1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
|
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "media/gpu/v4l2/test/h265_decoder.h"
#include <linux/videodev2.h>
#include "base/containers/contains.h"
#include "base/memory/ptr_util.h"
#include "base/memory/scoped_refptr.h"
#include "base/notreached.h"
#include "media/gpu/macros.h"
#include "media/parsers/h265_parser.h"
namespace media {
namespace v4l2_test {
namespace {
constexpr uint32_t kDriverCodecFourcc = V4L2_PIX_FMT_HEVC_SLICE;
// TODO(b/261127809): Find number of buffers in CAPTURE queue dynamically for
// H.265. |18| is the minimum number of buffers in the CAPTURE queue required to
// successfully decode all ITU-T H.264 baseline and main bitstreams.
constexpr uint32_t kNumberOfBuffersInCaptureQueue = 18;
struct POCAscCompare {
bool operator()(const scoped_refptr<media::v4l2_test::H265Picture>& a,
const scoped_refptr<media::v4l2_test::H265Picture>& b) const {
return a->pic_order_cnt_val_ < b->pic_order_cnt_val_;
}
};
// Gets bit depth info from SPS
bool ParseBitDepth(const H265SPS& sps, uint8_t& bit_depth) {
// Spec 7.4.3.2.1
// See spec at http://www.itu.int/rec/T-REC-H.265
if (sps.bit_depth_y != sps.bit_depth_c) {
LOG(ERROR) << "Different bit depths among planes is not supported";
return false;
}
bit_depth = base::checked_cast<uint8_t>(sps.bit_depth_y);
return true;
}
// Checks bit depth is supported with the given HEVC profile
bool IsValidBitDepth(uint8_t bit_depth, VideoCodecProfile profile) {
switch (profile) {
// Spec A.3.2
case HEVCPROFILE_MAIN:
return bit_depth == 8u;
// Spec A.3.3
case HEVCPROFILE_MAIN10:
return bit_depth == 8u || bit_depth == 10u;
// Spec A.3.4
case HEVCPROFILE_MAIN_STILL_PICTURE:
return bit_depth == 8u;
// Spec A.3.5
case HEVCPROFILE_REXT:
return bit_depth == 8u || bit_depth == 10u || bit_depth == 12u ||
bit_depth == 14u || bit_depth == 16u;
// Spec A.3.6
case HEVCPROFILE_HIGH_THROUGHPUT:
return bit_depth == 8u || bit_depth == 10u || bit_depth == 14u ||
bit_depth == 16u;
// Spec G.11.1.1
case HEVCPROFILE_MULTIVIEW_MAIN:
return bit_depth == 8u;
// Spec H.11.1.1
case HEVCPROFILE_SCALABLE_MAIN:
return bit_depth == 8u || bit_depth == 10u;
// Spec I.11.1.1
case HEVCPROFILE_3D_MAIN:
return bit_depth == 8u;
// Spec A.3.7
case HEVCPROFILE_SCREEN_EXTENDED:
return bit_depth == 8u || bit_depth == 10u;
// Spec H.11.1.2
case HEVCPROFILE_SCALABLE_REXT:
return bit_depth == 8u || bit_depth == 12u || bit_depth == 16u;
// Spec A.3.8
case HEVCPROFILE_HIGH_THROUGHPUT_SCREEN_EXTENDED:
return bit_depth == 8u || bit_depth == 10u || bit_depth == 14u;
default:
LOG(ERROR) << "Invalid profile specified for H265";
return false;
}
}
// Translates decoder SPS structure into |v4l2_ctrl_hevc_sps| structure.
v4l2_ctrl_hevc_sps SetupSPSCtrl(const H265SPS* sps) {
struct v4l2_ctrl_hevc_sps v4l2_sps;
memset(&v4l2_sps, 0, sizeof(v4l2_sps));
int highest_tid = sps->sps_max_sub_layers_minus1;
// Translates values using the |v4l2_ctrl_hevc_sps| struct order
v4l2_sps.video_parameter_set_id = sps->sps_video_parameter_set_id;
v4l2_sps.seq_parameter_set_id = sps->sps_seq_parameter_set_id;
#define SPS_TO_V4L2SPS(a) v4l2_sps.a = sps->a
SPS_TO_V4L2SPS(pic_width_in_luma_samples);
SPS_TO_V4L2SPS(pic_height_in_luma_samples);
SPS_TO_V4L2SPS(bit_depth_luma_minus8);
SPS_TO_V4L2SPS(bit_depth_chroma_minus8);
SPS_TO_V4L2SPS(log2_max_pic_order_cnt_lsb_minus4);
#define SPS_TO_V4L2SPS_FROM_ARRAY(a) v4l2_sps.a = sps->a[highest_tid];
SPS_TO_V4L2SPS_FROM_ARRAY(sps_max_dec_pic_buffering_minus1);
SPS_TO_V4L2SPS_FROM_ARRAY(sps_max_num_reorder_pics);
SPS_TO_V4L2SPS_FROM_ARRAY(sps_max_latency_increase_plus1);
#undef SPS_TO_V4L2SPS_FROM_ARRAY
SPS_TO_V4L2SPS(log2_min_luma_coding_block_size_minus3);
SPS_TO_V4L2SPS(log2_diff_max_min_luma_coding_block_size);
SPS_TO_V4L2SPS(log2_min_luma_transform_block_size_minus2);
SPS_TO_V4L2SPS(log2_diff_max_min_luma_transform_block_size);
SPS_TO_V4L2SPS(max_transform_hierarchy_depth_inter);
SPS_TO_V4L2SPS(max_transform_hierarchy_depth_intra);
SPS_TO_V4L2SPS(pcm_sample_bit_depth_luma_minus1);
SPS_TO_V4L2SPS(pcm_sample_bit_depth_chroma_minus1);
SPS_TO_V4L2SPS(log2_min_pcm_luma_coding_block_size_minus3);
SPS_TO_V4L2SPS(log2_diff_max_min_pcm_luma_coding_block_size);
SPS_TO_V4L2SPS(num_short_term_ref_pic_sets);
SPS_TO_V4L2SPS(num_long_term_ref_pics_sps);
SPS_TO_V4L2SPS(chroma_format_idc);
SPS_TO_V4L2SPS(sps_max_sub_layers_minus1);
#undef SPS_TO_V4L2SPS
#define SET_V4L2_SPS_FLAG_IF(cond, flag) \
v4l2_sps.flags |= ((sps->cond) ? (flag) : 0)
SET_V4L2_SPS_FLAG_IF(separate_colour_plane_flag,
V4L2_HEVC_SPS_FLAG_SEPARATE_COLOUR_PLANE);
SET_V4L2_SPS_FLAG_IF(scaling_list_enabled_flag,
V4L2_HEVC_SPS_FLAG_SCALING_LIST_ENABLED);
SET_V4L2_SPS_FLAG_IF(amp_enabled_flag, V4L2_HEVC_SPS_FLAG_AMP_ENABLED);
SET_V4L2_SPS_FLAG_IF(sample_adaptive_offset_enabled_flag,
V4L2_HEVC_SPS_FLAG_SAMPLE_ADAPTIVE_OFFSET);
SET_V4L2_SPS_FLAG_IF(pcm_enabled_flag, V4L2_HEVC_SPS_FLAG_PCM_ENABLED);
SET_V4L2_SPS_FLAG_IF(pcm_loop_filter_disabled_flag,
V4L2_HEVC_SPS_FLAG_PCM_LOOP_FILTER_DISABLED);
SET_V4L2_SPS_FLAG_IF(long_term_ref_pics_present_flag,
V4L2_HEVC_SPS_FLAG_LONG_TERM_REF_PICS_PRESENT);
SET_V4L2_SPS_FLAG_IF(sps_temporal_mvp_enabled_flag,
V4L2_HEVC_SPS_FLAG_SPS_TEMPORAL_MVP_ENABLED);
SET_V4L2_SPS_FLAG_IF(strong_intra_smoothing_enabled_flag,
V4L2_HEVC_SPS_FLAG_STRONG_INTRA_SMOOTHING_ENABLED);
#undef SET_V4L2_SPS_FLAG_IF
return v4l2_sps;
}
// Translates decoder PPS structure into |v4l2_ctrl_hevc_pps| structure.
