrix.scaling_list_4x4[i]); ++j) {
matrix.scaling_list_4x4[i][zigzag_4x4[j]] = scaling_list4x4[i][j];
}
}
static_assert(std::extent<decltype(matrix.scaling_list_8x8), 1>() ==
std::extent<decltype(zigzag_8x8)>());
for (size_t i = 0; i < std::size(matrix.scaling_list_8x8); ++i) {
for (size_t j = 0; j < std::size(matrix.scaling_list_8x8[i]); ++j) {
matrix.scaling_list_8x8[i][zigzag_8x8[j]] = scaling_list8x8[i][j];
}
}
return matrix;
}
// Sets up v4l2_ctrl_h264_decode_params from data in the H264SliceHeader and
// the current H264SliceMetadata.
v4l2_ctrl_h264_decode_params SetupDecodeParams(
const H264SliceHeader& slice,
const H264SliceMetadata& slice_metadata,
const H264DPB& dpb) {
v4l2_ctrl_h264_decode_params v4l2_decode_params = {};
v4l2_decode_params.nal_ref_idc = slice.nal_ref_idc;
v4l2_decode_params.frame_num = slice.frame_num;
v4l2_decode_params.idr_pic_id = slice.idr_pic_id;
v4l2_decode_params.pic_order_cnt_lsb = slice.pic_order_cnt_lsb;
v4l2_decode_params.delta_pic_order_cnt_bottom =
slice.delta_pic_order_cnt_bottom;
v4l2_decode_params.delta_pic_order_cnt0 = slice.delta_pic_order_cnt0;
v4l2_decode_params.delta_pic_order_cnt1 = slice.delta_pic_order_cnt1;
v4l2_decode_params.dec_ref_pic_marking_bit_size =
slice.dec_ref_pic_marking_bit_size;
v4l2_decode_params.pic_order_cnt_bit_size = slice.pic_order_cnt_bit_size;
v4l2_decode_params.flags = 0;
if (slice.idr_pic_flag)
v4l2_decode_params.flags |= V4L2_H264_DECODE_PARAM_FLAG_IDR_PIC;
v4l2_decode_params.top_field_order_cnt = slice_metadata.top_field_order_cnt;
v4l2_decode_params.bottom_field_order_cnt =
slice_metadata.bottom_field_order_cnt;
size_t i = 0;
constexpr size_t kTimestampToNanoSecs = 1000;
for (const auto& element : dpb) {
struct v4l2_h264_dpb_entry& entry = v4l2_decode_params.dpb[i++];
entry = {.reference_ts = element.second.ref_ts_nsec * kTimestampToNanoSecs,
.pic_num = static_cast<unsigned short>(element.second.pic_num),
.frame_num = static_cast<unsigned short>(element.second.frame_num),
.fields = V4L2_H264_FRAME_REF,
.top_field_order_cnt = element.second.top_field_order_cnt,
.bottom_field_order_cnt = element.second.bottom_field_order_cnt,
.flags = static_cast<uint32_t>(
V4L2_H264_DPB_ENTRY_FLAG_VALID |
(element.second.ref ? V4L2_H264_DPB_ENTRY_FLAG_ACTIVE : 0) |
(element.second.long_term_reference_flag
? V4L2_H264_DPB_ENTRY_FLAG_LONG_TERM
: 0))};
}
return v4l2_decode_params;
}
// Determines whether the current slice is part of the same
// frame as the previous slice.
