File: vp8_decoder.cc

package info (click to toggle)
chromium 138.0.7204.183-1~deb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm-proposed-updates
  • size: 6,080,960 kB
  • sloc: cpp: 34,937,079; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,954; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,811; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (622 lines) | stat: -rw-r--r-- 24,398 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif

#include "media/gpu/v4l2/test/vp8_decoder.h"

#include <linux/v4l2-controls.h>
#include <linux/videodev2.h>

#include "base/memory/ptr_util.h"
#include "base/notreached.h"
#include "media/base/video_types.h"
#include "media/gpu/macros.h"
#include "media/gpu/v4l2/test/v4l2_ioctl_shim.h"
#include "media/parsers/ivf_parser.h"
#include "media/parsers/vp8_parser.h"

namespace {
constexpr uint32_t kDriverCodecFourcc = V4L2_PIX_FMT_VP8_FRAME;

constexpr size_t kVp8FrameLast = 0;
constexpr size_t kVp8FrameGolden = 1;
constexpr size_t kVp8FrameAltref = 2;

using TypeOfVp8RefType = std::underlying_type_t<media::Vp8RefType>;

static_assert(kVp8FrameLast ==
                  base::strict_cast<TypeOfVp8RefType>(media::VP8_FRAME_LAST),
              "Invalid index value for Last reference frame");

static_assert(kVp8FrameGolden ==
                  base::strict_cast<TypeOfVp8RefType>(media::VP8_FRAME_GOLDEN),
              "Invalid index value for Golden reference frame");

static_assert(kVp8FrameAltref ==
                  base::strict_cast<TypeOfVp8RefType>(media::VP8_FRAME_ALTREF),
              "Invalid index value for Altref reference frame");

// The resolution encoded in the bitstream is required for queue creation. Note
// that parsing ivf file and parsing the first frame VP8 parser happen
// again later in the code. This is intentionally duplicated.
const gfx::Size GetResolutionFromBitstream(
    const base::MemoryMappedFile& stream) {
  media::IvfParser ivf_parser{};
  media::IvfFileHeader ivf_file_header{};

  if (!ivf_parser.Initialize(stream.data(), stream.length(),
                             &ivf_file_header)) {
    LOG(FATAL) << "Couldn't initialize IVF parser.";
  }

  media::IvfFrameHeader ivf_frame_header{};
  const uint8_t* ivf_frame_data;

  if (!ivf_parser.ParseNextFrame(&ivf_frame_header, &ivf_frame_data)) {
    LOG(FATAL) << "Failed to parse the first frame with IVF parser.";
  }

  VLOG(2) << "Ivf file header: " << ivf_file_header.width << " x "
          << ivf_file_header.height;

  media::Vp8Parser vp8_parser;
  media::Vp8FrameHeader vp8_frame_header;
  vp8_parser.ParseFrame(ivf_frame_data, ivf_frame_header.frame_size,
                        &vp8_frame_header);

  return gfx::Size(vp8_frame_header.width, vp8_frame_header.height);
}

// Section 9.4. Loop filter type and levels syntax in VP8 specs.
// https://datatracker.ietf.org/doc/rfc6386/
struct v4l2_vp8_loop_filter FillV4L2VP8LoopFilterHeader(
    const media::Vp8LoopFilterHeader& vp8_lf_hdr) {
  struct v4l2_vp8_loop_filter v4l2_lf = {};

  v4l2_lf.sharpness_level = vp8_lf_hdr.sharpness_level;
  v4l2_lf.level = vp8_lf_hdr.level;
  if (vp8_lf_hdr.type == 1)
    v4l2_lf.flags |= V4L2_VP8_LF_FILTER_TYPE_SIMPLE;
  if (vp8_lf_hdr.loop_filter_adj_enable)
    v4l2_lf.flags |= V4L2_VP8_LF_ADJ_ENABLE;
  if (vp8_lf_hdr.mode_ref_lf_delta_update)
    v4l2_lf.flags |= V4L2_VP8_LF_DELTA_UPDATE;

  static_assert(
      std::size(decltype(v4l2_lf.ref_frm_delta){}) == media::kNumBlockContexts,
      "Invalid size of ref_frm_delta");

  static_assert(
      std::size(decltype(v4l2_lf.mb_mode_delta){}) == media::kNumBlockContexts,
      "Invalid size of mb_mode_delta");