v4l2_ctrl_hevc_pps SetupPPSCtrl(const H265PPS* pps) {
struct v4l2_ctrl_hevc_pps v4l2_pps;
memset(&v4l2_pps, 0, sizeof(v4l2_pps));
// Translates values using the |v4l2_ctrl_hevc_pps| struct order
#define PPS_TO_V4L2PPS(a) v4l2_pps.a = pps->a
v4l2_pps.pic_parameter_set_id = pps->pps_pic_parameter_set_id;
PPS_TO_V4L2PPS(num_extra_slice_header_bits);
PPS_TO_V4L2PPS(num_ref_idx_l0_default_active_minus1);
PPS_TO_V4L2PPS(num_ref_idx_l1_default_active_minus1);
PPS_TO_V4L2PPS(init_qp_minus26);
PPS_TO_V4L2PPS(diff_cu_qp_delta_depth);
PPS_TO_V4L2PPS(pps_cb_qp_offset);
PPS_TO_V4L2PPS(pps_cr_qp_offset);
if (pps->tiles_enabled_flag) {
PPS_TO_V4L2PPS(num_tile_columns_minus1);
PPS_TO_V4L2PPS(num_tile_rows_minus1);
if (!pps->uniform_spacing_flag) {
static_assert(std::size(v4l2_pps.column_width_minus1) >=
std::extent<decltype(pps->column_width_minus1)>(),
"column_width_minus1 arrays must be same size");
for (int i = 0; i <= pps->num_tile_columns_minus1; ++i) {
v4l2_pps.column_width_minus1[i] = pps->column_width_minus1[i];
}
static_assert(std::size(v4l2_pps.row_height_minus1) >=
std::extent<decltype(pps->row_height_minus1)>(),
"row_height_minus1 arrays must be same size");
for (int i = 0; i <= pps->num_tile_rows_minus1; ++i) {
v4l2_pps.row_height_minus1[i] = pps->row_height_minus1[i];
}
}
}
PPS_TO_V4L2PPS(pps_beta_offset_div2);
PPS_TO_V4L2PPS(pps_tc_offset_div2);
PPS_TO_V4L2PPS(log2_parallel_merge_level_minus2);
#undef PPS_TO_V4L2PPS
#define SET_V4L2_PPS_FLAG_IF(cond, flag) \
v4l2_pps.flags |= ((pps->cond) ? (flag) : 0)
SET_V4L2_PPS_FLAG_IF(dependent_slice_segments_enabled_flag,
V4L2_HEVC_PPS_FLAG_DEPENDENT_SLICE_SEGMENT_ENABLED);
SET_V4L2_PPS_FLAG_IF(output_flag_present_flag,
V4L2_HEVC_PPS_FLAG_OUTPUT_FLAG_PRESENT);
SET_V4L2_PPS_FLAG_IF(sign_data_hiding_enabled_flag,
V4L2_HEVC_PPS_FLAG_SIGN_DATA_HIDING_ENABLED);
SET_V4L2_PPS_FLAG_IF(cabac_init_present_flag,
V4L2_HEVC_PPS_FLAG_CABAC_INIT_PRESENT);
SET_V4L2_PPS_FLAG_IF(constrained_intra_pred_flag,
V4L2_HEVC_PPS_FLAG_CONSTRAINED_INTRA_PRED);
SET_V4L2_PPS_FLAG_IF(transform_skip_enabled_flag,
V4L2_HEVC_PPS_FLAG_TRANSFORM_SKIP_ENABLED);
SET_V4L2_PPS_FLAG_IF(cu_qp_delta_enabled_flag,
V4L2_HEVC_PPS_FLAG_CU_QP_DELTA_ENABLED);
SET_V4L2_PPS_FLAG_IF(pps_slice_chroma_qp_offsets_present_flag,
V4L2_HEVC_PPS_FLAG_PPS_SLICE_CHROMA_QP_OFFSETS_PRESENT);
SET_V4L2_PPS_FLAG_IF(weighted_pred_flag, V4L2_HEVC_PPS_FLAG_WEIGHTED_PRED);
SET_V4L2_PPS_FLAG_IF(weighted_bipred_flag,
V4L2_HEVC_PPS_FLAG_WEIGHTED_BIPRED);
SET_V4L2_PPS_FLAG_IF(transquant_bypass_enabled_flag,
V4L2_HEVC_PPS_FLAG_TRANSQUANT_BYPASS_ENABLED);
SET_V4L2_PPS_FLAG_IF(tiles_enabled_flag, V4L2_HEVC_PPS_FLAG_TILES_ENABLED);
SET_V4L2_PPS_FLAG_IF(entropy_coding_sync_enabled_flag,
V4L2_HEVC_PPS_FLAG_ENTROPY_CODING_SYNC_ENABLED);
SET_V4L2_PPS_FLAG_IF(loop_filter_across_tiles_enabled_flag,
V4L2_HEVC_PPS_FLAG_LOOP_FILTER_ACROSS_TILES_ENABLED);
SET_V4L2_PPS_FLAG_IF(
pps_loop_filter_across_slices_enabled_flag,
V4L2_HEVC_PPS_FLAG_PPS_LOOP_FILTER_ACROSS_SLICES_ENABLED);
SET_V4L2_PPS_FLAG_IF(deblocking_filter_override_enabled_flag,
V4L2_HEVC_PPS_FLAG_DEBLOCKING_FILTER_OVERRIDE_ENABLED);
SET_V4L2_PPS_FLAG_IF(pps_deblocking_filter_disabled_flag,
V4L2_HEVC_PPS_FLAG_PPS_DISABLE_DEBLOCKING_FILTER);
SET_V4L2_PPS_FLAG_IF(lists_modification_present_flag,
V4L2_HEVC_PPS_FLAG_LISTS_MODIFICATION_PRESENT);
SET_V4L2_PPS_FLAG_IF(
slice_segment_header_extension_present_flag,
V4L2_HEVC_PPS_FLAG_SLICE_SEGMENT_HEADER_EXTENSION_PRESENT);
SET_V4L2_PPS_FLAG_IF(deblocking_filter_control_present_flag,
V4L2_HEVC_PPS_FLAG_DEBLOCKING_FILTER_CONTROL_PRESENT);
SET_V4L2_PPS_FLAG_IF(uniform_spacing_flag,
V4L2_HEVC_PPS_FLAG_UNIFORM_SPACING);
#undef SET_V4L2_PPS_FLAG_IF
return v4l2_pps;
}
// Builds the |v4l2_ctrl_hevc_scaling_matrix| structure and checks against SPS
// and PPS scaling matrix sizes.
