File: h265_decoder.cc

package info (click to toggle)
chromium 138.0.7204.183-1~deb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm-proposed-updates
  • size: 6,080,960 kB
  • sloc: cpp: 34,937,079; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,954; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,811; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (1470 lines) | stat: -rw-r--r-- 51,950 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif

#include "media/gpu/v4l2/test/h265_decoder.h"

#include <linux/videodev2.h>

#include "base/containers/contains.h"
#include "base/memory/ptr_util.h"
#include "base/memory/scoped_refptr.h"
#include "base/notreached.h"
#include "media/gpu/macros.h"
#include "media/parsers/h265_parser.h"

namespace media {
namespace v4l2_test {

namespace {
constexpr uint32_t kDriverCodecFourcc = V4L2_PIX_FMT_HEVC_SLICE;

// TODO(b/261127809): Find number of buffers in CAPTURE queue dynamically for
// H.265. |18| is the minimum number of buffers in the CAPTURE queue required to
// successfully decode all ITU-T H.264 baseline and main bitstreams.
constexpr uint32_t kNumberOfBuffersInCaptureQueue = 18;

struct POCAscCompare {
  bool operator()(const scoped_refptr<media::v4l2_test::H265Picture>& a,
                  const scoped_refptr<media::v4l2_test::H265Picture>& b) const {
    return a->pic_order_cnt_val_ < b->pic_order_cnt_val_;
  }
};

// Gets bit depth info from SPS
bool ParseBitDepth(const H265SPS& sps, uint8_t& bit_depth) {
  // Spec 7.4.3.2.1
  // See spec at http://www.itu.int/rec/T-REC-H.265
  if (sps.bit_depth_y != sps.bit_depth_c) {
    LOG(ERROR) << "Different bit depths among planes is not supported";
    return false;
  }
  bit_depth = base::checked_cast<uint8_t>(sps.bit_depth_y);
  return true;
}

// Checks bit depth is supported with the given HEVC profile
bool IsValidBitDepth(uint8_t bit_depth, VideoCodecProfile profile) {
  switch (profile) {
    // Spec A.3.2
    case HEVCPROFILE_MAIN:
      return bit_depth == 8u;
    // Spec A.3.3
    case HEVCPROFILE_MAIN10:
      return bit_depth == 8u || bit_depth == 10u;
    // Spec A.3.4
    case HEVCPROFILE_MAIN_STILL_PICTURE:
      return bit_depth == 8u;
    // Spec A.3.5
    case HEVCPROFILE_REXT:
      return bit_depth == 8u || bit_depth == 10u || bit_depth == 12u ||
             bit_depth == 14u || bit_depth == 16u;
    // Spec A.3.6
    case HEVCPROFILE_HIGH_THROUGHPUT:
      return bit_depth == 8u || bit_depth == 10u || bit_depth == 14u ||
             bit_depth == 16u;
    // Spec G.11.1.1
    case HEVCPROFILE_MULTIVIEW_MAIN:
      return bit_depth == 8u;
    // Spec H.11.1.1
    case HEVCPROFILE_SCALABLE_MAIN:
      return bit_depth == 8u || bit_depth == 10u;
    // Spec I.11.1.1
    case HEVCPROFILE_3D_MAIN:
      return bit_depth == 8u;
    // Spec A.3.7
    case HEVCPROFILE_SCREEN_EXTENDED:
      return bit_depth == 8u || bit_depth == 10u;
    // Spec H.11.1.2
    case HEVCPROFILE_SCALABLE_REXT:
      return bit_depth == 8u || bit_depth == 12u || bit_depth == 16u;
    // Spec A.3.8
    case HEVCPROFILE_HIGH_THROUGHPUT_SCREEN_EXTENDED:
      return bit_depth == 8u || bit_depth == 10u || bit_depth == 14u;
    default:
      LOG(ERROR) << "Invalid profile specified for H265";
      return false;
  }
}

// Translates decoder SPS structure into |v4l2_ctrl_hevc_sps| structure.
v4l2_ctrl_hevc_sps SetupSPSCtrl(const H265SPS* sps) {
  struct v4l2_ctrl_hevc_sps v4l2_sps;
  memset(&v4l2_sps, 0, sizeof(v4l2_sps));

  int highest_tid = sps->sps_max_sub_layers_minus1;

  // Translates values using the |v4l2_ctrl_hevc_sps| struct order
  v4l2_sps.video_parameter_set_id = sps->sps_video_parameter_set_id;
  v4l2_sps.seq_parameter_set_id = sps->sps_seq_parameter_set_id;

#define SPS_TO_V4L2SPS(a) v4l2_sps.a = sps->a
  SPS_TO_V4L2SPS(pic_width_in_luma_samples);
  SPS_TO_V4L2SPS(pic_height_in_luma_samples);
  SPS_TO_V4L2SPS(bit_depth_luma_minus8);
  SPS_TO_V4L2SPS(bit_depth_chroma_minus8);
  SPS_TO_V4L2SPS(log2_max_pic_order_cnt_lsb_minus4);

#define SPS_TO_V4L2SPS_FROM_ARRAY(a) v4l2_sps.a = sps->a[highest_tid];
  SPS_TO_V4L2SPS_FROM_ARRAY(sps_max_dec_pic_buffering_minus1);
  SPS_TO_V4L2SPS_FROM_ARRAY(sps_max_num_reorder_pics);
  SPS_TO_V4L2SPS_FROM_ARRAY(sps_max_latency_increase_plus1);
#undef SPS_TO_V4L2SPS_FROM_ARRAY

  SPS_TO_V4L2SPS(log2_min_luma_coding_block_size_minus3);
  SPS_TO_V4L2SPS(log2_diff_max_min_luma_coding_block_size);
  SPS_TO_V4L2SPS(log2_min_luma_transform_block_size_minus2);
  SPS_TO_V4L2SPS(log2_diff_max_min_luma_transform_block_size);
  SPS_TO_V4L2SPS(max_transform_hierarchy_depth_inter);
  SPS_TO_V4L2SPS(max_transform_hierarchy_depth_intra);
  SPS_TO_V4L2SPS(pcm_sample_bit_depth_luma_minus1);
  SPS_TO_V4L2SPS(pcm_sample_bit_depth_chroma_minus1);
  SPS_TO_V4L2SPS(log2_min_pcm_luma_coding_block_size_minus3);
  SPS_TO_V4L2SPS(log2_diff_max_min_pcm_luma_coding_block_size);
  SPS_TO_V4L2SPS(num_short_term_ref_pic_sets);
  SPS_TO_V4L2SPS(num_long_term_ref_pics_sps);
  SPS_TO_V4L2SPS(chroma_format_idc);
  SPS_TO_V4L2SPS(sps_max_sub_layers_minus1);
#undef SPS_TO_V4L2SPS

#define SET_V4L2_SPS_FLAG_IF(cond, flag) \
  v4l2_sps.flags |= ((sps->cond) ? (flag) : 0)
  SET_V4L2_SPS_FLAG_IF(separate_colour_plane_flag,
                       V4L2_HEVC_SPS_FLAG_SEPARATE_COLOUR_PLANE);
  SET_V4L2_SPS_FLAG_IF(scaling_list_enabled_flag,
                       V4L2_HEVC_SPS_FLAG_SCALING_LIST_ENABLED);
  SET_V4L2_SPS_FLAG_IF(amp_enabled_flag, V4L2_HEVC_SPS_FLAG_AMP_ENABLED);
  SET_V4L2_SPS_FLAG_IF(sample_adaptive_offset_enabled_flag,
                       V4L2_HEVC_SPS_FLAG_SAMPLE_ADAPTIVE_OFFSET);
  SET_V4L2_SPS_FLAG_IF(pcm_enabled_flag, V4L2_HEVC_SPS_FLAG_PCM_ENABLED);
  SET_V4L2_SPS_FLAG_IF(pcm_loop_filter_disabled_flag,
                       V4L2_HEVC_SPS_FLAG_PCM_LOOP_FILTER_DISABLED);
  SET_V4L2_SPS_FLAG_IF(long_term_ref_pics_present_flag,
                       V4L2_HEVC_SPS_FLAG_LONG_TERM_REF_PICS_PRESENT);
  SET_V4L2_SPS_FLAG_IF(sps_temporal_mvp_enabled_flag,
                       V4L2_HEVC_SPS_FLAG_SPS_TEMPORAL_MVP_ENABLED);
  SET_V4L2_SPS_FLAG_IF(strong_intra_smoothing_enabled_flag,
                       V4L2_HEVC_SPS_FLAG_STRONG_INTRA_SMOOTHING_ENABLED);
#undef SET_V4L2_SPS_FLAG_IF

  return v4l2_sps;
}

// Translates decoder PPS structure into |v4l2_ctrl_hevc_pps| structure.
v4l2_ctrl_hevc_pps SetupPPSCtrl(const H265PPS* pps) {
  struct v4l2_ctrl_hevc_pps v4l2_pps;
  memset(&v4l2_pps, 0, sizeof(v4l2_pps));