  media::SafeArrayMemcpy(v4l2_lf.ref_frm_delta, vp8_lf_hdr.ref_frame_delta);
  media::SafeArrayMemcpy(v4l2_lf.mb_mode_delta, vp8_lf_hdr.mb_mode_delta);

  return v4l2_lf;
}

// Section 9.6. Dequantization indices.
struct v4l2_vp8_quantization FillV4L2Vp8QuantizationHeader(
    const media::Vp8QuantizationHeader& vp8_quantization_hdr) {
  struct v4l2_vp8_quantization v4l2_quant = {};

  v4l2_quant.y_ac_qi = base::checked_cast<__u8>(vp8_quantization_hdr.y_ac_qi);
  v4l2_quant.y_dc_delta =
      base::checked_cast<__s8>(vp8_quantization_hdr.y_dc_delta);
  v4l2_quant.y2_dc_delta =
      base::checked_cast<__s8>(vp8_quantization_hdr.y2_dc_delta);
  v4l2_quant.y2_ac_delta =
      base::checked_cast<__s8>(vp8_quantization_hdr.y2_ac_delta);
  v4l2_quant.uv_dc_delta =
      base::checked_cast<__s8>(vp8_quantization_hdr.uv_dc_delta);
  v4l2_quant.uv_ac_delta =
      base::checked_cast<__s8>(vp8_quantization_hdr.uv_ac_delta);

  return v4l2_quant;
}

// Section 9.9.  DCT Coefficient Probability Update
struct v4l2_vp8_entropy FillV4L2VP8EntropyHeader(
    const media::Vp8EntropyHeader& vp8_entropy_hdr) {
  struct v4l2_vp8_entropy v4l2_entr = {};

  static_assert(
      std::size(decltype(v4l2_entr.coeff_probs){}) == media::kNumBlockTypes,
      "Invalid size of coeff_probs");

  static_assert(
      std::size(decltype(v4l2_entr.y_mode_probs){}) == media::kNumYModeProbs,
      "Invalid size of y_mode_probs");

  static_assert(
      std::size(decltype(v4l2_entr.uv_mode_probs){}) == media::kNumUVModeProbs,
      "Invalid size of uv_mode_probs");

  static_assert(
      std::size(decltype(v4l2_entr.mv_probs){}) == media::kNumMVContexts,
      "Invalid size of mv_probs");

  media::SafeArrayMemcpy(v4l2_entr.coeff_probs, vp8_entropy_hdr.coeff_probs);
  media::SafeArrayMemcpy(v4l2_entr.y_mode_probs, vp8_entropy_hdr.y_mode_probs);
  media::SafeArrayMemcpy(v4l2_entr.uv_mode_probs,
                         vp8_entropy_hdr.uv_mode_probs);
  media::SafeArrayMemcpy(v4l2_entr.mv_probs, vp8_entropy_hdr.mv_probs);
  return v4l2_entr;
}

// Section 9.3. Segment-Based Adjustments
struct v4l2_vp8_segment FillV4L2VP8SegmentationHeader(
    const media::Vp8SegmentationHeader& vp8_segmentation_hdr) {
  struct v4l2_vp8_segment v4l2_segment = {};
  if (vp8_segmentation_hdr.segmentation_enabled)
    v4l2_segment.flags |= V4L2_VP8_SEGMENT_FLAG_ENABLED;
  if (vp8_segmentation_hdr.update_mb_segmentation_map)
    v4l2_segment.flags |= V4L2_VP8_SEGMENT_FLAG_UPDATE_MAP;
  if (vp8_segmentation_hdr.update_segment_feature_data)
    v4l2_segment.flags |= V4L2_VP8_SEGMENT_FLAG_UPDATE_FEATURE_DATA;
  if (vp8_segmentation_hdr.segment_feature_mode ==
      media::Vp8SegmentationHeader::FEATURE_MODE_DELTA) {
    v4l2_segment.flags |= V4L2_VP8_SEGMENT_FLAG_DELTA_VALUE_MODE;
  }

  static_assert(
      std::size(decltype(v4l2_segment.quant_update){}) == media::kMaxMBSegments,
      "Invalid size of quant_update");

  static_assert(
      std::size(decltype(v4l2_segment.lf_update){}) == media::kMaxMBSegments,
      "Invalid size of lf_update");

  static_assert(std::size(decltype(v4l2_segment.segment_probs){}) ==
                    media::kNumMBFeatureTreeProbs,
                "Invalid size of segment_probs");