v4l2_ctrl_hevc_scaling_matrix SetupScalingMatrix(const H265SPS* sps,
const H265PPS* pps) {
struct v4l2_ctrl_hevc_scaling_matrix v4l2_scaling_matrix;
memset(&v4l2_scaling_matrix, 0, sizeof(v4l2_scaling_matrix));
struct H265ScalingListData checker;
static_assert(
std::size(checker.scaling_list_dc_coef_16x16) ==
std::size(v4l2_scaling_matrix.scaling_list_dc_coef_16x16) &&
std::size(checker.scaling_list_dc_coef_32x32) / 3 ==
std::size(v4l2_scaling_matrix.scaling_list_dc_coef_32x32) &&
std::size(checker.scaling_list_4x4) ==
std::size(v4l2_scaling_matrix.scaling_list_4x4) &&
std::size(checker.scaling_list_4x4[0]) ==
std::size(v4l2_scaling_matrix.scaling_list_4x4[0]) &&
std::size(checker.scaling_list_8x8) ==
std::size(v4l2_scaling_matrix.scaling_list_8x8) &&
std::size(checker.scaling_list_8x8[0]) ==
std::size(v4l2_scaling_matrix.scaling_list_8x8[0]) &&
std::size(checker.scaling_list_16x16) ==
std::size(v4l2_scaling_matrix.scaling_list_16x16) &&
std::size(checker.scaling_list_16x16[0]) ==
std::size(v4l2_scaling_matrix.scaling_list_16x16[0]) &&
std::size(checker.scaling_list_32x32) / 3 ==
std::size(v4l2_scaling_matrix.scaling_list_32x32) &&
std::size(checker.scaling_list_32x32[0]) ==
std::size(v4l2_scaling_matrix.scaling_list_32x32[0]),
"scaling_list_data must be of correct size");
if (sps->scaling_list_enabled_flag) {
// We already populated the scaling list data with default values in the
// parser if they are not present in the stream, so just fill them all in.
const auto& scaling_list = pps->pps_scaling_list_data_present_flag
? pps->scaling_list_data
: sps->scaling_list_data;
for (size_t i = 0; i < H265ScalingListData::kNumScalingListMatrices; ++i) {
for (size_t j = 0; j < H265ScalingListData::kScalingListSizeId0Count;
++j) {
v4l2_scaling_matrix.scaling_list_4x4[i][j] =
scaling_list.GetScalingList4x4EntryInRasterOrder(/*matrix_id=*/i,
/*raster_idx=*/j);
}
}
for (size_t i = 0; i < H265ScalingListData::kNumScalingListMatrices; ++i) {
for (size_t j = 0; j < H265ScalingListData::kScalingListSizeId1To3Count;
++j) {
v4l2_scaling_matrix.scaling_list_8x8[i][j] =
scaling_list.GetScalingList8x8EntryInRasterOrder(/*matrix_id=*/i,
/*raster_idx=*/j);
}
}
for (size_t i = 0; i < H265ScalingListData::kNumScalingListMatrices; ++i) {
for (size_t j = 0; j < H265ScalingListData::kScalingListSizeId1To3Count;
++j) {
v4l2_scaling_matrix.scaling_list_16x16[i][j] =
scaling_list.GetScalingList16x16EntryInRasterOrder(
/*matrix_id=*/i,
/*raster_idx=*/j);
}
}
for (size_t i = 0; i < H265ScalingListData::kNumScalingListMatrices;
i += 3) {
for (size_t j = 0; j < H265ScalingListData::kScalingListSizeId1To3Count;
++j) {
v4l2_scaling_matrix.scaling_list_32x32[i / 3][j] =
scaling_list.GetScalingList32x32EntryInRasterOrder(
/*matrix_id=*/i,
/*raster_idx=*/j);
}
}
memcpy(v4l2_scaling_matrix.scaling_list_dc_coef_16x16,
scaling_list.scaling_list_dc_coef_16x16,
sizeof(v4l2_scaling_matrix.scaling_list_dc_coef_16x16));
v4l2_scaling_matrix.scaling_list_dc_coef_32x32[0] =
scaling_list.scaling_list_dc_coef_32x32[0];
v4l2_scaling_matrix.scaling_list_dc_coef_32x32[1] =
scaling_list.scaling_list_dc_coef_32x32[3];
}
return v4l2_scaling_matrix;
}
struct v4l2_ctrl_hevc_decode_params SetupDecodeParams(
const H265SliceHeader* slice_hdr,
const H265Picture::Vector& ref_pic_list,
const H265Picture::Vector& ref_pic_set_lt_curr,
const H265Picture::Vector& ref_pic_set_st_curr_after,
const H265Picture::Vector& ref_pic_set_st_curr_before,
scoped_refptr<H265Picture> curr_pic) {
struct v4l2_ctrl_hevc_decode_params v4l2_decode_params;
memset(&v4l2_decode_params, 0, sizeof(v4l2_decode_params));
v4l2_decode_params.pic_order_cnt_val = curr_pic->pic_order_cnt_val_,
v4l2_decode_params.short_term_ref_pic_set_size =
static_cast<__u16>(slice_hdr->st_rps_bits),
v4l2_decode_params.long_term_ref_pic_set_size =
static_cast<__u16>(slice_hdr->lt_rps_bits),
#if BUILDFLAG(IS_CHROMEOS)
// .num_delta_pocs_of_ref_rps_idx is upstream but not yet pulled
// into linux build sysroot.
// TODO(b/261127809): Remove once linux-libc-dev package is updated to
// at least v6.5 in the sysroots.
v4l2_decode_params.num_delta_pocs_of_ref_rps_idx =
static_cast<__u8>(slice_hdr->st_ref_pic_set.rps_idx_num_delta_pocs),
#endif
v4l2_decode_params.flags = static_cast<__u64>(
(curr_pic->irap_pic_ ? V4L2_HEVC_DECODE_PARAM_FLAG_IRAP_PIC : 0) |
((curr_pic->nal_unit_type_ >= H265NALU::IDR_W_RADL &&
curr_pic->nal_unit_type_ <= H265NALU::IDR_N_LP)
? V4L2_HEVC_DECODE_PARAM_FLAG_IDR_PIC
: 0) |
(curr_pic->no_output_of_prior_pics_flag_
? V4L2_HEVC_DECODE_PARAM_FLAG_NO_OUTPUT_OF_PRIOR
: 0)),
memset(v4l2_decode_params.dpb, 0, sizeof(v4l2_decode_params.dpb));
unsigned int i = 0;
for (const auto& pic : ref_pic_list) {
if (i >= V4L2_HEVC_DPB_ENTRIES_NUM_MAX) {
VLOGF(1) << "Invalid DPB size";
break;
}
if (!pic) {
continue;
}
// TODO(b/261127809): Handle |!pic->IsUnused()| case
constexpr size_t kTimestampToNanoSecs = 1000;
struct v4l2_hevc_dpb_entry& entry = v4l2_decode_params.dpb[i++];
entry = {
.timestamp = pic->ref_ts_nsec_ * kTimestampToNanoSecs,
.flags = static_cast<__u8>(
pic->IsLongTermRef() ? V4L2_HEVC_DPB_ENTRY_LONG_TERM_REFERENCE : 0),
.field_pic = V4L2_HEVC_SEI_PIC_STRUCT_FRAME, // No interlaced support
.pic_order_cnt_val = pic->pic_order_cnt_val_,
};
}
v4l2_decode_params.num_active_dpb_entries = i;
// Set defaults
std::fill_n(v4l2_decode_params.poc_st_curr_before,
std::size(v4l2_decode_params.poc_st_curr_before), 0xff);
std::fill_n(v4l2_decode_params.poc_st_curr_after,
std::size(v4l2_decode_params.poc_st_curr_after), 0xff);
std::fill_n(v4l2_decode_params.poc_lt_curr,
std::size(v4l2_decode_params.poc_lt_curr), 0xff);
i = 0;
for (const auto& pic : ref_pic_set_st_curr_before) {
if (i >= V4L2_HEVC_DPB_ENTRIES_NUM_MAX) {
VLOGF(1) << "Invalid DPB size";
break;
}
if (!pic) {
continue;
}
for (unsigned int j = 0; j < v4l2_decode_params.num_active_dpb_entries;
j++) {
if (pic->pic_order_cnt_val_ ==
v4l2_decode_params.dpb[j].pic_order_cnt_val) {
v4l2_decode_params.poc_st_curr_before[i++] = j;
break;
}
}
}
v4l2_decode_params.num_poc_st_curr_before = i;
i = 0;
for (const auto& pic : ref_pic_set_st_curr_after) {
if (i >= V4L2_HEVC_DPB_ENTRIES_NUM_MAX) {
VLOGF(1) << "Invalid DPB size";
break;
}
if (!pic) {
continue;
}
for (unsigned int j = 0; j < v4l2_decode_params.num_active_dpb_entries;
j++) {
if (pic->pic_order_cnt_val_ ==
v4l2_decode_params.dpb[j].pic_order_cnt_val) {
v4l2_decode_params.poc_st_curr_after[i++] = j;
break;
}
}
}
v4l2_decode_params.num_poc_st_curr_after = i;
i = 0;
for (const auto& pic : ref_pic_set_lt_curr) {
if (i >= V4L2_HEVC_DPB_ENTRIES_NUM_MAX) {
VLOGF(1) << "Invalid DPB size";
break;
}
if (!pic) {
continue;
}
for (unsigned int j = 0; j < v4l2_decode_params.num_active_dpb_entries;
j++) {
if (pic->pic_order_cnt_val_ ==
v4l2_decode_params.dpb[j].pic_order_cnt_val) {
v4l2_decode_params.poc_lt_curr[i++] = j;
break;
}
}
}
v4l2_decode_params.num_poc_lt_curr = i;
return v4l2_decode_params;
}
}
H265Decoder::H265Decoder(std::unique_ptr<V4L2IoctlShim> v4l2_ioctl,
gfx::Size display_resolution,
const base::MemoryMappedFile& data_stream)
: VideoDecoder::VideoDecoder(std::move(v4l2_ioctl), display_resolution),
data_stream_(data_stream) {}
H265Decoder::~H265Decoder() = default;
// static
std::unique_ptr<H265Decoder> H265Decoder::Create(
const base::MemoryMappedFile& stream) {
auto parser = std::make_unique<H265Parser>();
parser->SetStream(stream.data(), stream.length());
// Advance through NALUs until the first SPS. The start of the decodable
// data in an H.265 bistreams starts with an SPS.