  // Translates values using the |v4l2_ctrl_hevc_pps| struct order
#define PPS_TO_V4L2PPS(a) v4l2_pps.a = pps->a
  v4l2_pps.pic_parameter_set_id = pps->pps_pic_parameter_set_id;
  PPS_TO_V4L2PPS(num_extra_slice_header_bits);
  PPS_TO_V4L2PPS(num_ref_idx_l0_default_active_minus1);
  PPS_TO_V4L2PPS(num_ref_idx_l1_default_active_minus1);
  PPS_TO_V4L2PPS(init_qp_minus26);
  PPS_TO_V4L2PPS(diff_cu_qp_delta_depth);
  PPS_TO_V4L2PPS(pps_cb_qp_offset);
  PPS_TO_V4L2PPS(pps_cr_qp_offset);

  if (pps->tiles_enabled_flag) {
    PPS_TO_V4L2PPS(num_tile_columns_minus1);
    PPS_TO_V4L2PPS(num_tile_rows_minus1);

    if (!pps->uniform_spacing_flag) {
      static_assert(std::size(v4l2_pps.column_width_minus1) >=
                        std::extent<decltype(pps->column_width_minus1)>(),
                    "column_width_minus1 arrays must be same size");
      for (int i = 0; i <= pps->num_tile_columns_minus1; ++i) {
        v4l2_pps.column_width_minus1[i] = pps->column_width_minus1[i];
      }

      static_assert(std::size(v4l2_pps.row_height_minus1) >=
                        std::extent<decltype(pps->row_height_minus1)>(),
                    "row_height_minus1 arrays must be same size");
      for (int i = 0; i <= pps->num_tile_rows_minus1; ++i) {
        v4l2_pps.row_height_minus1[i] = pps->row_height_minus1[i];
      }
    }
  }

  PPS_TO_V4L2PPS(pps_beta_offset_div2);
  PPS_TO_V4L2PPS(pps_tc_offset_div2);
  PPS_TO_V4L2PPS(log2_parallel_merge_level_minus2);
#undef PPS_TO_V4L2PPS

#define SET_V4L2_PPS_FLAG_IF(cond, flag) \
  v4l2_pps.flags |= ((pps->cond) ? (flag) : 0)
  SET_V4L2_PPS_FLAG_IF(dependent_slice_segments_enabled_flag,
                       V4L2_HEVC_PPS_FLAG_DEPENDENT_SLICE_SEGMENT_ENABLED);
  SET_V4L2_PPS_FLAG_IF(output_flag_present_flag,
                       V4L2_HEVC_PPS_FLAG_OUTPUT_FLAG_PRESENT);
  SET_V4L2_PPS_FLAG_IF(sign_data_hiding_enabled_flag,
                       V4L2_HEVC_PPS_FLAG_SIGN_DATA_HIDING_ENABLED);
  SET_V4L2_PPS_FLAG_IF(cabac_init_present_flag,
                       V4L2_HEVC_PPS_FLAG_CABAC_INIT_PRESENT);
  SET_V4L2_PPS_FLAG_IF(constrained_intra_pred_flag,
                       V4L2_HEVC_PPS_FLAG_CONSTRAINED_INTRA_PRED);
  SET_V4L2_PPS_FLAG_IF(transform_skip_enabled_flag,
                       V4L2_HEVC_PPS_FLAG_TRANSFORM_SKIP_ENABLED);
  SET_V4L2_PPS_FLAG_IF(cu_qp_delta_enabled_flag,
                       V4L2_HEVC_PPS_FLAG_CU_QP_DELTA_ENABLED);
  SET_V4L2_PPS_FLAG_IF(pps_slice_chroma_qp_offsets_present_flag,
                       V4L2_HEVC_PPS_FLAG_PPS_SLICE_CHROMA_QP_OFFSETS_PRESENT);
  SET_V4L2_PPS_FLAG_IF(weighted_pred_flag, V4L2_HEVC_PPS_FLAG_WEIGHTED_PRED);
  SET_V4L2_PPS_FLAG_IF(weighted_bipred_flag,
                       V4L2_HEVC_PPS_FLAG_WEIGHTED_BIPRED);
  SET_V4L2_PPS_FLAG_IF(transquant_bypass_enabled_flag,
                       V4L2_HEVC_PPS_FLAG_TRANSQUANT_BYPASS_ENABLED);
  SET_V4L2_PPS_FLAG_IF(tiles_enabled_flag, V4L2_HEVC_PPS_FLAG_TILES_ENABLED);
  SET_V4L2_PPS_FLAG_IF(entropy_coding_sync_enabled_flag,
                       V4L2_HEVC_PPS_FLAG_ENTROPY_CODING_SYNC_ENABLED);
  SET_V4L2_PPS_FLAG_IF(loop_filter_across_tiles_enabled_flag,
                       V4L2_HEVC_PPS_FLAG_LOOP_FILTER_ACROSS_TILES_ENABLED);
  SET_V4L2_PPS_FLAG_IF(
      pps_loop_filter_across_slices_enabled_flag,
      V4L2_HEVC_PPS_FLAG_PPS_LOOP_FILTER_ACROSS_SLICES_ENABLED);
  SET_V4L2_PPS_FLAG_IF(deblocking_filter_override_enabled_flag,
                       V4L2_HEVC_PPS_FLAG_DEBLOCKING_FILTER_OVERRIDE_ENABLED);
  SET_V4L2_PPS_FLAG_IF(pps_deblocking_filter_disabled_flag,
                       V4L2_HEVC_PPS_FLAG_PPS_DISABLE_DEBLOCKING_FILTER);
  SET_V4L2_PPS_FLAG_IF(lists_modification_present_flag,
                       V4L2_HEVC_PPS_FLAG_LISTS_MODIFICATION_PRESENT);
  SET_V4L2_PPS_FLAG_IF(
      slice_segment_header_extension_present_flag,
      V4L2_HEVC_PPS_FLAG_SLICE_SEGMENT_HEADER_EXTENSION_PRESENT);
  SET_V4L2_PPS_FLAG_IF(deblocking_filter_control_present_flag,
                       V4L2_HEVC_PPS_FLAG_DEBLOCKING_FILTER_CONTROL_PRESENT);
  SET_V4L2_PPS_FLAG_IF(uniform_spacing_flag,
                       V4L2_HEVC_PPS_FLAG_UNIFORM_SPACING);
#undef SET_V4L2_PPS_FLAG_IF

  return v4l2_pps;
}

// Builds the |v4l2_ctrl_hevc_scaling_matrix| structure and checks against SPS
// and PPS scaling matrix sizes.
v4l2_ctrl_hevc_scaling_matrix SetupScalingMatrix(const H265SPS* sps,
                                                 const H265PPS* pps) {
  struct v4l2_ctrl_hevc_scaling_matrix v4l2_scaling_matrix;
  memset(&v4l2_scaling_matrix, 0, sizeof(v4l2_scaling_matrix));
  struct H265ScalingListData checker;