  media::SafeArrayMemcpy(v4l2_segment.quant_update,
                         vp8_segmentation_hdr.quantizer_update_value);
  media::SafeArrayMemcpy(v4l2_segment.lf_update,
                         vp8_segmentation_hdr.lf_update_value);
  media::SafeArrayMemcpy(v4l2_segment.segment_probs,
                         vp8_segmentation_hdr.segment_prob);
  v4l2_segment.padding = 0;

  return v4l2_segment;
}

// Checks if the buffer slot holding the reference frame is not used by other
// frames
bool IsBufferSlotInUse(
    const media::Vp8FrameHeader& frame_hdr,
    const std::array<scoped_refptr<media::v4l2_test::MmappedBuffer>,
                     media::kNumVp8ReferenceBuffers>& ref_frames,
    size_t curr_ref_frame_index) {
  for (size_t i = 0; i < media::kNumVp8ReferenceBuffers; i++) {
    // Skips |curr_ref_frame_index| to avoid comparing against itself and
    // removing it
    if (i == curr_ref_frame_index)
      continue;

    bool is_frame_not_refreshed = false;
    switch (i) {
      case kVp8FrameAltref:
        is_frame_not_refreshed = !frame_hdr.refresh_alternate_frame &&
                                 frame_hdr.copy_buffer_to_alternate ==
                                     media::Vp8FrameHeader::NO_ALT_REFRESH;
        break;
      case kVp8FrameGolden:
        is_frame_not_refreshed = !frame_hdr.refresh_golden_frame &&
                                 frame_hdr.copy_buffer_to_golden ==
                                     media::Vp8FrameHeader::NO_GOLDEN_REFRESH;
        break;
      case kVp8FrameLast:
        is_frame_not_refreshed = !frame_hdr.refresh_last;
        break;
      default:
        NOTREACHED() << "Invalid reference frame index";
    }
    const bool is_candidate_in_use =
        (ref_frames[i]->buffer_id() ==
         ref_frames[curr_ref_frame_index]->buffer_id());

    if (is_frame_not_refreshed && is_candidate_in_use)
      return true;
  }
  return false;
}

}  // namespace
namespace media {
namespace v4l2_test {

constexpr uint32_t kNumberOfBuffersInCaptureQueue = 6;

static_assert(kNumberOfBuffersInCaptureQueue <= 16,
              "Too many CAPTURE buffers are used. The number of CAPTURE "
              "buffers is currently assumed to be no larger than 16.");

Vp8Decoder::Vp8Decoder(std::unique_ptr<IvfParser> ivf_parser,
                       std::unique_ptr<V4L2IoctlShim> v4l2_ioctl,
                       gfx::Size display_resolution)
    : VideoDecoder::VideoDecoder(std::move(v4l2_ioctl), display_resolution),
      ivf_parser_(std::move(ivf_parser)),
      vp8_parser_(std::make_unique<Vp8Parser>()) {
  DCHECK(v4l2_ioctl_);
  DCHECK(v4l2_ioctl_->QueryCtrl(V4L2_CID_STATELESS_VP8_FRAME));

  std::fill(ref_frames_.begin(), ref_frames_.end(), nullptr);
}

Vp8Decoder::~Vp8Decoder() = default;

// static
std::unique_ptr<Vp8Decoder> Vp8Decoder::Create(
    const base::MemoryMappedFile& stream) {
  VLOG(2) << "Attempting to create decoder with codec "
          << media::FourccToString(kDriverCodecFourcc);

  // Set up video parser.
  auto ivf_parser = std::make_unique<media::IvfParser>();
  media::IvfFileHeader file_header{};

  if (!ivf_parser->Initialize(stream.data(), stream.length(), &file_header)) {
    LOG(ERROR) << "Couldn't initialize IVF parser";
    return nullptr;
  }

  const auto driver_codec_fourcc =
      media::v4l2_test::FileFourccToDriverFourcc(file_header.fourcc);

  if (driver_codec_fourcc != kDriverCodecFourcc) {
    VLOG(2) << "File fourcc (" << media::FourccToString(driver_codec_fourcc)
            << ") does not match expected fourcc("
            << media::FourccToString(kDriverCodecFourcc) << ").";
    return nullptr;
  }

  auto v4l2_ioctl = std::make_unique<V4L2IoctlShim>(kDriverCodecFourcc);