while (true) {
H265NALU nalu;
H265Parser::Result res = parser->AdvanceToNextNALU(&nalu);
if (res != H265Parser::kOk) {
LOG(ERROR) << "Unable to find SPS in stream";
return nullptr;
}
if (nalu.nal_unit_type == H265NALU::SPS_NUT) {
break;
}
}
int sps_id;
const H265Parser::Result parse_result = parser->ParseSPS(&sps_id);
CHECK_EQ(parse_result, H265Parser::kOk);
const H265SPS* sps = parser->GetSPS(sps_id);
CHECK(sps);
std::optional<gfx::Size> coded_size = sps->GetCodedSize();
CHECK(coded_size);
LOG(INFO) << "H.265 coded size : " << coded_size->ToString();
auto v4l2_ioctl = std::make_unique<V4L2IoctlShim>(kDriverCodecFourcc);
return base::WrapUnique(
new H265Decoder(std::move(v4l2_ioctl), coded_size.value(), stream));
}
bool H265Decoder::OutputAllRemainingPics() {
// Output all pictures that are waiting to be outputted.
H265Picture::Vector to_output;
dpb_.AppendPendingOutputPics(&to_output);
// Sort them by ascending POC to output in order.
std::sort(to_output.begin(), to_output.end(), POCAscCompare());
for (auto& pic : to_output) {
if (!OutputPic(std::move(pic))) {
return false;
}
}
return true;
}
bool H265Decoder::Flush() {
VLOGF(4) << "Decoder flush";
if (!OutputAllRemainingPics()) {
return false;
}
dpb_.Clear();
prev_tid0_pic_ = nullptr;
return true;
}
bool H265Decoder::ProcessPPS(int pps_id, bool* need_new_buffers) {
VLOGF(4) << "Processing PPS id:" << pps_id;
const H265PPS* pps = parser_->GetPPS(pps_id);
DCHECK(pps);
const H265SPS* sps = parser_->GetSPS(pps->pps_seq_parameter_set_id);
DCHECK(sps);
if (need_new_buffers) {
*need_new_buffers = false;
}
gfx::Size new_pic_size = sps->GetCodedSize();
gfx::Rect new_visible_rect = sps->GetVisibleRect();
if (visible_rect_ != new_visible_rect) {
VLOGF(4) << "New visible rect: " << new_visible_rect.ToString();
visible_rect_ = new_visible_rect;
}
VideoChromaSampling new_chroma_sampling = sps->GetChromaSampling();
if (new_chroma_sampling != VideoChromaSampling::k420) {
LOG(ERROR) << "Only YUV 4:2:0 is supported";
return false;
}
// Equation 7-8
max_pic_order_cnt_lsb_ =
std::pow(2, sps->log2_max_pic_order_cnt_lsb_minus4 + 4);
VideoCodecProfile new_profile = H265Parser::ProfileIDCToVideoCodecProfile(
sps->profile_tier_level.general_profile_idc);
uint8_t new_bit_depth = 0;
if (!ParseBitDepth(*sps, new_bit_depth)) {
return false;
}
if (!IsValidBitDepth(new_bit_depth, new_profile)) {
LOG(ERROR) << "Invalid bit depth=" << base::strict_cast<int>(new_bit_depth)
<< ", profile=" << GetProfileName(new_profile);
return false;
}
if (pic_size_ != new_pic_size || dpb_.MaxNumPics() != sps->max_dpb_size ||
profile_ != new_profile || bit_depth_ != new_bit_depth ||
chroma_sampling_ != new_chroma_sampling) {
CHECK(Flush()) << "Failed to flush the decoder.";
LOG(INFO) << "Codec profile: " << GetProfileName(new_profile)
<< ", level(x30): " << sps->profile_tier_level.general_level_idc
<< ", DPB size: " << sps->max_dpb_size
<< ", Picture size: " << new_pic_size.ToString()
<< ", bit_depth: " << base::strict_cast<int>(new_bit_depth)
<< ", chroma_sampling_format: "
<< VideoChromaSamplingToString(new_chroma_sampling);
profile_ = new_profile;
bit_depth_ = new_bit_depth;
pic_size_ = new_pic_size;
chroma_sampling_ = new_chroma_sampling;
dpb_.SetMaxNumPics(sps->max_dpb_size);
if (need_new_buffers) {
*need_new_buffers = true;
}
}
return true;
}
bool H265Decoder::PreprocessCurrentSlice() {
const H265SliceHeader* slice_hdr = curr_slice_hdr_.get();
CHECK(slice_hdr);
if (slice_hdr->first_slice_segment_in_pic_flag) {
// New picture, so first finish the previous one before processing it.
FinishPrevFrameIfPresent();
CHECK(!curr_pic_);
}
return true;
}
bool H265Decoder::ProcessCurrentSlice() {
CHECK(curr_pic_);
const H265SliceHeader* slice_hdr = curr_slice_hdr_.get();
CHECK(slice_hdr);
const H265SPS* sps = parser_->GetSPS(curr_sps_id_);
CHECK(sps);
const H265PPS* pps = parser_->GetPPS(curr_pps_id_);
CHECK(pps);
// Adds a start code prefix, a unique sequence of 3 bytes equal to 0x000001
// embedded in the byte stream as a prefix to each NAL unit. All hardwares
// supported in ChromeOS require the start code prefix.