// From h264 specification 7.4.1.2.4
bool IsNewFrame(const H264SliceMetadata& curr_picture,
const H264SliceHeader& curr_slice_hdr,
const H264SPS& sps) {
bool nalu_size_error = curr_picture.slice_header.nalu_size < 1;
bool slice_changed =
curr_slice_hdr.frame_num != curr_picture.slice_header.frame_num ||
curr_slice_hdr.pic_parameter_set_id !=
curr_picture.slice_header.pic_parameter_set_id ||
curr_slice_hdr.nal_ref_idc != curr_picture.slice_header.nal_ref_idc ||
curr_slice_hdr.idr_pic_flag != curr_picture.slice_header.idr_pic_flag ||
curr_slice_hdr.idr_pic_id != curr_picture.slice_header.idr_pic_id;
bool slice_pic_order_changed = false;
if (sps.pic_order_cnt_type == 0) {
slice_pic_order_changed =
curr_slice_hdr.pic_order_cnt_lsb !=
curr_picture.slice_header.pic_order_cnt_lsb ||
curr_slice_hdr.delta_pic_order_cnt_bottom !=
curr_picture.slice_header.delta_pic_order_cnt_bottom;
} else if (sps.pic_order_cnt_type == 1) {
slice_pic_order_changed =
curr_slice_hdr.delta_pic_order_cnt0 !=
curr_picture.slice_header.delta_pic_order_cnt0 ||
curr_slice_hdr.delta_pic_order_cnt1 !=
curr_picture.slice_header.delta_pic_order_cnt1;
}
return (nalu_size_error || slice_changed || slice_pic_order_changed);
}
// Returns the maximum DPB Macro Block Size (MBS) per level specified.
// Based on spec table A-2.
uint32_t GetMaxDPBMBS(uint8_t level) {
switch (level) {
case H264SPS::kLevelIDC1p0:
return 396; // Level 1.0
case H264SPS::kLevelIDC1B:
return 396; // Level 1b
case H264SPS::kLevelIDC1p1:
return 900; // Level 1.1
case H264SPS::kLevelIDC1p2:
return 2376; // Level 1.2
case H264SPS::kLevelIDC1p3:
return 2376; // Level 1.3
case H264SPS::kLevelIDC2p0:
return 2376; // Level 2.0
case H264SPS::kLevelIDC2p1:
return 4752; // Level 2.1
case H264SPS::kLevelIDC2p2:
return 8100; // Level 2.2
case H264SPS::kLevelIDC3p0:
return 8100; // Level 3.0
case H264SPS::kLevelIDC3p1:
return 18000; // Level 3.1
case H264SPS::kLevelIDC3p2:
return 20480; // Level 3.2
case H264SPS::kLevelIDC4p0:
return 32768; // Level 4.0
case H264SPS::kLevelIDC4p1:
return 32768; // Level 4.1
case H264SPS::kLevelIDC4p2:
return 34816; // Level 4.2
case H264SPS::kLevelIDC5p0:
return 110400; // Level 5.0
case H264SPS::kLevelIDC5p1:
return 184320; // Level 5.1
case H264SPS::kLevelIDC5p2:
default:
return 0;
}
}
} // namespace
void H264Decoder::ProcessSPS(const int sps_id) {
const H264SPS* sps = parser_->GetSPS(sps_id);
gfx::Size new_pic_size = sps->GetCodedSize().value_or(gfx::Size());
int width_mb = new_pic_size.width() / 16;
int height_mb = new_pic_size.height() / 16;
// Spec A.3.1 and A.3.2
// For Baseline, Constrained Baseline and Main profile, the indicated level is
// Level 1b if level_idc is equal to 11 and constraint_set3_flag is equal to 1
uint8_t level = base::checked_cast<uint8_t>(sps->level_idc);
if ((sps->profile_idc == H264SPS::kProfileIDCBaseline ||
sps->profile_idc == H264SPS::kProfileIDCConstrainedBaseline ||
sps->profile_idc == H264SPS::kProfileIDCMain) &&
level == 11 && sps->constraint_set3_flag) {
level = 9; // Level 1b
}
int max_dpb_mbs = base::checked_cast<int>(GetMaxDPBMBS(level));
// MaxDpbFrames from level limits per spec.
size_t max_dpb_frames = std::min(max_dpb_mbs / (width_mb * height_mb), 16);
size_t max_dpb_size =
std::max(static_cast<int>(max_dpb_frames),
std::max(sps->max_num_ref_frames, sps->max_dec_frame_buffering));
VideoCodecProfile new_profile =
H264Parser::ProfileIDCToVideoCodecProfile(sps->profile_idc);
uint8_t new_bit_depth = 0;
ParseBitDepth(*sps, new_bit_depth);
if (sps->vui_parameters_present_flag && sps->bitstream_restriction_flag) {
max_num_reorder_frames_ =
base::checked_cast<size_t>(sps->max_num_reorder_frames);
} else if (sps->constraint_set3_flag) {
// max_num_reorder_frames not present, infer from profile/constraints
// (see VUI semantics in spec).