  const gfx::Size bitstream_coded_size = GetResolutionFromBitstream(stream);
  LOG(INFO) << "Ivf file header: "
            << gfx::Size(file_header.width, file_header.height).ToString();

  return base::WrapUnique(new Vp8Decoder(
      std::move(ivf_parser), std::move(v4l2_ioctl), bitstream_coded_size));
}

struct v4l2_ctrl_vp8_frame Vp8Decoder::SetupFrameHeaders(
    const Vp8FrameHeader& frame_hdr) {
  struct v4l2_ctrl_vp8_frame v4l2_frame_headers = {};

  v4l2_frame_headers.lf = FillV4L2VP8LoopFilterHeader(frame_hdr.loopfilter_hdr);
  v4l2_frame_headers.quant =
      FillV4L2Vp8QuantizationHeader(frame_hdr.quantization_hdr);

  v4l2_frame_headers.coder_state.range = frame_hdr.bool_dec_range;
  v4l2_frame_headers.coder_state.value = frame_hdr.bool_dec_value;
  v4l2_frame_headers.coder_state.bit_count = frame_hdr.bool_dec_count;

  v4l2_frame_headers.width = frame_hdr.width;
  v4l2_frame_headers.height = frame_hdr.height;

  v4l2_frame_headers.horizontal_scale = frame_hdr.horizontal_scale;
  v4l2_frame_headers.vertical_scale = frame_hdr.vertical_scale;

  v4l2_frame_headers.version = frame_hdr.version;
  v4l2_frame_headers.prob_skip_false = frame_hdr.prob_skip_false;
  v4l2_frame_headers.prob_intra = frame_hdr.prob_intra;
  v4l2_frame_headers.prob_last = frame_hdr.prob_last;
  v4l2_frame_headers.prob_gf = frame_hdr.prob_gf;
  v4l2_frame_headers.num_dct_parts = frame_hdr.num_of_dct_partitions;

  v4l2_frame_headers.first_part_size = frame_hdr.first_part_size;
  // https://lwn.net/Articles/793069/: macroblock_bit_offset is renamed to
  // first_part_header_bits
  v4l2_frame_headers.first_part_header_bits = frame_hdr.macroblock_bit_offset;

  if (frame_hdr.frame_type == media::Vp8FrameHeader::KEYFRAME)
    v4l2_frame_headers.flags |= V4L2_VP8_FRAME_FLAG_KEY_FRAME;
  if (frame_hdr.show_frame)
    v4l2_frame_headers.flags |= V4L2_VP8_FRAME_FLAG_SHOW_FRAME;
  if (frame_hdr.mb_no_skip_coeff)
    v4l2_frame_headers.flags |= V4L2_VP8_FRAME_FLAG_MB_NO_SKIP_COEFF;
  if (frame_hdr.sign_bias_golden)
    v4l2_frame_headers.flags |= V4L2_VP8_FRAME_FLAG_SIGN_BIAS_GOLDEN;
  if (frame_hdr.sign_bias_alternate)
    v4l2_frame_headers.flags |= V4L2_VP8_FRAME_FLAG_SIGN_BIAS_ALT;
  if (frame_hdr.is_experimental)
    v4l2_frame_headers.flags |= V4L2_VP8_FRAME_FLAG_EXPERIMENTAL;

  static_assert(std::size(decltype(v4l2_frame_headers.dct_part_sizes){}) ==
                    media::kMaxDCTPartitions,
                "Invalid size of dct_part_sizes");

  for (size_t i = 0; i < frame_hdr.num_of_dct_partitions &&
                     i < std::size(v4l2_frame_headers.dct_part_sizes);
       ++i) {
    v4l2_frame_headers.dct_part_sizes[i] =
        static_cast<size_t>(frame_hdr.dct_partition_sizes[i]);
  }

  v4l2_frame_headers.entropy = FillV4L2VP8EntropyHeader(frame_hdr.entropy_hdr);
  v4l2_frame_headers.segment =
      FillV4L2VP8SegmentationHeader(frame_hdr.segmentation_hdr);