std::vector<uint8_t> slice_data = {0x00, 0x00, 0x01};
slice_data.insert(
slice_data.end(), curr_slice_hdr_->nalu_data.get(),
(curr_slice_hdr_->nalu_data + curr_slice_hdr_->nalu_size).get());
scoped_refptr<MmappedBuffer> OUTPUT_buffer = OUTPUT_queue_->GetBuffer(0);
OUTPUT_buffer->mmapped_planes()[0].CopyInSlice(
&slice_data[0], slice_data.size(),
curr_slice_hdr_->first_slice_segment_in_pic_flag);
OUTPUT_buffer->set_frame_number(global_pic_count_);
return true;
}
void H265Decoder::CalcPicOutputFlags(const H265SliceHeader* slice_hdr) {
if (slice_hdr->irap_pic) {
// 8.1.3
curr_pic_->no_rasl_output_flag_ =
(curr_nalu_->nal_unit_type >= H265NALU::BLA_W_LP &&
curr_nalu_->nal_unit_type <= H265NALU::IDR_N_LP) ||
curr_pic_->first_picture_;
} else {
curr_pic_->no_rasl_output_flag_ = false;
}
// C.5.2.2
if (slice_hdr->irap_pic && curr_pic_->no_rasl_output_flag_ &&
!curr_pic_->first_picture_) {
curr_pic_->no_output_of_prior_pics_flag_ =
(slice_hdr->nal_unit_type == H265NALU::CRA_NUT) ||
slice_hdr->no_output_of_prior_pics_flag;
} else {
curr_pic_->no_output_of_prior_pics_flag_ = false;
}
if ((slice_hdr->nal_unit_type == H265NALU::RASL_N ||
slice_hdr->nal_unit_type == H265NALU::RASL_R) &&
curr_pic_->no_rasl_output_flag_) {
curr_pic_->pic_output_flag_ = false;
} else {
curr_pic_->pic_output_flag_ = slice_hdr->pic_output_flag;
}
}
void H265Decoder::CalcPictureOrderCount(const H265PPS* pps,
const H265SliceHeader* slice_hdr) {
// 8.3.1 Decoding process for picture order count.
curr_pic_->valid_for_prev_tid0_pic_ =
!slice_hdr->temporal_id &&
(slice_hdr->nal_unit_type < H265NALU::RADL_N ||
slice_hdr->nal_unit_type > H265NALU::RSV_VCL_N14);
curr_pic_->slice_pic_order_cnt_lsb_ = slice_hdr->slice_pic_order_cnt_lsb;
// Calculate POC for current picture.
if ((!slice_hdr->irap_pic || !curr_pic_->no_rasl_output_flag_) &&
prev_tid0_pic_) {
const int prev_pic_order_cnt_lsb = prev_tid0_pic_->slice_pic_order_cnt_lsb_;
const int prev_pic_order_cnt_msb = prev_tid0_pic_->pic_order_cnt_msb_;
if ((slice_hdr->slice_pic_order_cnt_lsb < prev_pic_order_cnt_lsb) &&
((prev_pic_order_cnt_lsb - slice_hdr->slice_pic_order_cnt_lsb) >=
(max_pic_order_cnt_lsb_ / 2))) {
curr_pic_->pic_order_cnt_msb_ =
prev_pic_order_cnt_msb + max_pic_order_cnt_lsb_;
} else if ((slice_hdr->slice_pic_order_cnt_lsb > prev_pic_order_cnt_lsb) &&
((slice_hdr->slice_pic_order_cnt_lsb - prev_pic_order_cnt_lsb) >
(max_pic_order_cnt_lsb_ / 2))) {
curr_pic_->pic_order_cnt_msb_ =
prev_pic_order_cnt_msb - max_pic_order_cnt_lsb_;
} else {
curr_pic_->pic_order_cnt_msb_ = prev_pic_order_cnt_msb;
}
} else {
curr_pic_->pic_order_cnt_msb_ = 0;
}
curr_pic_->pic_order_cnt_val_ =
curr_pic_->pic_order_cnt_msb_ + slice_hdr->slice_pic_order_cnt_lsb;
}
bool H265Decoder::CalcRefPicPocs(const H265SPS* sps,
const H265PPS* pps,
const H265SliceHeader* slice_hdr) {
if (slice_hdr->nal_unit_type == H265NALU::IDR_W_RADL ||
slice_hdr->nal_unit_type == H265NALU::IDR_N_LP) {
num_poc_st_curr_before_ = num_poc_st_curr_after_ = num_poc_st_foll_ =
num_poc_lt_curr_ = num_poc_lt_foll_ = 0;
return true;
}
// 8.3.2 - NOTE 2
const H265StRefPicSet& curr_st_ref_pic_set = slice_hdr->GetStRefPicSet(sps);
// Equation 8-5.
int i, j, k;
for (i = 0, j = 0, k = 0; i < curr_st_ref_pic_set.num_negative_pics; ++i) {
base::CheckedNumeric<int> poc = curr_pic_->pic_order_cnt_val_;
poc += curr_st_ref_pic_set.delta_poc_s0[i];
if (!poc.IsValid()) {
LOG(ERROR) << "Invalid POC";
return false;
}
if (curr_st_ref_pic_set.used_by_curr_pic_s0[i]) {
poc_st_curr_before_[j++] = poc.ValueOrDefault(0);
} else {
poc_st_foll_[k++] = poc.ValueOrDefault(0);
}
}
num_poc_st_curr_before_ = j;
for (i = 0, j = 0; i < curr_st_ref_pic_set.num_positive_pics; ++i) {
base::CheckedNumeric<int> poc = curr_pic_->pic_order_cnt_val_;
poc += curr_st_ref_pic_set.delta_poc_s1[i];
if (!poc.IsValid()) {
LOG(ERROR) << "Invalid POC";
return false;
}
if (curr_st_ref_pic_set.used_by_curr_pic_s1[i]) {
poc_st_curr_after_[j++] = poc.ValueOrDefault(0);
} else {
poc_st_foll_[k++] = poc.ValueOrDefault(0);
}
}
num_poc_st_curr_after_ = j;
num_poc_st_foll_ = k;
for (i = 0, j = 0, k = 0;
i < slice_hdr->num_long_term_sps + slice_hdr->num_long_term_pics; ++i) {
base::CheckedNumeric<int> poc_lt = slice_hdr->poc_lsb_lt[i];
if (slice_hdr->delta_poc_msb_present_flag[i]) {
poc_lt += curr_pic_->pic_order_cnt_val_;
base::CheckedNumeric<int> poc_delta =
slice_hdr->delta_poc_msb_cycle_lt[i];
poc_delta *= max_pic_order_cnt_lsb_;
if (!poc_delta.IsValid()) {
LOG(ERROR) << "Invalid POC";
return false;
}
poc_lt -= poc_delta.ValueOrDefault(0);
poc_lt -= curr_pic_->pic_order_cnt_val_ & (max_pic_order_cnt_lsb_ - 1);
}
if (!poc_lt.IsValid()) {
LOG(ERROR) << "Invalid POC";
return false;
}
if (slice_hdr->used_by_curr_pic_lt[i]) {
poc_lt_curr_[j] = poc_lt.ValueOrDefault(0);
curr_delta_poc_msb_present_flag_[j++] =
slice_hdr->delta_poc_msb_present_flag[i];
} else {
poc_lt_foll_[k] = poc_lt.ValueOrDefault(0);
foll_delta_poc_msb_present_flag_[k++] =
slice_hdr->delta_poc_msb_present_flag[i];
}
}
num_poc_lt_curr_ = j;
num_poc_lt_foll_ = k;
// Check conformance for |num_pic_total_curr|.
if (slice_hdr->nal_unit_type == H265NALU::CRA_NUT ||
(slice_hdr->nal_unit_type >= H265NALU::BLA_W_LP &&
slice_hdr->nal_unit_type <= H265NALU::BLA_N_LP)) {
if (slice_hdr->num_pic_total_curr) {
LOG(ERROR) << "Invalid value for num_pic_total_curr";
return false;
}
} else if ((slice_hdr->IsBSlice() || slice_hdr->IsPSlice()) &&
!slice_hdr->num_pic_total_curr) {
LOG(ERROR) << "Invalid value for num_pic_total_curr";
return false;
}
return true;
}
bool H265Decoder::BuildRefPicLists(const H265SPS* sps,
const H265PPS* pps,
const H265SliceHeader* slice_hdr) {
ref_pic_set_lt_curr_.clear();
ref_pic_set_lt_curr_.resize(kMaxDpbSize);
ref_pic_set_st_curr_after_.clear();
ref_pic_set_st_curr_after_.resize(kMaxDpbSize);
ref_pic_set_st_curr_before_.clear();
ref_pic_set_st_curr_before_.resize(kMaxDpbSize);
scoped_refptr<H265Picture> ref_pic_set_lt_foll[kMaxDpbSize];
scoped_refptr<H265Picture> ref_pic_set_st_foll[kMaxDpbSize];
// Mark everything in the DPB as unused for reference now. When we determine
// the pics in the ref list, then we will mark them appropriately.
dpb_.MarkAllUnusedForReference();
// Equation 8-6.