  static_assert(
      std::size(checker.scaling_list_dc_coef_16x16) ==
              std::size(v4l2_scaling_matrix.scaling_list_dc_coef_16x16) &&
          std::size(checker.scaling_list_dc_coef_32x32) / 3 ==
              std::size(v4l2_scaling_matrix.scaling_list_dc_coef_32x32) &&
          std::size(checker.scaling_list_4x4) ==
              std::size(v4l2_scaling_matrix.scaling_list_4x4) &&
          std::size(checker.scaling_list_4x4[0]) ==
              std::size(v4l2_scaling_matrix.scaling_list_4x4[0]) &&
          std::size(checker.scaling_list_8x8) ==
              std::size(v4l2_scaling_matrix.scaling_list_8x8) &&
          std::size(checker.scaling_list_8x8[0]) ==
              std::size(v4l2_scaling_matrix.scaling_list_8x8[0]) &&
          std::size(checker.scaling_list_16x16) ==
              std::size(v4l2_scaling_matrix.scaling_list_16x16) &&
          std::size(checker.scaling_list_16x16[0]) ==
              std::size(v4l2_scaling_matrix.scaling_list_16x16[0]) &&
          std::size(checker.scaling_list_32x32) / 3 ==
              std::size(v4l2_scaling_matrix.scaling_list_32x32) &&
          std::size(checker.scaling_list_32x32[0]) ==
              std::size(v4l2_scaling_matrix.scaling_list_32x32[0]),
      "scaling_list_data must be of correct size");

  if (sps->scaling_list_enabled_flag) {
    // We already populated the scaling list data with default values in the
    // parser if they are not present in the stream, so just fill them all in.
    const auto& scaling_list = pps->pps_scaling_list_data_present_flag
                                   ? pps->scaling_list_data
                                   : sps->scaling_list_data;

    for (size_t i = 0; i < H265ScalingListData::kNumScalingListMatrices; ++i) {
      for (size_t j = 0; j < H265ScalingListData::kScalingListSizeId0Count;
           ++j) {
        v4l2_scaling_matrix.scaling_list_4x4[i][j] =
            scaling_list.GetScalingList4x4EntryInRasterOrder(/*matrix_id=*/i,
                                                             /*raster_idx=*/j);
      }
    }

    for (size_t i = 0; i < H265ScalingListData::kNumScalingListMatrices; ++i) {
      for (size_t j = 0; j < H265ScalingListData::kScalingListSizeId1To3Count;
           ++j) {
        v4l2_scaling_matrix.scaling_list_8x8[i][j] =
            scaling_list.GetScalingList8x8EntryInRasterOrder(/*matrix_id=*/i,
                                                             /*raster_idx=*/j);
      }
    }

    for (size_t i = 0; i < H265ScalingListData::kNumScalingListMatrices; ++i) {
      for (size_t j = 0; j < H265ScalingListData::kScalingListSizeId1To3Count;
           ++j) {
        v4l2_scaling_matrix.scaling_list_16x16[i][j] =
            scaling_list.GetScalingList16x16EntryInRasterOrder(
                /*matrix_id=*/i,
                /*raster_idx=*/j);
      }
    }

    for (size_t i = 0; i < H265ScalingListData::kNumScalingListMatrices;
         i += 3) {
      for (size_t j = 0; j < H265ScalingListData::kScalingListSizeId1To3Count;
           ++j) {
        v4l2_scaling_matrix.scaling_list_32x32[i / 3][j] =
            scaling_list.GetScalingList32x32EntryInRasterOrder(
                /*matrix_id=*/i,
                /*raster_idx=*/j);
      }
    }

    memcpy(v4l2_scaling_matrix.scaling_list_dc_coef_16x16,
           scaling_list.scaling_list_dc_coef_16x16,
           sizeof(v4l2_scaling_matrix.scaling_list_dc_coef_16x16));
    v4l2_scaling_matrix.scaling_list_dc_coef_32x32[0] =
        scaling_list.scaling_list_dc_coef_32x32[0];
    v4l2_scaling_matrix.scaling_list_dc_coef_32x32[1] =
        scaling_list.scaling_list_dc_coef_32x32[3];
  }

  return v4l2_scaling_matrix;
}

struct v4l2_ctrl_hevc_decode_params SetupDecodeParams(
    const H265SliceHeader* slice_hdr,
    const H265Picture::Vector& ref_pic_list,
    const H265Picture::Vector& ref_pic_set_lt_curr,
    const H265Picture::Vector& ref_pic_set_st_curr_after,
    const H265Picture::Vector& ref_pic_set_st_curr_before,
    scoped_refptr<H265Picture> curr_pic) {
  struct v4l2_ctrl_hevc_decode_params v4l2_decode_params;
  memset(&v4l2_decode_params, 0, sizeof(v4l2_decode_params));

  v4l2_decode_params.pic_order_cnt_val = curr_pic->pic_order_cnt_val_,
  v4l2_decode_params.short_term_ref_pic_set_size =
      static_cast<__u16>(slice_hdr->st_rps_bits),
  v4l2_decode_params.long_term_ref_pic_set_size =
      static_cast<__u16>(slice_hdr->lt_rps_bits),
#if BUILDFLAG(IS_CHROMEOS)
  // .num_delta_pocs_of_ref_rps_idx is upstream but not yet pulled
  // into linux build sysroot.
  // TODO(b/261127809): Remove once linux-libc-dev package is updated to
  // at least v6.5 in the sysroots.
      v4l2_decode_params.num_delta_pocs_of_ref_rps_idx =
          static_cast<__u8>(slice_hdr->st_ref_pic_set.rps_idx_num_delta_pocs),
#endif
  v4l2_decode_params.flags = static_cast<__u64>(
      (curr_pic->irap_pic_ ? V4L2_HEVC_DECODE_PARAM_FLAG_IRAP_PIC : 0) |
      ((curr_pic->nal_unit_type_ >= H265NALU::IDR_W_RADL &&
        curr_pic->nal_unit_type_ <= H265NALU::IDR_N_LP)
           ? V4L2_HEVC_DECODE_PARAM_FLAG_IDR_PIC
           : 0) |
      (curr_pic->no_output_of_prior_pics_flag_
           ? V4L2_HEVC_DECODE_PARAM_FLAG_NO_OUTPUT_OF_PRIOR
           : 0)),

  memset(v4l2_decode_params.dpb, 0, sizeof(v4l2_decode_params.dpb));
  unsigned int i = 0;
  for (const auto& pic : ref_pic_list) {
    if (i >= V4L2_HEVC_DPB_ENTRIES_NUM_MAX) {
      VLOGF(1) << "Invalid DPB size";
      break;
    }

    if (!pic) {
      continue;
    }

    // TODO(b/261127809): Handle |!pic->IsUnused()| case

    constexpr size_t kTimestampToNanoSecs = 1000;

    struct v4l2_hevc_dpb_entry& entry = v4l2_decode_params.dpb[i++];
    entry = {
        .timestamp = pic->ref_ts_nsec_ * kTimestampToNanoSecs,
        .flags = static_cast<__u8>(
            pic->IsLongTermRef() ? V4L2_HEVC_DPB_ENTRY_LONG_TERM_REFERENCE : 0),
        .field_pic = V4L2_HEVC_SEI_PIC_STRUCT_FRAME,  // No interlaced support
        .pic_order_cnt_val = pic->pic_order_cnt_val_,
    };
  }
  v4l2_decode_params.num_active_dpb_entries = i;

  // Set defaults
  std::fill_n(v4l2_decode_params.poc_st_curr_before,
              std::size(v4l2_decode_params.poc_st_curr_before), 0xff);
  std::fill_n(v4l2_decode_params.poc_st_curr_after,
              std::size(v4l2_decode_params.poc_st_curr_after), 0xff);
  std::fill_n(v4l2_decode_params.poc_lt_curr,
              std::size(v4l2_decode_params.poc_lt_curr), 0xff);

  i = 0;
  for (const auto& pic : ref_pic_set_st_curr_before) {
    if (i >= V4L2_HEVC_DPB_ENTRIES_NUM_MAX) {
      VLOGF(1) << "Invalid DPB size";
      break;
    }

    if (!pic) {
      continue;
    }

    for (unsigned int j = 0; j < v4l2_decode_params.num_active_dpb_entries;
         j++) {
      if (pic->pic_order_cnt_val_ ==
          v4l2_decode_params.dpb[j].pic_order_cnt_val) {
        v4l2_decode_params.poc_st_curr_before[i++] = j;
        break;
      }
    }
  }
  v4l2_decode_params.num_poc_st_curr_before = i;

  i = 0;
  for (const auto& pic : ref_pic_set_st_curr_after) {
    if (i >= V4L2_HEVC_DPB_ENTRIES_NUM_MAX) {
      VLOGF(1) << "Invalid DPB size";
      break;
    }