  constexpr uint64_t kInvalidSurface = std::numeric_limits<uint32_t>::max();
  // We need to convert a reference frame's frame_number() (in  microseconds)
  // to reference ID (in nanoseconds). Technically, v4l2_timeval_to_ns() is
  // suggested to be used to convert timestamp to nanoseconds, but multiplying
  // the microseconds part of timestamp |tv_usec| by |kTimestampToNanoSecs| to
  // make it nanoseconds is also known to work. This is how it is implemented
  // in v4l2 video decode accelerator tests as well as in gstreamer.
  // https://www.kernel.org/doc/html/v5.10/userspace-api/media/v4l/dev-stateless-decoder.html#buffer-management-while-decoding
  constexpr size_t kTimestampToNanoSecs = 1000;
  v4l2_frame_headers.last_frame_ts =
      ref_frames_[kVp8FrameLast]
          ? (ref_frames_[kVp8FrameLast]->frame_number() * kTimestampToNanoSecs)
          : kInvalidSurface;
  v4l2_frame_headers.golden_frame_ts =
      ref_frames_[kVp8FrameGolden]
          ? (ref_frames_[kVp8FrameGolden]->frame_number() *
             kTimestampToNanoSecs)
          : kInvalidSurface;
  v4l2_frame_headers.alt_frame_ts =
      ref_frames_[kVp8FrameAltref]
          ? (ref_frames_[kVp8FrameAltref]->frame_number() *
             kTimestampToNanoSecs)
          : kInvalidSurface;

  return v4l2_frame_headers;
}

void Vp8Decoder::UpdateReusableReferenceBufferSlots(
    const Vp8FrameHeader& frame_hdr,
    const size_t curr_ref_frame_index,
    std::set<int>& reusable_buffer_slots) {
  const auto reusable_candidate_buffer_id =
      ref_frames_[curr_ref_frame_index]->buffer_id();
  reusable_buffer_slots.insert(
      base::checked_cast<int>(reusable_candidate_buffer_id));

  bool is_buffer_slot_copied = false;
  switch (curr_ref_frame_index) {
    case kVp8FrameAltref:
      is_buffer_slot_copied =
          frame_hdr.copy_buffer_to_golden == Vp8FrameHeader::COPY_ALT_TO_GOLDEN;
      break;
    case kVp8FrameGolden:
      is_buffer_slot_copied = frame_hdr.copy_buffer_to_alternate ==
                              Vp8FrameHeader::COPY_GOLDEN_TO_ALT;
      break;
    case kVp8FrameLast:
      is_buffer_slot_copied = (frame_hdr.copy_buffer_to_alternate ==
                               Vp8FrameHeader::COPY_LAST_TO_ALT) ||
                              (frame_hdr.copy_buffer_to_golden ==
                               Vp8FrameHeader::COPY_LAST_TO_GOLDEN);
      break;
    default:
      NOTREACHED() << "Invalid reference frame index";
  }
  const bool is_buffer_slot_in_use =
      IsBufferSlotInUse(frame_hdr, ref_frames_, curr_ref_frame_index);

  if (is_buffer_slot_copied || is_buffer_slot_in_use)
    reusable_buffer_slots.erase(
        base::checked_cast<int>(reusable_candidate_buffer_id));
}

std::set<int> Vp8Decoder::RefreshReferenceSlots(
    const Vp8FrameHeader& frame_hdr,
    MmappedBuffer* buffer,
    std::set<uint32_t> queued_buffer_ids) {
  std::set<int> reusable_buffer_slots = {};

  if (frame_hdr.IsKeyframe()) {
    // For key frames, all referenced frame are refreshed/replaced by the
    // current reconstructed frame. Then all CAPTURE buffers can be reused
    // except the CAPTURE buffer holding the key frame.
    for (size_t i = 0; i < kNumberOfBuffersInCaptureQueue; i++) {
      if (!queued_buffer_ids.count(i)) {
        reusable_buffer_slots.insert(i);
      }
    }
    reusable_buffer_slots.erase(buffer->buffer_id());

    ref_frames_.fill(buffer);
    return reusable_buffer_slots;
  }

  if (frame_hdr.refresh_alternate_frame) {
    UpdateReusableReferenceBufferSlots(frame_hdr, kVp8FrameAltref,
                                       reusable_buffer_slots);
    ref_frames_[kVp8FrameAltref] = buffer;
  } else {
    switch (frame_hdr.copy_buffer_to_alternate) {
      case Vp8FrameHeader::COPY_LAST_TO_ALT:
        DCHECK(ref_frames_[kVp8FrameLast]);
        UpdateReusableReferenceBufferSlots(frame_hdr, kVp8FrameAltref,
                                           reusable_buffer_slots);
        ref_frames_[kVp8FrameAltref] = ref_frames_[kVp8FrameLast];
        break;
      case Vp8FrameHeader::COPY_GOLDEN_TO_ALT:
        DCHECK(ref_frames_[kVp8FrameGolden]);
        UpdateReusableReferenceBufferSlots(frame_hdr, kVp8FrameAltref,
                                           reusable_buffer_slots);
        ref_frames_[kVp8FrameAltref] = ref_frames_[kVp8FrameGolden];
        break;
      case Vp8FrameHeader::NO_ALT_REFRESH:
        DCHECK(ref_frames_[kVp8FrameAltref]);
        break;
      default:
        NOTREACHED() << "Invalid flag to refresh altenate frame: "
                     << frame_hdr.copy_buffer_to_alternate;
    }
  }