// We may be missing reference pictures, if so then we just don't specify
// them and let the accelerator deal with the missing reference pictures
// which is covered in the spec.
int total_ref_pics = 0;
for (int i = 0; i < num_poc_lt_curr_; ++i) {
if (!curr_delta_poc_msb_present_flag_[i]) {
ref_pic_set_lt_curr_[i] = dpb_.GetPicByPocMaskedAndMark(
poc_lt_curr_[i], sps->max_pic_order_cnt_lsb - 1,
H265Picture::kLongTermCurr);
} else {
ref_pic_set_lt_curr_[i] =
dpb_.GetPicByPocAndMark(poc_lt_curr_[i], H265Picture::kLongTermCurr);
}
if (ref_pic_set_lt_curr_[i]) {
total_ref_pics++;
}
}
for (int i = 0; i < num_poc_lt_foll_; ++i) {
if (!foll_delta_poc_msb_present_flag_[i]) {
ref_pic_set_lt_foll[i] = dpb_.GetPicByPocMaskedAndMark(
poc_lt_foll_[i], sps->max_pic_order_cnt_lsb - 1,
H265Picture::kLongTermFoll);
} else {
ref_pic_set_lt_foll[i] =
dpb_.GetPicByPocAndMark(poc_lt_foll_[i], H265Picture::kLongTermFoll);
}
if (ref_pic_set_lt_foll[i]) {
total_ref_pics++;
}
}
// Equation 8-7.
for (int i = 0; i < num_poc_st_curr_before_; ++i) {
ref_pic_set_st_curr_before_[i] = dpb_.GetPicByPocAndMark(
poc_st_curr_before_[i], H265Picture::kShortTermCurrBefore);
if (ref_pic_set_st_curr_before_[i]) {
total_ref_pics++;
}
}
for (int i = 0; i < num_poc_st_curr_after_; ++i) {
ref_pic_set_st_curr_after_[i] = dpb_.GetPicByPocAndMark(
poc_st_curr_after_[i], H265Picture::kShortTermCurrAfter);
if (ref_pic_set_st_curr_after_[i]) {
total_ref_pics++;
}
}
for (int i = 0; i < num_poc_st_foll_; ++i) {
ref_pic_set_st_foll[i] =
dpb_.GetPicByPocAndMark(poc_st_foll_[i], H265Picture::kShortTermFoll);
if (ref_pic_set_st_foll[i]) {
total_ref_pics++;
}
}
// Verify that the total number of reference pictures in the DPB matches the
// total count of reference pics. This ensures that a picture is not in more
// than one list, per the spec.
if (dpb_.GetReferencePicCount() != total_ref_pics) {
LOG(ERROR) << "Conformance problem, reference pic is in more than one list";
return false;
}
ref_pic_list_.clear();
dpb_.AppendReferencePics(&ref_pic_list_);
ref_pic_list0_.clear();
ref_pic_list1_.clear();
// 8.3.3 Generation of unavailable reference pictures is something we do not
// need to handle here. It's handled by the accelerator itself when we do not
// specify a reference picture that it needs.
if (slice_hdr->IsPSlice() || slice_hdr->IsBSlice()) {
// 8.3.4 Decoding process for reference picture lists construction
int num_rps_curr_temp_list0 =
std::max(slice_hdr->num_ref_idx_l0_active_minus1 + 1,
slice_hdr->num_pic_total_curr);
scoped_refptr<H265Picture> ref_pic_list_temp0[kMaxDpbSize];
// Equation 8-8.
int r_idx = 0;
while (r_idx < num_rps_curr_temp_list0) {
for (int i = 0;
i < num_poc_st_curr_before_ && r_idx < num_rps_curr_temp_list0;
++i, ++r_idx) {
ref_pic_list_temp0[r_idx] = ref_pic_set_st_curr_before_[i];
}
for (int i = 0;
i < num_poc_st_curr_after_ && r_idx < num_rps_curr_temp_list0;
++i, ++r_idx) {
ref_pic_list_temp0[r_idx] = ref_pic_set_st_curr_after_[i];
}
for (int i = 0; i < num_poc_lt_curr_ && r_idx < num_rps_curr_temp_list0;
++i, ++r_idx) {
ref_pic_list_temp0[r_idx] = ref_pic_set_lt_curr_[i];
}
}
// Equation 8-9.
for (r_idx = 0; r_idx <= slice_hdr->num_ref_idx_l0_active_minus1; ++r_idx) {
ref_pic_list0_.push_back(
slice_hdr->ref_pic_lists_modification
.ref_pic_list_modification_flag_l0
? ref_pic_list_temp0[slice_hdr->ref_pic_lists_modification
.list_entry_l0[r_idx]]
: ref_pic_list_temp0[r_idx]);
}
if (slice_hdr->IsBSlice()) {
int num_rps_curr_temp_list1 =
std::max(slice_hdr->num_ref_idx_l1_active_minus1 + 1,
slice_hdr->num_pic_total_curr);
scoped_refptr<H265Picture> ref_pic_list_temp1[kMaxDpbSize];
// Equation 8-10.
r_idx = 0;
while (r_idx < num_rps_curr_temp_list1) {
for (int i = 0;
i < num_poc_st_curr_after_ && r_idx < num_rps_curr_temp_list1;
++i, r_idx++) {
ref_pic_list_temp1[r_idx] = ref_pic_set_st_curr_after_[i];
}
for (int i = 0;
i < num_poc_st_curr_before_ && r_idx < num_rps_curr_temp_list1;
++i, r_idx++) {
ref_pic_list_temp1[r_idx] = ref_pic_set_st_curr_before_[i];
}
for (int i = 0; i < num_poc_lt_curr_ && r_idx < num_rps_curr_temp_list1;
++i, r_idx++) {
ref_pic_list_temp1[r_idx] = ref_pic_set_lt_curr_[i];
}
}
// Equation 8-11.
for (r_idx = 0; r_idx <= slice_hdr->num_ref_idx_l1_active_minus1;
++r_idx) {
ref_pic_list1_.push_back(
slice_hdr->ref_pic_lists_modification
.ref_pic_list_modification_flag_l1
? ref_pic_list_temp1[slice_hdr->ref_pic_lists_modification
.list_entry_l1[r_idx]]
: ref_pic_list_temp1[r_idx]);
}
}
}
return true;
}
bool H265Decoder::OutputPic(scoped_refptr<H265Picture> pic) {
CHECK(!pic->outputted_);
pic->outputted_ = true;
VLOGF(4) << "Posting output task for POC: " << pic->pic_order_cnt_val_;
frames_ready_to_be_outputted_.push(std::move(pic));
return true;
}
bool H265Decoder::PerformDpbOperations(const H265SPS* sps) {
// C.5.2.2
if (curr_pic_->irap_pic_ && curr_pic_->no_rasl_output_flag_ &&
!curr_pic_->first_picture_) {
if (!curr_pic_->no_output_of_prior_pics_flag_) {
OutputAllRemainingPics();
}
dpb_.Clear();
} else {
int num_to_output;
do {
dpb_.DeleteUnused();
// Get all pictures that haven't been outputted yet.