    if (!pic) {
      continue;
    }

    for (unsigned int j = 0; j < v4l2_decode_params.num_active_dpb_entries;
         j++) {
      if (pic->pic_order_cnt_val_ ==
          v4l2_decode_params.dpb[j].pic_order_cnt_val) {
        v4l2_decode_params.poc_st_curr_after[i++] = j;
        break;
      }
    }
  }
  v4l2_decode_params.num_poc_st_curr_after = i;

  i = 0;
  for (const auto& pic : ref_pic_set_lt_curr) {
    if (i >= V4L2_HEVC_DPB_ENTRIES_NUM_MAX) {
      VLOGF(1) << "Invalid DPB size";
      break;
    }

    if (!pic) {
      continue;
    }

    for (unsigned int j = 0; j < v4l2_decode_params.num_active_dpb_entries;
         j++) {
      if (pic->pic_order_cnt_val_ ==
          v4l2_decode_params.dpb[j].pic_order_cnt_val) {
        v4l2_decode_params.poc_lt_curr[i++] = j;
        break;
      }
    }
  }
  v4l2_decode_params.num_poc_lt_curr = i;

  return v4l2_decode_params;
}
}

H265Decoder::H265Decoder(std::unique_ptr<V4L2IoctlShim> v4l2_ioctl,
                         gfx::Size display_resolution,
                         const base::MemoryMappedFile& data_stream)
    : VideoDecoder::VideoDecoder(std::move(v4l2_ioctl), display_resolution),
      data_stream_(data_stream) {}

H265Decoder::~H265Decoder() = default;

// static
std::unique_ptr<H265Decoder> H265Decoder::Create(
    const base::MemoryMappedFile& stream) {
  auto parser = std::make_unique<H265Parser>();
  parser->SetStream(stream.data(), stream.length());

  // Advance through NALUs until the first SPS.  The start of the decodable
  // data in an H.265 bistreams starts with an SPS.
  while (true) {
    H265NALU nalu;
    H265Parser::Result res = parser->AdvanceToNextNALU(&nalu);
    if (res != H265Parser::kOk) {
      LOG(ERROR) << "Unable to find SPS in stream";
      return nullptr;
    }

    if (nalu.nal_unit_type == H265NALU::SPS_NUT) {
      break;
    }
  }

  int sps_id;
  const H265Parser::Result parse_result = parser->ParseSPS(&sps_id);
  CHECK_EQ(parse_result, H265Parser::kOk);

  const H265SPS* sps = parser->GetSPS(sps_id);
  CHECK(sps);

  std::optional<gfx::Size> coded_size = sps->GetCodedSize();
  CHECK(coded_size);
  LOG(INFO) << "H.265 coded size : " << coded_size->ToString();

  auto v4l2_ioctl = std::make_unique<V4L2IoctlShim>(kDriverCodecFourcc);

  return base::WrapUnique(
      new H265Decoder(std::move(v4l2_ioctl), coded_size.value(), stream));
}

bool H265Decoder::OutputAllRemainingPics() {
  // Output all pictures that are waiting to be outputted.
  H265Picture::Vector to_output;
  dpb_.AppendPendingOutputPics(&to_output);
  // Sort them by ascending POC to output in order.
  std::sort(to_output.begin(), to_output.end(), POCAscCompare());

  for (auto& pic : to_output) {
    if (!OutputPic(std::move(pic))) {
      return false;
    }
  }

  return true;
}

bool H265Decoder::Flush() {
  VLOGF(4) << "Decoder flush";

  if (!OutputAllRemainingPics()) {
    return false;
  }

  dpb_.Clear();
  prev_tid0_pic_ = nullptr;

  return true;
}

bool H265Decoder::ProcessPPS(int pps_id, bool* need_new_buffers) {
  VLOGF(4) << "Processing PPS id:" << pps_id;

  const H265PPS* pps = parser_->GetPPS(pps_id);
  DCHECK(pps);

  const H265SPS* sps = parser_->GetSPS(pps->pps_seq_parameter_set_id);
  DCHECK(sps);

  if (need_new_buffers) {
    *need_new_buffers = false;
  }

  gfx::Size new_pic_size = sps->GetCodedSize();
  gfx::Rect new_visible_rect = sps->GetVisibleRect();
  if (visible_rect_ != new_visible_rect) {
    VLOGF(4) << "New visible rect: " << new_visible_rect.ToString();
    visible_rect_ = new_visible_rect;
  }

  VideoChromaSampling new_chroma_sampling = sps->GetChromaSampling();
  if (new_chroma_sampling != VideoChromaSampling::k420) {
    LOG(ERROR) << "Only YUV 4:2:0 is supported";
    return false;
  }

  // Equation 7-8
  max_pic_order_cnt_lsb_ =
      std::pow(2, sps->log2_max_pic_order_cnt_lsb_minus4 + 4);

  VideoCodecProfile new_profile = H265Parser::ProfileIDCToVideoCodecProfile(
      sps->profile_tier_level.general_profile_idc);

  uint8_t new_bit_depth = 0;
  if (!ParseBitDepth(*sps, new_bit_depth)) {
    return false;
  }

  if (!IsValidBitDepth(new_bit_depth, new_profile)) {
    LOG(ERROR) << "Invalid bit depth=" << base::strict_cast<int>(new_bit_depth)
               << ", profile=" << GetProfileName(new_profile);
    return false;
  }

  if (pic_size_ != new_pic_size || dpb_.MaxNumPics() != sps->max_dpb_size ||
      profile_ != new_profile || bit_depth_ != new_bit_depth ||
      chroma_sampling_ != new_chroma_sampling) {
    CHECK(Flush()) << "Failed to flush the decoder.";

    LOG(INFO) << "Codec profile: " << GetProfileName(new_profile)
              << ", level(x30): " << sps->profile_tier_level.general_level_idc
              << ", DPB size: " << sps->max_dpb_size
              << ", Picture size: " << new_pic_size.ToString()
              << ", bit_depth: " << base::strict_cast<int>(new_bit_depth)
              << ", chroma_sampling_format: "
              << VideoChromaSamplingToString(new_chroma_sampling);
    profile_ = new_profile;
    bit_depth_ = new_bit_depth;
    pic_size_ = new_pic_size;
    chroma_sampling_ = new_chroma_sampling;
    dpb_.SetMaxNumPics(sps->max_dpb_size);
    if (need_new_buffers) {
      *need_new_buffers = true;
    }
  }

  return true;
}

bool H265Decoder::PreprocessCurrentSlice() {
  const H265SliceHeader* slice_hdr = curr_slice_hdr_.get();
  CHECK(slice_hdr);

  if (slice_hdr->first_slice_segment_in_pic_flag) {
    // New picture, so first finish the previous one before processing it.
    FinishPrevFrameIfPresent();
    CHECK(!curr_pic_);
  }

  return true;
}

bool H265Decoder::ProcessCurrentSlice() {
  CHECK(curr_pic_);

  const H265SliceHeader* slice_hdr = curr_slice_hdr_.get();
  CHECK(slice_hdr);

  const H265SPS* sps = parser_->GetSPS(curr_sps_id_);
  CHECK(sps);

  const H265PPS* pps = parser_->GetPPS(curr_pps_id_);
  CHECK(pps);

  // Adds a start code prefix, a unique sequence of 3 bytes equal to 0x000001
  // embedded in the byte stream as a prefix to each NAL unit. All hardwares
  // supported in ChromeOS require the start code prefix.
  std::vector<uint8_t> slice_data = {0x00, 0x00, 0x01};

  slice_data.insert(
      slice_data.end(), curr_slice_hdr_->nalu_data.get(),
      (curr_slice_hdr_->nalu_data + curr_slice_hdr_->nalu_size).get());

  scoped_refptr<MmappedBuffer> OUTPUT_buffer = OUTPUT_queue_->GetBuffer(0);
  OUTPUT_buffer->mmapped_planes()[0].CopyInSlice(
      &slice_data[0], slice_data.size(),
      curr_slice_hdr_->first_slice_segment_in_pic_flag);
  OUTPUT_buffer->set_frame_number(global_pic_count_);

  return true;
}

void H265Decoder::CalcPicOutputFlags(const H265SliceHeader* slice_hdr) {
  if (slice_hdr->irap_pic) {
    // 8.1.3
    curr_pic_->no_rasl_output_flag_ =
        (curr_nalu_->nal_unit_type >= H265NALU::BLA_W_LP &&
         curr_nalu_->nal_unit_type <= H265NALU::IDR_N_LP) ||
        curr_pic_->first_picture_;
  } else {
    curr_pic_->no_rasl_output_flag_ = false;
  }