switch (sps->profile_idc) {
case 44:
case 86:
case 100:
case 110:
case 122:
case 244:
max_num_reorder_frames_ = 0;
break;
default:
max_num_reorder_frames_ = max_dpb_size;
break;
}
} else {
max_num_reorder_frames_ = max_dpb_size;
}
if (pic_size_ != new_pic_size || dpb_.max_dpb_size_ != max_dpb_size ||
profile_ != new_profile || bit_depth_ != new_bit_depth) {
FlushDPB();
profile_ = new_profile;
bit_depth_ = new_bit_depth;
pic_size_ = new_pic_size;
dpb_.max_dpb_size_ = max_dpb_size;
}
}
void H264Decoder::FlushDPB() {
std::vector<H264SliceMetadata*> transmittable_slices =
dpb_.GetNotOutputtedPicsAppending();
std::sort(transmittable_slices.begin(), transmittable_slices.end(),
H264PicOrderCompare());
for (auto* i : transmittable_slices) {
i->outputted = true;
slice_ready_queue_.push(*i);
}
dpb_.clear();
}
void H264Decoder::InitializeDecoderLogic() {
parser_ = std::make_unique<H264Parser>();
parser_->SetStream(data_stream_->data(), data_stream_->length());
// Advance through NALUs until the first SPS. The start of the decodable
// data in an h.264 bistreams starts with an SPS.
while (true) {
H264NALU nalu;
H264Parser::Result res = parser_->AdvanceToNextNALU(&nalu);
CHECK(res == H264Parser::kOk);
if (nalu.nal_unit_type == H264NALU::kSPS) {
break;
}
}
int sps_id;
H264Parser::Result res = parser_->ParseSPS(&sps_id);
CHECK(res == H264Parser::kOk);
// Process initial SPS in bitstream and navigate to first slice in bitstream
// to setup ProcessNextFrame for decoding.
ProcessSPS(sps_id);
std::unique_ptr<H264NALU> curr_nalu;
while (true) {
curr_nalu = std::make_unique<H264NALU>();
if (parser_->AdvanceToNextNALU(curr_nalu.get()) == H264Parser::kEOStream) {
break;
}
if (curr_nalu->nal_unit_type == H264NALU::kIDRSlice ||
curr_nalu->nal_unit_type == H264NALU::kNonIDRSlice) {
break;
} else if (curr_nalu->nal_unit_type == H264NALU::kPPS) {
int pps_id;
CHECK(parser_->ParsePPS(&pps_id) == H264Parser::kOk);
}
}
curr_slice_hdr_ = std::make_unique<H264SliceHeader>();
CHECK(parser_->ParseSliceHeader(*curr_nalu, curr_slice_hdr_.get()) ==
H264Parser::kOk);
}
VideoDecoder::Result H264Decoder::SubmitSlice() {
std::vector<uint8_t> slice_data(
sizeof(V4L2_STATELESS_H264_START_CODE_ANNEX_B) - 1);
slice_data[2] = V4L2_STATELESS_H264_START_CODE_ANNEX_B;
slice_data.insert(slice_data.end(), (curr_slice_hdr_->nalu_data).get(),
(curr_slice_hdr_->nalu_data +
base::checked_cast<size_t>(curr_slice_hdr_->nalu_size))
.get());
scoped_refptr<MmappedBuffer> OUTPUT_buffer = OUTPUT_queue_->GetBuffer(0);
OUTPUT_buffer->mmapped_planes()[0].CopyIn(&slice_data[0], slice_data.size());
OUTPUT_buffer->set_frame_number(global_pic_count_);
if (!v4l2_ioctl_->QBuf(OUTPUT_queue_, 0)) {