H265Picture::Vector not_outputted;
dpb_.AppendPendingOutputPics(¬_outputted);
// Sort in output order.
std::sort(not_outputted.begin(), not_outputted.end(), POCAscCompare());
// Calculate how many pictures we need to output.
num_to_output = 0;
int highest_tid = sps->sps_max_sub_layers_minus1;
num_to_output = std::max(num_to_output,
static_cast<int>(not_outputted.size()) -
sps->sps_max_num_reorder_pics[highest_tid]);
num_to_output =
std::max(num_to_output,
static_cast<int>(dpb_.Size()) -
sps->sps_max_dec_pic_buffering_minus1[highest_tid]);
num_to_output =
std::min(num_to_output, static_cast<int>(not_outputted.size()));
if (!num_to_output && dpb_.IsFull()) {
// This is wrong, we should try to output pictures until we can clear
// one from the DPB. This is better than failing, but we then may end up
// with something out of order.
LOG(ERROR) << "Forcibly outputting pictures to make room in DPB.";
for (const auto& pic : not_outputted) {
num_to_output++;
if (pic->reference_type_ == H265Picture::kUnused) {
break;
}
}
}
not_outputted.resize(num_to_output);
for (auto& pic : not_outputted) {
OutputPic(pic);
}
dpb_.DeleteUnused();
} while (dpb_.IsFull() && num_to_output);
}
if (dpb_.IsFull()) {
LOG(ERROR) << "Could not free up space in DPB for current picture";
return false;
}
// Put the current pic in the DPB.
curr_pic_->reference_type_ = H265Picture::kShortTermFoll;
dpb_.StorePicture(curr_pic_);
return true;
}
bool H265Decoder::StartNewFrame(const H265SliceHeader* slice_hdr) {
CHECK(curr_pic_.get());
DCHECK(slice_hdr);
curr_pps_id_ = slice_hdr->slice_pic_parameter_set_id;
const H265PPS* pps = parser_->GetPPS(curr_pps_id_);
DCHECK(pps);
curr_sps_id_ = pps->pps_seq_parameter_set_id;
const H265SPS* sps = parser_->GetSPS(curr_sps_id_);
DCHECK(sps);
// If this is from a retry for submitting frame meta data,
// we should not redo all of these calculations.
if (!curr_pic_->processed_) {
// Copy slice/pps variables we need to the picture.
curr_pic_->nal_unit_type_ = curr_nalu_->nal_unit_type;
curr_pic_->irap_pic_ = slice_hdr->irap_pic;
curr_pic_->ref_ts_nsec_ = global_pic_count_;
// TODO(b/261127809): Set the color space for the picture.
CalcPicOutputFlags(slice_hdr);
CalcPictureOrderCount(pps, slice_hdr);
{
const bool success = CalcRefPicPocs(sps, pps, slice_hdr);
CHECK(success) << "CalcRefPicPocs function failed.";
}
{
const bool success = BuildRefPicLists(sps, pps, slice_hdr);
CHECK(success) << "BuildRefPicLists function failed.";
}
{
const bool success = PerformDpbOperations(sps);
CHECK(success) << "PerformDpbOperations function failed.";
}
curr_pic_->processed_ = true;
}
struct v4l2_ctrl_hevc_sps v4l2_sps = SetupSPSCtrl(sps);
struct v4l2_ctrl_hevc_pps v4l2_pps = SetupPPSCtrl(pps);
struct v4l2_ctrl_hevc_scaling_matrix v4l2_matrix =
SetupScalingMatrix(sps, pps);
struct v4l2_ctrl_hevc_decode_params v4l2_decode_params = SetupDecodeParams(
slice_hdr, ref_pic_list_, ref_pic_set_lt_curr_,
ref_pic_set_st_curr_after_, ref_pic_set_st_curr_before_, curr_pic_);
struct v4l2_ext_control ctrls[] = {
{.id = V4L2_CID_STATELESS_HEVC_SPS,
.size = sizeof(v4l2_sps),
.ptr = &v4l2_sps},
{.id = V4L2_CID_STATELESS_HEVC_PPS,
.size = sizeof(v4l2_pps),
.ptr = &v4l2_pps},
{.id = V4L2_CID_STATELESS_HEVC_SCALING_MATRIX,
.size = sizeof(v4l2_matrix),
.ptr = &v4l2_matrix},
{.id = V4L2_CID_STATELESS_HEVC_DECODE_PARAMS,
.size = sizeof(v4l2_decode_params),
.ptr = &v4l2_decode_params}};
struct v4l2_ext_controls ext_ctrls = {
.count = (sizeof(ctrls) / sizeof(ctrls[0])), .controls = ctrls};
v4l2_ioctl_->SetExtCtrls(OUTPUT_queue_, &ext_ctrls, is_OUTPUT_queue_new_);
return true;
}
std::set<uint32_t> H265Decoder::GetReusableReferenceSlots(
const MmappedBuffer& buffer,
const std::set<uint32_t>& queued_buffer_ids) {
std::set<uint32_t> reusable_buffer_slots = {};
const std::set<uint32_t> buffer_ids_in_use = dpb_.GetBufferIdsInUse();
for (uint32_t i = 0; i < CAPTURE_queue_->num_buffers(); i++) {
// Checks that buffer ID is not currently queued in the CAPTURE queue
// and that it is not the same buffer ID previously written to.
const bool is_element_in_that_list = (queued_buffer_ids.count(i) != 0);
if (is_element_in_that_list) {
continue;
}
const bool is_buffer_previously_written_to = (i == buffer.buffer_id());
if (is_buffer_previously_written_to) {
continue;
}
const bool is_buffer_in_use = base::Contains(buffer_ids_in_use, i);
if (is_buffer_in_use) {
continue;
}
reusable_buffer_slots.insert(i);
}
return reusable_buffer_slots;
}
bool H265Decoder::DecodePicture() {
CHECK(curr_pic_.get());
if (!v4l2_ioctl_->QBuf(OUTPUT_queue_, 0)) {
VLOG(4) << "VIDIOC_QBUF failed for OUTPUT queue.";
return VideoDecoder::kError;
}
v4l2_ioctl_->MediaRequestIocQueue(OUTPUT_queue_);
if (!CAPTURE_queue_) {
CreateCAPTUREQueue(kNumberOfBuffersInCaptureQueue);
}
v4l2_ioctl_->WaitForRequestCompletion(OUTPUT_queue_);
uint32_t CAPTURE_id;
v4l2_ioctl_->DQBuf(CAPTURE_queue_, &CAPTURE_id);
CAPTURE_queue_->DequeueBufferId(CAPTURE_id);
curr_pic_->capture_queue_buffer_id_ = CAPTURE_id;
const std::set<uint32_t> reusable_buffer_slots =
GetReusableReferenceSlots(*CAPTURE_queue_->GetBuffer(CAPTURE_id).get(),
CAPTURE_queue_->queued_buffer_ids());
for (const auto reusable_buffer_slot : reusable_buffer_slots) {
if (!v4l2_ioctl_->QBuf(CAPTURE_queue_, reusable_buffer_slot)) {
VLOGF(4) << "VIDIOC_QBUF failed for CAPTURE queue.";
continue;
}
// Keeps track of which indices are currently queued in the
// CAPTURE queue. This will be used to determine which indices
// can/cannot be refreshed.