  // C.5.2.2
  if (slice_hdr->irap_pic && curr_pic_->no_rasl_output_flag_ &&
      !curr_pic_->first_picture_) {
    curr_pic_->no_output_of_prior_pics_flag_ =
        (slice_hdr->nal_unit_type == H265NALU::CRA_NUT) ||
        slice_hdr->no_output_of_prior_pics_flag;
  } else {
    curr_pic_->no_output_of_prior_pics_flag_ = false;
  }

  if ((slice_hdr->nal_unit_type == H265NALU::RASL_N ||
       slice_hdr->nal_unit_type == H265NALU::RASL_R) &&
      curr_pic_->no_rasl_output_flag_) {
    curr_pic_->pic_output_flag_ = false;
  } else {
    curr_pic_->pic_output_flag_ = slice_hdr->pic_output_flag;
  }
}

void H265Decoder::CalcPictureOrderCount(const H265PPS* pps,
                                        const H265SliceHeader* slice_hdr) {
  // 8.3.1 Decoding process for picture order count.
  curr_pic_->valid_for_prev_tid0_pic_ =
      !slice_hdr->temporal_id &&
      (slice_hdr->nal_unit_type < H265NALU::RADL_N ||
       slice_hdr->nal_unit_type > H265NALU::RSV_VCL_N14);
  curr_pic_->slice_pic_order_cnt_lsb_ = slice_hdr->slice_pic_order_cnt_lsb;

  // Calculate POC for current picture.
  if ((!slice_hdr->irap_pic || !curr_pic_->no_rasl_output_flag_) &&
      prev_tid0_pic_) {
    const int prev_pic_order_cnt_lsb = prev_tid0_pic_->slice_pic_order_cnt_lsb_;
    const int prev_pic_order_cnt_msb = prev_tid0_pic_->pic_order_cnt_msb_;
    if ((slice_hdr->slice_pic_order_cnt_lsb < prev_pic_order_cnt_lsb) &&
        ((prev_pic_order_cnt_lsb - slice_hdr->slice_pic_order_cnt_lsb) >=
         (max_pic_order_cnt_lsb_ / 2))) {
      curr_pic_->pic_order_cnt_msb_ =
          prev_pic_order_cnt_msb + max_pic_order_cnt_lsb_;
    } else if ((slice_hdr->slice_pic_order_cnt_lsb > prev_pic_order_cnt_lsb) &&
               ((slice_hdr->slice_pic_order_cnt_lsb - prev_pic_order_cnt_lsb) >
                (max_pic_order_cnt_lsb_ / 2))) {
      curr_pic_->pic_order_cnt_msb_ =
          prev_pic_order_cnt_msb - max_pic_order_cnt_lsb_;
    } else {
      curr_pic_->pic_order_cnt_msb_ = prev_pic_order_cnt_msb;
    }
  } else {
    curr_pic_->pic_order_cnt_msb_ = 0;
  }
  curr_pic_->pic_order_cnt_val_ =
      curr_pic_->pic_order_cnt_msb_ + slice_hdr->slice_pic_order_cnt_lsb;
}

bool H265Decoder::CalcRefPicPocs(const H265SPS* sps,
                                 const H265PPS* pps,
                                 const H265SliceHeader* slice_hdr) {
  if (slice_hdr->nal_unit_type == H265NALU::IDR_W_RADL ||
      slice_hdr->nal_unit_type == H265NALU::IDR_N_LP) {
    num_poc_st_curr_before_ = num_poc_st_curr_after_ = num_poc_st_foll_ =
        num_poc_lt_curr_ = num_poc_lt_foll_ = 0;
    return true;
  }

  // 8.3.2 - NOTE 2
  const H265StRefPicSet& curr_st_ref_pic_set = slice_hdr->GetStRefPicSet(sps);

  // Equation 8-5.
  int i, j, k;
  for (i = 0, j = 0, k = 0; i < curr_st_ref_pic_set.num_negative_pics; ++i) {
    base::CheckedNumeric<int> poc = curr_pic_->pic_order_cnt_val_;
    poc += curr_st_ref_pic_set.delta_poc_s0[i];
    if (!poc.IsValid()) {
      LOG(ERROR) << "Invalid POC";
      return false;
    }
    if (curr_st_ref_pic_set.used_by_curr_pic_s0[i]) {
      poc_st_curr_before_[j++] = poc.ValueOrDefault(0);
    } else {
      poc_st_foll_[k++] = poc.ValueOrDefault(0);
    }
  }
  num_poc_st_curr_before_ = j;
  for (i = 0, j = 0; i < curr_st_ref_pic_set.num_positive_pics; ++i) {
    base::CheckedNumeric<int> poc = curr_pic_->pic_order_cnt_val_;
    poc += curr_st_ref_pic_set.delta_poc_s1[i];
    if (!poc.IsValid()) {
      LOG(ERROR) << "Invalid POC";
      return false;
    }
    if (curr_st_ref_pic_set.used_by_curr_pic_s1[i]) {
      poc_st_curr_after_[j++] = poc.ValueOrDefault(0);
    } else {
      poc_st_foll_[k++] = poc.ValueOrDefault(0);
    }
  }
  num_poc_st_curr_after_ = j;
  num_poc_st_foll_ = k;
  for (i = 0, j = 0, k = 0;
       i < slice_hdr->num_long_term_sps + slice_hdr->num_long_term_pics; ++i) {
    base::CheckedNumeric<int> poc_lt = slice_hdr->poc_lsb_lt[i];
    if (slice_hdr->delta_poc_msb_present_flag[i]) {
      poc_lt += curr_pic_->pic_order_cnt_val_;
      base::CheckedNumeric<int> poc_delta =
          slice_hdr->delta_poc_msb_cycle_lt[i];
      poc_delta *= max_pic_order_cnt_lsb_;
      if (!poc_delta.IsValid()) {
        LOG(ERROR) << "Invalid POC";
        return false;
      }
      poc_lt -= poc_delta.ValueOrDefault(0);
      poc_lt -= curr_pic_->pic_order_cnt_val_ & (max_pic_order_cnt_lsb_ - 1);
    }
    if (!poc_lt.IsValid()) {
      LOG(ERROR) << "Invalid POC";
      return false;
    }
    if (slice_hdr->used_by_curr_pic_lt[i]) {
      poc_lt_curr_[j] = poc_lt.ValueOrDefault(0);
      curr_delta_poc_msb_present_flag_[j++] =
          slice_hdr->delta_poc_msb_present_flag[i];
    } else {
      poc_lt_foll_[k] = poc_lt.ValueOrDefault(0);
      foll_delta_poc_msb_present_flag_[k++] =
          slice_hdr->delta_poc_msb_present_flag[i];
    }
  }
  num_poc_lt_curr_ = j;
  num_poc_lt_foll_ = k;

  // Check conformance for |num_pic_total_curr|.
  if (slice_hdr->nal_unit_type == H265NALU::CRA_NUT ||
      (slice_hdr->nal_unit_type >= H265NALU::BLA_W_LP &&
       slice_hdr->nal_unit_type <= H265NALU::BLA_N_LP)) {
    if (slice_hdr->num_pic_total_curr) {
      LOG(ERROR) << "Invalid value for num_pic_total_curr";
      return false;
    }
  } else if ((slice_hdr->IsBSlice() || slice_hdr->IsPSlice()) &&
             !slice_hdr->num_pic_total_curr) {
    LOG(ERROR) << "Invalid value for num_pic_total_curr";
    return false;
  }

  return true;
}

bool H265Decoder::BuildRefPicLists(const H265SPS* sps,
                                   const H265PPS* pps,
                                   const H265SliceHeader* slice_hdr) {
  ref_pic_set_lt_curr_.clear();
  ref_pic_set_lt_curr_.resize(kMaxDpbSize);
  ref_pic_set_st_curr_after_.clear();
  ref_pic_set_st_curr_after_.resize(kMaxDpbSize);
  ref_pic_set_st_curr_before_.clear();
  ref_pic_set_st_curr_before_.resize(kMaxDpbSize);
  scoped_refptr<H265Picture> ref_pic_set_lt_foll[kMaxDpbSize];
  scoped_refptr<H265Picture> ref_pic_set_st_foll[kMaxDpbSize];