VLOG(4) << "VIDIOC_QBUF failed for OUTPUT queue.";
return VideoDecoder::kError;
}
global_pic_count_++;
return VideoDecoder::kOk;
}
VideoDecoder::Result H264Decoder::InitializeSliceMetadata(
const H264SliceHeader& slice_hdr,
const H264SPS* sps,
H264SliceMetadata* slice_metadata) const {
if (!sps) {
return VideoDecoder::kError;
}
slice_metadata->slice_header = slice_hdr;
slice_metadata->ref_ts_nsec = global_pic_count_;
slice_metadata->ref = slice_hdr.nal_ref_idc != 0;
slice_metadata->frame_num = slice_hdr.frame_num;
slice_metadata->pic_num = slice_hdr.frame_num;
slice_metadata->pic_order_cnt_lsb = slice_hdr.pic_order_cnt_lsb;
const auto visible_rect = sps->GetVisibleRect();
// If there is no value, then the bitstream is invalid
CHECK(visible_rect.has_value());
slice_metadata->visible_rect_ = *visible_rect;
slice_metadata->long_term_reference_flag = slice_hdr.long_term_reference_flag;
if (slice_hdr.adaptive_ref_pic_marking_mode_flag) {
static_assert(sizeof(slice_metadata->ref_pic_marking) ==
sizeof(slice_hdr.ref_pic_marking),
"Array sizes of ref pic marking do not match.");
memcpy(slice_metadata->ref_pic_marking, slice_hdr.ref_pic_marking,
sizeof(slice_metadata->ref_pic_marking));
}
// Calculate H264 slice order counts.
switch (sps->pic_order_cnt_type) {
// See specification 8.2.1.1.
case 0: {
int prev_pic_order_cnt_msb, prev_pic_order_cnt_lsb;
if (slice_hdr.idr_pic_flag) {
prev_pic_order_cnt_msb = prev_pic_order_cnt_lsb = 0;
} else {
prev_pic_order_cnt_msb = prev_pic_order_.prev_ref_pic_order_cnt_msb;
prev_pic_order_cnt_lsb = prev_pic_order_.prev_ref_pic_order_cnt_lsb;
}
const int max_pic_order_cnt_lsb =
1 << (sps->log2_max_pic_order_cnt_lsb_minus4 + 4);
if ((slice_metadata->pic_order_cnt_lsb < prev_pic_order_cnt_lsb) &&
(prev_pic_order_cnt_lsb - slice_metadata->pic_order_cnt_lsb >=
max_pic_order_cnt_lsb / 2)) {
slice_metadata->pic_order_cnt_msb =
prev_pic_order_cnt_msb + max_pic_order_cnt_lsb;
} else if ((slice_metadata->pic_order_cnt_lsb > prev_pic_order_cnt_lsb) &&
(slice_metadata->pic_order_cnt_lsb - prev_pic_order_cnt_lsb >
max_pic_order_cnt_lsb / 2)) {
slice_metadata->pic_order_cnt_msb =
prev_pic_order_cnt_msb - max_pic_order_cnt_lsb;
} else {
slice_metadata->pic_order_cnt_msb = prev_pic_order_cnt_msb;
}
slice_metadata->top_field_order_cnt =
slice_metadata->pic_order_cnt_msb + slice_metadata->pic_order_cnt_lsb;
slice_metadata->bottom_field_order_cnt =
slice_metadata->top_field_order_cnt +
slice_hdr.delta_pic_order_cnt_bottom;
break;
}
case 1: {
// TODO(b/234752983): Implement pic ordering for pic order count type 1
// as defined in H.264 section 8.2.1.2.
break;
}
case 2: {
// Implements pic ordering for pic order count type 2 as defined
// in H.264 section 8.2.1.3.