CAPTURE_queue_->QueueBufferId(reusable_buffer_slot);
}
uint32_t OUTPUT_queue_buffer_id;
v4l2_ioctl_->DQBuf(OUTPUT_queue_, &OUTPUT_queue_buffer_id);
v4l2_ioctl_->MediaRequestIocReinit(OUTPUT_queue_);
global_pic_count_++;
return true;
}
void H265Decoder::FinishPicture(scoped_refptr<H265Picture> pic) {
// 8.3.1
if (pic->valid_for_prev_tid0_pic_) {
prev_tid0_pic_ = pic;
}
ref_pic_list_.clear();
ref_pic_list0_.clear();
ref_pic_list1_.clear();
ref_pic_set_lt_curr_.clear();
ref_pic_set_st_curr_after_.clear();
ref_pic_set_st_curr_before_.clear();
last_slice_hdr_.reset();
}
void H265Decoder::FinishPrevFrameIfPresent() {
// If we already have a frame waiting to be decoded, decode it and finish.
if (curr_pic_) {
const bool success = DecodePicture();
CHECK(success) << "Failed to decode the current picture.";
FinishPicture(std::move(curr_pic_));
}
}
H265Decoder::DecodeResult H265Decoder::Decode() {
DCHECK(state_ != kError) << "Decoder in error state";
while (frames_ready_to_be_outputted_.empty()) {
if (!curr_nalu_) {
curr_nalu_ = std::make_unique<H265NALU>();
const H265Parser::Result parse_result =
parser_->AdvanceToNextNALU(curr_nalu_.get());
if (parse_result == H265Parser::kEOStream) {
curr_nalu_.reset();
FinishPrevFrameIfPresent();
is_stream_over_ = true;
return kRanOutOfStreamData;
}
CHECK_EQ(parse_result, H265Parser::kOk);
VLOGF(4) << "New NALU: " << static_cast<int>(curr_nalu_->nal_unit_type);
}
// 8.1.2 We only want nuh_layer_id of zero.
if (curr_nalu_->nuh_layer_id) {
VLOGF(4) << "Skipping NALU with nuh_layer_id="
<< curr_nalu_->nuh_layer_id;
curr_nalu_.reset();
continue;
}
switch (curr_nalu_->nal_unit_type) {
case H265NALU::BLA_W_LP: // fallthrough
case H265NALU::BLA_W_RADL:
case H265NALU::BLA_N_LP:
case H265NALU::IDR_W_RADL:
case H265NALU::IDR_N_LP:
case H265NALU::TRAIL_N:
case H265NALU::TRAIL_R:
case H265NALU::TSA_N:
case H265NALU::TSA_R:
case H265NALU::STSA_N:
case H265NALU::STSA_R:
case H265NALU::RADL_N:
case H265NALU::RADL_R:
case H265NALU::RASL_N:
case H265NALU::RASL_R:
case H265NALU::CRA_NUT: {
if (!curr_slice_hdr_) {
curr_slice_hdr_ = std::make_unique<H265SliceHeader>();
const H265Parser::Result parse_result = parser_->ParseSliceHeader(
*curr_nalu_, curr_slice_hdr_.get(), last_slice_hdr_.get());
if (parse_result == H265Parser::kMissingParameterSet) {
// We may still be able to recover if we skip until we find the
// SPS/PPS.
curr_slice_hdr_.reset();
last_slice_hdr_.reset();
break;
}
CHECK_EQ(parse_result, H265Parser::kOk);
if (!curr_slice_hdr_->irap_pic && state_ == kAfterReset) {
// We can't resume from a non-IRAP picture.
curr_slice_hdr_.reset();
last_slice_hdr_.reset();
break;
}
state_ = kTryPreprocessCurrentSlice;
if (curr_slice_hdr_->irap_pic) {
bool need_new_buffers = false;
const bool success = ProcessPPS(
curr_slice_hdr_->slice_pic_parameter_set_id, &need_new_buffers);
CHECK(success) << "Failed to process PPS.";
if (need_new_buffers) {
curr_pic_ = nullptr;
return kConfigChange;
}
}
}
if (state_ == kTryPreprocessCurrentSlice) {
const bool success = PreprocessCurrentSlice();
CHECK(success) << "Failed to pre-process current slice.";
state_ = kEnsurePicture;
}
if (state_ == kEnsurePicture) {
if (curr_pic_) {
// |curr_pic_| already exists, so skip to ProcessCurrentSlice().
state_ = kTryCurrentSlice;
} else {
curr_pic_ = base::MakeRefCounted<H265Picture>();
CHECK(curr_pic_) << "Ran out of surfaces.";
curr_pic_->first_picture_ = first_picture_;
first_picture_ = false;
state_ = kTryNewFrame;
}
}
if (state_ == kTryNewFrame) {
const bool success = StartNewFrame(curr_slice_hdr_.get());
CHECK(success) << "Failed to start processing a new frame.";
state_ = kTryCurrentSlice;
}
DCHECK_EQ(state_, kTryCurrentSlice);
const bool success = ProcessCurrentSlice();
CHECK(success) << "Failed to process current slice.";
state_ = kDecoding;
last_slice_hdr_ = std::move(curr_slice_hdr_);
curr_slice_hdr_.reset();
break;
}
case H265NALU::SPS_NUT: {
FinishPrevFrameIfPresent();
int sps_id;
const H265Parser::Result parse_result = parser_->ParseSPS(&sps_id);
CHECK_EQ(parse_result, H265Parser::kOk)
<< "Parser Failed to parse SPS.";
break;
}
case H265NALU::PPS_NUT: {
FinishPrevFrameIfPresent();
int pps_id;
const H265Parser::Result parse_result =
parser_->ParsePPS(*curr_nalu_, &pps_id);
CHECK_EQ(parse_result, H265Parser::kOk)
<< "Parser Failed to parse PPS.";
if (curr_pps_id_ == -1) {
bool need_new_buffers = false;
const bool success_process_pps =
ProcessPPS(pps_id, &need_new_buffers);
CHECK(success_process_pps) << "Failed to process PPS.";
if (need_new_buffers) {
curr_nalu_.reset();
return kConfigChange;
}
}
break;
}
case H265NALU::EOS_NUT:
first_picture_ = true;
[[fallthrough]];
case H265NALU::EOB_NUT: // fallthrough
case H265NALU::AUD_NUT:
case H265NALU::RSV_NVCL41:
case H265NALU::RSV_NVCL42:
case H265NALU::RSV_NVCL43:
case H265NALU::RSV_NVCL44:
case H265NALU::UNSPEC48:
case H265NALU::UNSPEC49:
case H265NALU::UNSPEC50:
case H265NALU::UNSPEC51:
case H265NALU::UNSPEC52:
case H265NALU::UNSPEC53:
case H265NALU::UNSPEC54:
case H265NALU::UNSPEC55: {
FinishPrevFrameIfPresent();
break;
}
default:
VLOGF(4) << "Skipping NALU type: " << curr_nalu_->nal_unit_type;
break;
}
VLOGF(4) << "Finished with current NALU type: "
<< static_cast<int>(curr_nalu_->nal_unit_type);
curr_nalu_.reset();
}
return kOk;
}
VideoDecoder::Result H265Decoder::DecodeNextFrame(const int frame_number,
std::vector<uint8_t>& y_plane,
std::vector<uint8_t>& u_plane,
std::vector<uint8_t>& v_plane,
gfx::Size& size,
BitDepth& bit_depth) {
if (!parser_) {
parser_ = std::make_unique<H265Parser>();
parser_->SetStream(data_stream_->data(), data_stream_->length());
}
is_OUTPUT_queue_new_ = !OUTPUT_queue_;
if (!OUTPUT_queue_) {
CreateOUTPUTQueue(kDriverCodecFourcc);
}
while (!is_stream_over_ && frames_ready_to_be_outputted_.empty()) {
Decode();
}
if (is_stream_over_) {
OutputAllRemainingPics();
}
if (is_stream_over_ && frames_ready_to_be_outputted_.empty()) {
return VideoDecoder::kEOStream;
}
if (frames_ready_to_be_outputted_.empty()) {
NOTREACHED() << "Stream ended with |frames_ready_to_be_outputted_| empty";
}
scoped_refptr<H265Picture> picture = frames_ready_to_be_outputted_.front();
last_decoded_frame_visible_ = picture->outputted_;
scoped_refptr<MmappedBuffer> buffer =
CAPTURE_queue_->GetBuffer(picture->capture_queue_buffer_id_);
bit_depth =
ConvertToYUV(y_plane, u_plane, v_plane, OUTPUT_queue_->resolution(),
buffer->mmapped_planes(), CAPTURE_queue_->resolution(),
CAPTURE_queue_->fourcc());
frames_ready_to_be_outputted_.pop();
return VideoDecoder::kOk;
}
} // namespace v4l2_test
} // namespace media
|