  // Mark everything in the DPB as unused for reference now. When we determine
  // the pics in the ref list, then we will mark them appropriately.
  dpb_.MarkAllUnusedForReference();

  // Equation 8-6.
  // We may be missing reference pictures, if so then we just don't specify
  // them and let the accelerator deal with the missing reference pictures
  // which is covered in the spec.
  int total_ref_pics = 0;
  for (int i = 0; i < num_poc_lt_curr_; ++i) {
    if (!curr_delta_poc_msb_present_flag_[i]) {
      ref_pic_set_lt_curr_[i] = dpb_.GetPicByPocMaskedAndMark(
          poc_lt_curr_[i], sps->max_pic_order_cnt_lsb - 1,
          H265Picture::kLongTermCurr);
    } else {
      ref_pic_set_lt_curr_[i] =
          dpb_.GetPicByPocAndMark(poc_lt_curr_[i], H265Picture::kLongTermCurr);
    }

    if (ref_pic_set_lt_curr_[i]) {
      total_ref_pics++;
    }
  }
  for (int i = 0; i < num_poc_lt_foll_; ++i) {
    if (!foll_delta_poc_msb_present_flag_[i]) {
      ref_pic_set_lt_foll[i] = dpb_.GetPicByPocMaskedAndMark(
          poc_lt_foll_[i], sps->max_pic_order_cnt_lsb - 1,
          H265Picture::kLongTermFoll);
    } else {
      ref_pic_set_lt_foll[i] =
          dpb_.GetPicByPocAndMark(poc_lt_foll_[i], H265Picture::kLongTermFoll);
    }

    if (ref_pic_set_lt_foll[i]) {
      total_ref_pics++;
    }
  }

  // Equation 8-7.
  for (int i = 0; i < num_poc_st_curr_before_; ++i) {
    ref_pic_set_st_curr_before_[i] = dpb_.GetPicByPocAndMark(
        poc_st_curr_before_[i], H265Picture::kShortTermCurrBefore);

    if (ref_pic_set_st_curr_before_[i]) {
      total_ref_pics++;
    }
  }
  for (int i = 0; i < num_poc_st_curr_after_; ++i) {
    ref_pic_set_st_curr_after_[i] = dpb_.GetPicByPocAndMark(
        poc_st_curr_after_[i], H265Picture::kShortTermCurrAfter);
    if (ref_pic_set_st_curr_after_[i]) {
      total_ref_pics++;
    }
  }
  for (int i = 0; i < num_poc_st_foll_; ++i) {
    ref_pic_set_st_foll[i] =
        dpb_.GetPicByPocAndMark(poc_st_foll_[i], H265Picture::kShortTermFoll);
    if (ref_pic_set_st_foll[i]) {
      total_ref_pics++;
    }
  }

  // Verify that the total number of reference pictures in the DPB matches the
  // total count of reference pics. This ensures that a picture is not in more
  // than one list, per the spec.
  if (dpb_.GetReferencePicCount() != total_ref_pics) {
    LOG(ERROR) << "Conformance problem, reference pic is in more than one list";
    return false;
  }

  ref_pic_list_.clear();
  dpb_.AppendReferencePics(&ref_pic_list_);
  ref_pic_list0_.clear();
  ref_pic_list1_.clear();

  // 8.3.3 Generation of unavailable reference pictures is something we do not
  // need to handle here. It's handled by the accelerator itself when we do not
  // specify a reference picture that it needs.

  if (slice_hdr->IsPSlice() || slice_hdr->IsBSlice()) {
    // 8.3.4 Decoding process for reference picture lists construction
    int num_rps_curr_temp_list0 =
        std::max(slice_hdr->num_ref_idx_l0_active_minus1 + 1,
                 slice_hdr->num_pic_total_curr);
    scoped_refptr<H265Picture> ref_pic_list_temp0[kMaxDpbSize];

    // Equation 8-8.
    int r_idx = 0;
    while (r_idx < num_rps_curr_temp_list0) {
      for (int i = 0;
           i < num_poc_st_curr_before_ && r_idx < num_rps_curr_temp_list0;
           ++i, ++r_idx) {
        ref_pic_list_temp0[r_idx] = ref_pic_set_st_curr_before_[i];
      }
      for (int i = 0;
           i < num_poc_st_curr_after_ && r_idx < num_rps_curr_temp_list0;
           ++i, ++r_idx) {
        ref_pic_list_temp0[r_idx] = ref_pic_set_st_curr_after_[i];
      }
      for (int i = 0; i < num_poc_lt_curr_ && r_idx < num_rps_curr_temp_list0;
           ++i, ++r_idx) {
        ref_pic_list_temp0[r_idx] = ref_pic_set_lt_curr_[i];
      }
    }

    // Equation 8-9.
    for (r_idx = 0; r_idx <= slice_hdr->num_ref_idx_l0_active_minus1; ++r_idx) {
      ref_pic_list0_.push_back(
          slice_hdr->ref_pic_lists_modification
                  .ref_pic_list_modification_flag_l0
              ? ref_pic_list_temp0[slice_hdr->ref_pic_lists_modification
                                       .list_entry_l0[r_idx]]
              : ref_pic_list_temp0[r_idx]);
    }

    if (slice_hdr->IsBSlice()) {
      int num_rps_curr_temp_list1 =
          std::max(slice_hdr->num_ref_idx_l1_active_minus1 + 1,
                   slice_hdr->num_pic_total_curr);
      scoped_refptr<H265Picture> ref_pic_list_temp1[kMaxDpbSize];

      // Equation 8-10.
      r_idx = 0;
      while (r_idx < num_rps_curr_temp_list1) {
        for (int i = 0;
             i < num_poc_st_curr_after_ && r_idx < num_rps_curr_temp_list1;
             ++i, r_idx++) {
          ref_pic_list_temp1[r_idx] = ref_pic_set_st_curr_after_[i];
        }
        for (int i = 0;
             i < num_poc_st_curr_before_ && r_idx < num_rps_curr_temp_list1;
             ++i, r_idx++) {
          ref_pic_list_temp1[r_idx] = ref_pic_set_st_curr_before_[i];
        }
        for (int i = 0; i < num_poc_lt_curr_ && r_idx < num_rps_curr_temp_list1;
             ++i, r_idx++) {
          ref_pic_list_temp1[r_idx] = ref_pic_set_lt_curr_[i];
        }
      }

      // Equation 8-11.
      for (r_idx = 0; r_idx <= slice_hdr->num_ref_idx_l1_active_minus1;
           ++r_idx) {
        ref_pic_list1_.push_back(
            slice_hdr->ref_pic_lists_modification
                    .ref_pic_list_modification_flag_l1
                ? ref_pic_list_temp1[slice_hdr->ref_pic_lists_modification
                                         .list_entry_l1[r_idx]]
                : ref_pic_list_temp1[r_idx]);
      }
    }
  }

  return true;
}

bool H265Decoder::OutputPic(scoped_refptr<H265Picture> pic) {
  CHECK(!pic->outputted_);
  pic->outputted_ = true;
  VLOGF(4) << "Posting output task for POC: " << pic->pic_order_cnt_val_;

  frames_ready_to_be_outputted_.push(std::move(pic));

  return true;
}

bool H265Decoder::PerformDpbOperations(const H265SPS* sps) {
  // C.5.2.2
  if (curr_pic_->irap_pic_ && curr_pic_->no_rasl_output_flag_ &&
      !curr_pic_->first_picture_) {
    if (!curr_pic_->no_output_of_prior_pics_flag_) {
      OutputAllRemainingPics();
    }
    dpb_.Clear();
  } else {
    int num_to_output;
    do {
      dpb_.DeleteUnused();
      // Get all pictures that haven't been outputted yet.
      H265Picture::Vector not_outputted;
      dpb_.AppendPendingOutputPics(&not_outputted);
      // Sort in output order.
      std::sort(not_outputted.begin(), not_outputted.end(), POCAscCompare());