if (slice_metadata->slice_header.idr_pic_flag) {
slice_metadata->frame_num_offset = 0;
} else if (prev_frame_num_ > slice_metadata->pic_num) {
slice_metadata->frame_num_offset =
prev_frame_num_offset_ +
(1 << (sps->log2_max_frame_num_minus4 + 4));
} else {
slice_metadata->frame_num_offset = prev_frame_num_offset_;
}
int temp_pic_order_cnt;
if (slice_metadata->slice_header.idr_pic_flag) {
temp_pic_order_cnt = 0;
} else if (!slice_metadata->slice_header.nal_ref_idc) {
temp_pic_order_cnt =
2 * (slice_metadata->frame_num_offset + slice_metadata->frame_num) -
1;
} else {
temp_pic_order_cnt =
2 * (slice_metadata->frame_num_offset + slice_metadata->frame_num);
}
slice_metadata->top_field_order_cnt = temp_pic_order_cnt;
slice_metadata->bottom_field_order_cnt = temp_pic_order_cnt;
break;
}
default: {
VLOGF(4) << "Invalid pic_order_cnt_type: " << sps->pic_order_cnt_type;
return VideoDecoder::kError;
}
}
slice_metadata->pic_order_cnt =
std::min(slice_metadata->top_field_order_cnt,
slice_metadata->bottom_field_order_cnt);
return VideoDecoder::kOk;
}
VideoDecoder::Result H264Decoder::StartNewFrame(
bool is_OUTPUT_queue_new,
H264SliceMetadata* slice_metadata) {
const H264PPS* pps = parser_->GetPPS(curr_slice_hdr_->pic_parameter_set_id);
const H264SPS* sps = parser_->GetSPS(pps->seq_parameter_set_id);
if (InitializeSliceMetadata(*(curr_slice_hdr_.get()), sps, slice_metadata) ==
VideoDecoder::kError) {
return VideoDecoder::kError;
}
if (curr_slice_hdr_->idr_pic_flag) {
if (!curr_slice_hdr_->no_output_of_prior_pics_flag) {
FlushDPB();
}
dpb_.clear();
}
int max_frame_num = 1 << (sps->log2_max_frame_num_minus4 + 4);
dpb_.UpdatePicNums(curr_slice_hdr_->frame_num, max_frame_num);
struct v4l2_ctrl_h264_sps v4l2_sps = SetupSPSCtrl(sps);
struct v4l2_ctrl_h264_pps v4l2_pps = SetupPPSCtrl(pps);
struct v4l2_ctrl_h264_scaling_matrix v4l2_matrix =
SetupScalingMatrix(sps, pps);
struct v4l2_ext_control ctrls[] = {
{.id = V4L2_CID_STATELESS_H264_SPS,
.size = sizeof(v4l2_sps),
.ptr = &v4l2_sps},
{.id = V4L2_CID_STATELESS_H264_PPS,
.size = sizeof(v4l2_pps),
.ptr = &v4l2_pps},
{.id = V4L2_CID_STATELESS_H264_SCALING_MATRIX,
.size = sizeof(v4l2_matrix),
.ptr = &v4l2_matrix}};
struct v4l2_ext_controls ext_ctrls = {
.count = (sizeof(ctrls) / sizeof(ctrls[0])), .controls = ctrls};
v4l2_ioctl_->SetExtCtrls(OUTPUT_queue_, &ext_ctrls, is_OUTPUT_queue_new);
return VideoDecoder::kOk;
}
void H264Decoder::ProcessNextFrame() {
H264SliceMetadata slice_metadata = {};
const bool is_OUTPUT_queue_new = !OUTPUT_queue_;
if (!OUTPUT_queue_) {
CreateOUTPUTQueue(kDriverCodecFourcc);
}
StartNewFrame(is_OUTPUT_queue_new, &slice_metadata);
v4l2_ctrl_h264_decode_params v4l2_decode_params =
SetupDecodeParams(*curr_slice_hdr_, slice_metadata, dpb_);
const int pps_id = curr_slice_hdr_->pic_parameter_set_id;
const int sps_id = parser_->GetPPS(pps_id)->seq_parameter_set_id;
struct v4l2_ext_control ctrls[] = {
{.id = V4L2_CID_STATELESS_H264_DECODE_PARAMS,
.size = sizeof(v4l2_decode_params),
.ptr = &v4l2_decode_params},
{.id = V4L2_CID_STATELESS_H264_DECODE_MODE,
.value = V4L2_STATELESS_H264_DECODE_MODE_FRAME_BASED}};
struct v4l2_ext_controls ext_ctrls = {
.count = (sizeof(ctrls) / sizeof(ctrls[0])), .controls = ctrls};
v4l2_ioctl_->SetExtCtrls(OUTPUT_queue_, &ext_ctrls);
SubmitSlice();
while (true) {
std::unique_ptr<H264NALU> curr_nalu = std::make_unique<H264NALU>();
if (parser_->AdvanceToNextNALU(curr_nalu.get()) == H264Parser::kEOStream) {
stream_finished_ = true;
break;
}
if (curr_nalu->nal_unit_type == H264NALU::kNonIDRSlice ||
curr_nalu->nal_unit_type == H264NALU::kIDRSlice) {
curr_slice_hdr_ = std::make_unique<H264SliceHeader>();
CHECK(parser_->ParseSliceHeader(*curr_nalu, curr_slice_hdr_.get()) ==
H264Parser::kOk);
const H264SPS* sps = parser_->GetSPS(sps_id);
if (IsNewFrame(slice_metadata, *curr_slice_hdr_.get(), *sps)) {
break;
}
} else if (curr_nalu->nal_unit_type == H264NALU::kSPS) {
int sps_info;
H264Parser::Result res = parser_->ParseSPS(&sps_info);
CHECK(res == H264Parser::kOk);
ProcessSPS(sps_id);
} else if (curr_nalu->nal_unit_type == H264NALU::kPPS) {
int pps_info;
H264Parser::Result res = parser_->ParsePPS(&pps_info);
CHECK(res == H264Parser::kOk);
}
// All other NALU's can be safely dropped/ignored.
}
FinishPicture(slice_metadata, sps_id);
if (stream_finished_) {
FlushDPB();
}
}
void H264Decoder::FinishPicture(H264SliceMetadata picture, const int sps_id) {
v4l2_ioctl_->MediaRequestIocQueue(OUTPUT_queue_);
if (!CAPTURE_queue_) {
CreateCAPTUREQueue(kNumberOfBuffersInCaptureQueue);
}
v4l2_ioctl_->WaitForRequestCompletion(OUTPUT_queue_);
uint32_t CAPTURE_id;
v4l2_ioctl_->DQBuf(CAPTURE_queue_, &CAPTURE_id);
CAPTURE_queue_->DequeueBufferId(CAPTURE_id);
picture.capture_queue_buffer_id = CAPTURE_id;
const std::set<uint32_t> reusable_buffer_slots =
GetReusableReferenceSlots(*CAPTURE_queue_->GetBuffer(CAPTURE_id).get(),
CAPTURE_queue_->queued_buffer_ids());
for (const auto reusable_buffer_slot : reusable_buffer_slots) {
if (!v4l2_ioctl_->QBuf(CAPTURE_queue_, reusable_buffer_slot)) {
VLOGF(4) << "VIDIOC_QBUF failed for CAPTURE queue.";
}
// Keeps track of which indices are currently queued in the
// CAPTURE queue. This will be used to determine which indices
// can/cannot be refreshed.
CAPTURE_queue_->QueueBufferId(reusable_buffer_slot);
}
if (picture.ref) {
// If picture is an IDR, need to unmark all unused reference pics.
// H.264 section 8.2.4.1.2.
if (picture.slice_header.idr_pic_flag) {
dpb_.MarkAllUnusedRef();
if (picture.long_term_reference_flag) {
picture.long_term_frame_idx = 0;
}
} else if (picture.slice_header.adaptive_ref_pic_marking_mode_flag) {
for (size_t i = 0; i < std::size(picture.ref_pic_marking); ++i) {
H264DecRefPicMarking* ref_pic_marking = &picture.ref_pic_marking[i];
// Handle Memory Mgmt operations as specified in specification 8.2.5.4.