      // Calculate how many pictures we need to output.
      num_to_output = 0;
      int highest_tid = sps->sps_max_sub_layers_minus1;
      num_to_output = std::max(num_to_output,
                               static_cast<int>(not_outputted.size()) -
                                   sps->sps_max_num_reorder_pics[highest_tid]);
      num_to_output =
          std::max(num_to_output,
                   static_cast<int>(dpb_.Size()) -
                       sps->sps_max_dec_pic_buffering_minus1[highest_tid]);

      num_to_output =
          std::min(num_to_output, static_cast<int>(not_outputted.size()));
      if (!num_to_output && dpb_.IsFull()) {
        // This is wrong, we should try to output pictures until we can clear
        // one from the DPB. This is better than failing, but we then may end up
        // with something out of order.
        LOG(ERROR) << "Forcibly outputting pictures to make room in DPB.";
        for (const auto& pic : not_outputted) {
          num_to_output++;
          if (pic->reference_type_ == H265Picture::kUnused) {
            break;
          }
        }
      }

      not_outputted.resize(num_to_output);
      for (auto& pic : not_outputted) {
        OutputPic(pic);
      }

      dpb_.DeleteUnused();
    } while (dpb_.IsFull() && num_to_output);
  }

  if (dpb_.IsFull()) {
    LOG(ERROR) << "Could not free up space in DPB for current picture";
    return false;
  }

  // Put the current pic in the DPB.
  curr_pic_->reference_type_ = H265Picture::kShortTermFoll;
  dpb_.StorePicture(curr_pic_);
  return true;
}

bool H265Decoder::StartNewFrame(const H265SliceHeader* slice_hdr) {
  CHECK(curr_pic_.get());
  DCHECK(slice_hdr);

  curr_pps_id_ = slice_hdr->slice_pic_parameter_set_id;
  const H265PPS* pps = parser_->GetPPS(curr_pps_id_);
  DCHECK(pps);

  curr_sps_id_ = pps->pps_seq_parameter_set_id;
  const H265SPS* sps = parser_->GetSPS(curr_sps_id_);
  DCHECK(sps);

  // If this is from a retry for submitting frame meta data,
  // we should not redo all of these calculations.
  if (!curr_pic_->processed_) {
    // Copy slice/pps variables we need to the picture.
    curr_pic_->nal_unit_type_ = curr_nalu_->nal_unit_type;
    curr_pic_->irap_pic_ = slice_hdr->irap_pic;

    curr_pic_->ref_ts_nsec_ = global_pic_count_;

    // TODO(b/261127809): Set the color space for the picture.

    CalcPicOutputFlags(slice_hdr);
    CalcPictureOrderCount(pps, slice_hdr);
    {
      const bool success = CalcRefPicPocs(sps, pps, slice_hdr);
      CHECK(success) << "CalcRefPicPocs function failed.";
    }
    {
      const bool success = BuildRefPicLists(sps, pps, slice_hdr);
      CHECK(success) << "BuildRefPicLists function failed.";
    }
    {
      const bool success = PerformDpbOperations(sps);
      CHECK(success) << "PerformDpbOperations function failed.";
    }
    curr_pic_->processed_ = true;
  }

  struct v4l2_ctrl_hevc_sps v4l2_sps = SetupSPSCtrl(sps);
  struct v4l2_ctrl_hevc_pps v4l2_pps = SetupPPSCtrl(pps);
  struct v4l2_ctrl_hevc_scaling_matrix v4l2_matrix =
      SetupScalingMatrix(sps, pps);
  struct v4l2_ctrl_hevc_decode_params v4l2_decode_params = SetupDecodeParams(
      slice_hdr, ref_pic_list_, ref_pic_set_lt_curr_,
      ref_pic_set_st_curr_after_, ref_pic_set_st_curr_before_, curr_pic_);

  struct v4l2_ext_control ctrls[] = {
      {.id = V4L2_CID_STATELESS_HEVC_SPS,
       .size = sizeof(v4l2_sps),
       .ptr = &v4l2_sps},
      {.id = V4L2_CID_STATELESS_HEVC_PPS,
       .size = sizeof(v4l2_pps),
       .ptr = &v4l2_pps},
      {.id = V4L2_CID_STATELESS_HEVC_SCALING_MATRIX,
       .size = sizeof(v4l2_matrix),
       .ptr = &v4l2_matrix},
      {.id = V4L2_CID_STATELESS_HEVC_DECODE_PARAMS,
       .size = sizeof(v4l2_decode_params),
       .ptr = &v4l2_decode_params}};

  struct v4l2_ext_controls ext_ctrls = {
      .count = (sizeof(ctrls) / sizeof(ctrls[0])), .controls = ctrls};

  v4l2_ioctl_->SetExtCtrls(OUTPUT_queue_, &ext_ctrls, is_OUTPUT_queue_new_);

  return true;
}

std::set<uint32_t> H265Decoder::GetReusableReferenceSlots(
    const MmappedBuffer& buffer,
    const std::set<uint32_t>& queued_buffer_ids) {
  std::set<uint32_t> reusable_buffer_slots = {};
  const std::set<uint32_t> buffer_ids_in_use = dpb_.GetBufferIdsInUse();

  for (uint32_t i = 0; i < CAPTURE_queue_->num_buffers(); i++) {
    // Checks that buffer ID is not currently queued in the CAPTURE queue
    // and that it is not the same buffer ID previously written to.
    const bool is_element_in_that_list = (queued_buffer_ids.count(i) != 0);
    if (is_element_in_that_list) {
      continue;
    }

    const bool is_buffer_previously_written_to = (i == buffer.buffer_id());
    if (is_buffer_previously_written_to) {
      continue;
    }

    const bool is_buffer_in_use = base::Contains(buffer_ids_in_use, i);
    if (is_buffer_in_use) {
      continue;
    }

    reusable_buffer_slots.insert(i);
  }

  return reusable_buffer_slots;
}

bool H265Decoder::DecodePicture() {
  CHECK(curr_pic_.get());

  if (!v4l2_ioctl_->QBuf(OUTPUT_queue_, 0)) {
    VLOG(4) << "VIDIOC_QBUF failed for OUTPUT queue.";
    return VideoDecoder::kError;
  }

  v4l2_ioctl_->MediaRequestIocQueue(OUTPUT_queue_);

  if (!CAPTURE_queue_) {
    CreateCAPTUREQueue(kNumberOfBuffersInCaptureQueue);
  }

  v4l2_ioctl_->WaitForRequestCompletion(OUTPUT_queue_);

  uint32_t CAPTURE_id;
  v4l2_ioctl_->DQBuf(CAPTURE_queue_, &CAPTURE_id);

  CAPTURE_queue_->DequeueBufferId(CAPTURE_id);
  curr_pic_->capture_queue_buffer_id_ = CAPTURE_id;

  const std::set<uint32_t> reusable_buffer_slots =
      GetReusableReferenceSlots(*CAPTURE_queue_->GetBuffer(CAPTURE_id).get(),
                                CAPTURE_queue_->queued_buffer_ids());

  for (const auto reusable_buffer_slot : reusable_buffer_slots) {
    if (!v4l2_ioctl_->QBuf(CAPTURE_queue_, reusable_buffer_slot)) {
      VLOGF(4) << "VIDIOC_QBUF failed for CAPTURE queue.";
      continue;
    }
    // Keeps track of which indices are currently queued in the
    // CAPTURE queue. This will be used to determine which indices
    // can/cannot be refreshed.
    CAPTURE_queue_->QueueBufferId(reusable_buffer_slot);
  }

  uint32_t OUTPUT_queue_buffer_id;
  v4l2_ioctl_->DQBuf(OUTPUT_queue_, &OUTPUT_queue_buffer_id);
  v4l2_ioctl_->MediaRequestIocReinit(OUTPUT_queue_);

  global_pic_count_++;

  return true;
}

void H265Decoder::FinishPicture(scoped_refptr<H265Picture> pic) {
  // 8.3.1
  if (pic->valid_for_prev_tid0_pic_) {
    prev_tid0_pic_ = pic;
  }

  ref_pic_list_.clear();
  ref_pic_list0_.clear();
  ref_pic_list1_.clear();
  ref_pic_set_lt_curr_.clear();
  ref_pic_set_st_curr_after_.clear();
  ref_pic_set_st_curr_before_.clear();

  last_slice_hdr_.reset();
}

void H265Decoder::FinishPrevFrameIfPresent() {
  // If we already have a frame waiting to be decoded, decode it and finish.
  if (curr_pic_) {
    const bool success = DecodePicture();
    CHECK(success) << "Failed to decode the current picture.";