switch (ref_pic_marking->memory_mgmnt_control_operation) {
case 0:
break;
case 1: {
const int pic_num_x =
picture.pic_num -
(ref_pic_marking->difference_of_pic_nums_minus1 + 1);
dpb_.UnmarkPicByPicNum(pic_num_x);
break;
}
case 2: {
dpb_.UnmarkLongTerm(ref_pic_marking->long_term_pic_num);
break;
}
case 3: {
// H.264 section 8.2.5.4.3
const int pic_num_x =
picture.pic_num -
(ref_pic_marking->difference_of_pic_nums_minus1 + 1);
H264SliceMetadata* short_pic =
dpb_.GetShortRefPicByPicNum(pic_num_x);
if (short_pic) {
H264SliceMetadata* long_term_mark = dpb_.GetLongRefPicByFrameIdx(
ref_pic_marking->long_term_frame_idx);
if (long_term_mark) {
long_term_mark->ref = false;
}
short_pic->long_term_reference_flag = true;
short_pic->long_term_frame_idx =
ref_pic_marking->long_term_frame_idx;
}
break;
}
case 4: {
const int max_long_term_frame_idx =
ref_pic_marking->max_long_term_frame_idx_plus1 - 1;
dpb_.UnmarkLongTermPicsGreaterThanFrameIndex(
max_long_term_frame_idx);
break;
}
default:
break;
}
}
} else {
// Use a sliding window method decoded reference picture marking process
// H.264 section 8.2.4.3.
const H264SPS* sps = parser_->GetSPS(sps_id);
int num_ref_pics = dpb_.CountRefPics();
if (num_ref_pics == std::max<int>(sps->max_num_ref_frames, 1)) {
dpb_.UnmarkLowestFrameNumWrapShortRefPic();
}
}
prev_pic_order_.prev_ref_pic_order_cnt_msb = picture.pic_order_cnt_msb;
prev_pic_order_.prev_ref_pic_order_cnt_lsb = picture.pic_order_cnt_lsb;
}
prev_frame_num_ = picture.frame_num;
prev_frame_num_offset_ = picture.frame_num_offset;
dpb_.DeleteUnused();
std::vector<H264SliceMetadata*> transmittable_slices =
dpb_.GetNotOutputtedPicsAppending();
// Include the current slice metadata to the list of transmittable slices.
transmittable_slices.push_back(&picture);
std::sort(transmittable_slices.begin(), transmittable_slices.end(),
H264PicOrderCompare());
auto output_candidate = transmittable_slices.begin();
size_t slices_remaining = transmittable_slices.size();
// Tries to output as many pictures as we can. A picture can be output,
// if the number of decoded and not yet outputted pictures that would remain
// in DPB afterwards would at least be equal to |max_num_reorder_frames|.
while (output_candidate != transmittable_slices.end() &&
(slices_remaining > max_num_reorder_frames_ ||
// If the DPB is full and the output candidate has not been
// outputted or is a reference picture then output this picture.
(dpb_.size() == dpb_.max_dpb_size_ &&
((!(*output_candidate)->outputted || (*output_candidate)->ref)) &&
slices_remaining))) {
DVLOG_IF(1, slices_remaining <= max_num_reorder_frames_)
<< "Invalid stream: max_num_reorder_frames not preserved";
(*output_candidate)->outputted = true;
slice_ready_queue_.push(**output_candidate);
// If the outputted picture is not a reference picture, it doesn't have
// to remain in the DPB and can be removed.
if (!(*output_candidate)->ref) {
// Current picture hasn't been inserted into DPB yet, so don't remove it
// if we managed to output it immediately.
if ((*output_candidate)->ref_ts_nsec != picture.ref_ts_nsec) {
dpb_.Delete(**output_candidate);
}
}
++output_candidate;
--slices_remaining;
}
if (!picture.outputted || picture.ref) {
dpb_.insert({picture.ref_ts_nsec, picture});
}
uint32_t OUTPUT_queue_buffer_id;
v4l2_ioctl_->DQBuf(OUTPUT_queue_, &OUTPUT_queue_buffer_id);
v4l2_ioctl_->MediaRequestIocReinit(OUTPUT_queue_);
}
// static
std::unique_ptr<H264Decoder> H264Decoder::Create(
const base::MemoryMappedFile& stream) {
auto parser = std::make_unique<H264Parser>();
parser->SetStream(stream.data(), stream.length());
// Advance through NALUs until the first SPS. The start of the decodable
// data in an h.264 bistreams starts with an SPS.