    FinishPicture(std::move(curr_pic_));
  }
}

H265Decoder::DecodeResult H265Decoder::Decode() {
  DCHECK(state_ != kError) << "Decoder in error state";

  while (frames_ready_to_be_outputted_.empty()) {
    if (!curr_nalu_) {
      curr_nalu_ = std::make_unique<H265NALU>();

      const H265Parser::Result parse_result =
          parser_->AdvanceToNextNALU(curr_nalu_.get());
      if (parse_result == H265Parser::kEOStream) {
        curr_nalu_.reset();

        FinishPrevFrameIfPresent();

        is_stream_over_ = true;
        return kRanOutOfStreamData;
      }

      CHECK_EQ(parse_result, H265Parser::kOk);
      VLOGF(4) << "New NALU: " << static_cast<int>(curr_nalu_->nal_unit_type);
    }

    // 8.1.2 We only want nuh_layer_id of zero.
    if (curr_nalu_->nuh_layer_id) {
      VLOGF(4) << "Skipping NALU with nuh_layer_id="
               << curr_nalu_->nuh_layer_id;
      curr_nalu_.reset();
      continue;
    }

    switch (curr_nalu_->nal_unit_type) {
      case H265NALU::BLA_W_LP:  // fallthrough
      case H265NALU::BLA_W_RADL:
      case H265NALU::BLA_N_LP:
      case H265NALU::IDR_W_RADL:
      case H265NALU::IDR_N_LP:
      case H265NALU::TRAIL_N:
      case H265NALU::TRAIL_R:
      case H265NALU::TSA_N:
      case H265NALU::TSA_R:
      case H265NALU::STSA_N:
      case H265NALU::STSA_R:
      case H265NALU::RADL_N:
      case H265NALU::RADL_R:
      case H265NALU::RASL_N:
      case H265NALU::RASL_R:
      case H265NALU::CRA_NUT: {
        if (!curr_slice_hdr_) {
          curr_slice_hdr_ = std::make_unique<H265SliceHeader>();

          const H265Parser::Result parse_result = parser_->ParseSliceHeader(
              *curr_nalu_, curr_slice_hdr_.get(), last_slice_hdr_.get());
          if (parse_result == H265Parser::kMissingParameterSet) {
            // We may still be able to recover if we skip until we find the
            // SPS/PPS.
            curr_slice_hdr_.reset();
            last_slice_hdr_.reset();
            break;
          }

          CHECK_EQ(parse_result, H265Parser::kOk);
          if (!curr_slice_hdr_->irap_pic && state_ == kAfterReset) {
            // We can't resume from a non-IRAP picture.
            curr_slice_hdr_.reset();
            last_slice_hdr_.reset();
            break;
          }

          state_ = kTryPreprocessCurrentSlice;
          if (curr_slice_hdr_->irap_pic) {
            bool need_new_buffers = false;

            const bool success = ProcessPPS(
                curr_slice_hdr_->slice_pic_parameter_set_id, &need_new_buffers);
            CHECK(success) << "Failed to process PPS.";

            if (need_new_buffers) {
              curr_pic_ = nullptr;
              return kConfigChange;
            }
          }
        }

        if (state_ == kTryPreprocessCurrentSlice) {
          const bool success = PreprocessCurrentSlice();
          CHECK(success) << "Failed to pre-process current slice.";

          state_ = kEnsurePicture;
        }

        if (state_ == kEnsurePicture) {
          if (curr_pic_) {
            // |curr_pic_| already exists, so skip to ProcessCurrentSlice().
            state_ = kTryCurrentSlice;
          } else {
            curr_pic_ = base::MakeRefCounted<H265Picture>();
            CHECK(curr_pic_) << "Ran out of surfaces.";

            curr_pic_->first_picture_ = first_picture_;
            first_picture_ = false;
            state_ = kTryNewFrame;
          }
        }

        if (state_ == kTryNewFrame) {
          const bool success = StartNewFrame(curr_slice_hdr_.get());
          CHECK(success) << "Failed to start processing a new frame.";

          state_ = kTryCurrentSlice;
        }

        DCHECK_EQ(state_, kTryCurrentSlice);
        const bool success = ProcessCurrentSlice();
        CHECK(success) << "Failed to process current slice.";

        state_ = kDecoding;
        last_slice_hdr_ = std::move(curr_slice_hdr_);
        curr_slice_hdr_.reset();
        break;
      }
      case H265NALU::SPS_NUT: {
        FinishPrevFrameIfPresent();

        int sps_id;

        const H265Parser::Result parse_result = parser_->ParseSPS(&sps_id);
        CHECK_EQ(parse_result, H265Parser::kOk)
            << "Parser Failed to parse SPS.";

        break;
      }
      case H265NALU::PPS_NUT: {
        FinishPrevFrameIfPresent();

        int pps_id;

        const H265Parser::Result parse_result =
            parser_->ParsePPS(*curr_nalu_, &pps_id);
        CHECK_EQ(parse_result, H265Parser::kOk)
            << "Parser Failed to parse PPS.";

        if (curr_pps_id_ == -1) {
          bool need_new_buffers = false;

          const bool success_process_pps =
              ProcessPPS(pps_id, &need_new_buffers);
          CHECK(success_process_pps) << "Failed to process PPS.";

          if (need_new_buffers) {
            curr_nalu_.reset();
            return kConfigChange;
          }
        }

        break;
      }
      case H265NALU::EOS_NUT:
        first_picture_ = true;
        [[fallthrough]];
      case H265NALU::EOB_NUT:  // fallthrough
      case H265NALU::AUD_NUT:
      case H265NALU::RSV_NVCL41:
      case H265NALU::RSV_NVCL42:
      case H265NALU::RSV_NVCL43:
      case H265NALU::RSV_NVCL44:
      case H265NALU::UNSPEC48:
      case H265NALU::UNSPEC49:
      case H265NALU::UNSPEC50:
      case H265NALU::UNSPEC51:
      case H265NALU::UNSPEC52:
      case H265NALU::UNSPEC53:
      case H265NALU::UNSPEC54:
      case H265NALU::UNSPEC55: {
        FinishPrevFrameIfPresent();
        break;
      }
      default:
        VLOGF(4) << "Skipping NALU type: " << curr_nalu_->nal_unit_type;
        break;
    }

    VLOGF(4) << "Finished with current NALU type: "
             << static_cast<int>(curr_nalu_->nal_unit_type);
    curr_nalu_.reset();
  }

  return kOk;
}

VideoDecoder::Result H265Decoder::DecodeNextFrame(const int frame_number,
                                                  std::vector<uint8_t>& y_plane,
                                                  std::vector<uint8_t>& u_plane,
                                                  std::vector<uint8_t>& v_plane,
                                                  gfx::Size& size,
                                                  BitDepth& bit_depth) {
  if (!parser_) {
    parser_ = std::make_unique<H265Parser>();
    parser_->SetStream(data_stream_->data(), data_stream_->length());
  }

  is_OUTPUT_queue_new_ = !OUTPUT_queue_;
  if (!OUTPUT_queue_) {
    CreateOUTPUTQueue(kDriverCodecFourcc);
  }

  while (!is_stream_over_ && frames_ready_to_be_outputted_.empty()) {
    Decode();
  }

  if (is_stream_over_) {
    OutputAllRemainingPics();
  }

  if (is_stream_over_ && frames_ready_to_be_outputted_.empty()) {
    return VideoDecoder::kEOStream;
  }

  if (frames_ready_to_be_outputted_.empty()) {
    NOTREACHED() << "Stream ended with |frames_ready_to_be_outputted_| empty";
  }

  scoped_refptr<H265Picture> picture = frames_ready_to_be_outputted_.front();
  last_decoded_frame_visible_ = picture->outputted_;
  scoped_refptr<MmappedBuffer> buffer =
      CAPTURE_queue_->GetBuffer(picture->capture_queue_buffer_id_);

  bit_depth =
      ConvertToYUV(y_plane, u_plane, v_plane, OUTPUT_queue_->resolution(),
                   buffer->mmapped_planes(), CAPTURE_queue_->resolution(),
                   CAPTURE_queue_->fourcc());

  frames_ready_to_be_outputted_.pop();

  return VideoDecoder::kOk;
}
}  // namespace v4l2_test
}  // namespace media