while (true) {
H264NALU nalu;
H264Parser::Result res = parser->AdvanceToNextNALU(&nalu);
if (res != H264Parser::kOk) {
LOG(ERROR) << "Unable to find SPS in stream";
return nullptr;
}
if (nalu.nal_unit_type == H264NALU::kSPS)
break;
}
int sps_id;
H264Parser::Result res = parser->ParseSPS(&sps_id);
CHECK(res == H264Parser::kOk);
const H264SPS* sps = parser->GetSPS(sps_id);
CHECK(sps);
std::optional<gfx::Size> coded_size = sps->GetCodedSize();
CHECK(coded_size);
auto v4l2_ioctl = std::make_unique<V4L2IoctlShim>(kDriverCodecFourcc);
return base::WrapUnique(
new H264Decoder(std::move(v4l2_ioctl), coded_size.value(), stream));
}
H264Decoder::H264Decoder(std::unique_ptr<V4L2IoctlShim> v4l2_ioctl,
gfx::Size display_resolution,
const base::MemoryMappedFile& data_stream)
: VideoDecoder::VideoDecoder(std::move(v4l2_ioctl), display_resolution),
curr_slice_hdr_(nullptr),
stream_finished_(false),
data_stream_(data_stream) {}
H264Decoder::~H264Decoder() = default;
std::set<uint32_t> H264Decoder::GetReusableReferenceSlots(
const MmappedBuffer& buffer,
std::set<uint32_t> queued_buffer_ids) {
std::set<uint32_t> reusable_buffer_slots = {};
const std::set<int> dpb_ids = dpb_.GetHeldCaptureIds();
for (size_t i = 0; i < CAPTURE_queue_->num_buffers(); i++) {
// Check that index is not currently queued in the CAPTURE queue and
// that it is not the same buffer index previously written to.
if (!queued_buffer_ids.count(i) && i != buffer.buffer_id()) {
if (dpb_ids.find(i) == dpb_ids.end()) {
reusable_buffer_slots.insert(i);
}
}
}
return reusable_buffer_slots;
}
VideoDecoder::Result H264Decoder::DecodeNextFrame(const int frame_number,
std::vector<uint8_t>& y_plane,
std::vector<uint8_t>& u_plane,
std::vector<uint8_t>& v_plane,
gfx::Size& size,
BitDepth& bit_depth) {
// If this is the start of the Decoder, initialize Decoder state.
if (!parser_) {
InitializeDecoderLogic();
}
// Keep decoding until either decoder has parsed entire bitstream or there is
// a decoded frame ready.
while (!stream_finished_ && slice_ready_queue_.empty()) {
ProcessNextFrame();
}
if (stream_finished_ && slice_ready_queue_.empty()) {
return VideoDecoder::kEOStream;
}
if (slice_ready_queue_.empty()) {
NOTREACHED() << "Stream ended with |slice_ready_queue_| empty";
}
H264SliceMetadata picture = slice_ready_queue_.front();
last_decoded_frame_visible_ = picture.outputted;
scoped_refptr<MmappedBuffer> buffer =
CAPTURE_queue_->GetBuffer(picture.capture_queue_buffer_id);
size = picture.visible_rect_.size();
if (!picture.visible_rect_.origin().IsOrigin()) {
// TODO(b/315491484): Handle cropping with non-zero origin
LOG(INFO) << "Non-zero visible rect origin.";
}
bit_depth =
ConvertToYUV(y_plane, u_plane, v_plane, size, buffer->mmapped_planes(),
CAPTURE_queue_->resolution(), CAPTURE_queue_->fourcc());
slice_ready_queue_.pop();
return VideoDecoder::kOk;
}
} // namespace v4l2_test
} // namespace media
|