  if (frame_hdr.refresh_golden_frame) {
    UpdateReusableReferenceBufferSlots(frame_hdr, kVp8FrameGolden,
                                       reusable_buffer_slots);
    ref_frames_[kVp8FrameGolden] = buffer;
  } else {
    switch (frame_hdr.copy_buffer_to_golden) {
      case Vp8FrameHeader::COPY_LAST_TO_GOLDEN:
        DCHECK(ref_frames_[kVp8FrameLast]);
        UpdateReusableReferenceBufferSlots(frame_hdr, kVp8FrameGolden,
                                           reusable_buffer_slots);
        ref_frames_[kVp8FrameGolden] = ref_frames_[kVp8FrameLast];
        break;
      case Vp8FrameHeader::COPY_ALT_TO_GOLDEN:
        DCHECK(ref_frames_[kVp8FrameAltref]);
        UpdateReusableReferenceBufferSlots(frame_hdr, kVp8FrameGolden,
                                           reusable_buffer_slots);
        ref_frames_[kVp8FrameGolden] = ref_frames_[kVp8FrameAltref];
        break;
      case Vp8FrameHeader::NO_GOLDEN_REFRESH:
        DCHECK(ref_frames_[kVp8FrameGolden]);
        break;
      default:
        NOTREACHED() << "Invalid flag to refresh golden frame: "
                     << frame_hdr.copy_buffer_to_golden;
    }
  }

  if (frame_hdr.refresh_last) {
    UpdateReusableReferenceBufferSlots(frame_hdr, kVp8FrameLast,
                                       reusable_buffer_slots);
    ref_frames_[kVp8FrameLast] = buffer;
  }

  DCHECK(ref_frames_[kVp8FrameLast]);

  return reusable_buffer_slots;
}

Vp8Decoder::ParseResult Vp8Decoder::ReadNextFrame(
    Vp8FrameHeader& vp8_frame_header) {
  IvfFrameHeader ivf_frame_header{};
  const uint8_t* ivf_frame_data;
  if (!ivf_parser_->ParseNextFrame(&ivf_frame_header, &ivf_frame_data))
    return kEOStream;

  const bool result = vp8_parser_->ParseFrame(
      ivf_frame_data, ivf_frame_header.frame_size, &vp8_frame_header);

  return result ? Vp8Decoder::kOk : Vp8Decoder::kError;
}

VideoDecoder::Result Vp8Decoder::DecodeNextFrame(const int frame_number,
                                                 std::vector<uint8_t>& y_plane,
                                                 std::vector<uint8_t>& u_plane,
                                                 std::vector<uint8_t>& v_plane,
                                                 gfx::Size& size,
                                                 BitDepth& bit_depth) {
  Vp8FrameHeader frame_hdr{};

  Vp8Decoder::ParseResult parser_res = ReadNextFrame(frame_hdr);
  switch (parser_res) {
    case Vp8Decoder::kEOStream:
      return VideoDecoder::kEOStream;
    case Vp8Decoder::kError:
      return VideoDecoder::kError;
    case Vp8Decoder::kOk:
      break;
  }

  const bool is_OUTPUT_queue_new = !OUTPUT_queue_;
  if (!OUTPUT_queue_) {
    CreateOUTPUTQueue(kDriverCodecFourcc);
  }

  const bool resolution_changed =
      frame_hdr.width != OUTPUT_queue_->resolution().width() ||
      frame_hdr.height != OUTPUT_queue_->resolution().height();
  if (frame_hdr.IsKeyframe() && resolution_changed) {
    const gfx::Size new_resolution(frame_hdr.width, frame_hdr.height);
    LOG_ASSERT(!new_resolution.IsEmpty())
        << "New key frame resolution is empty.";

    HandleDynamicResolutionChange(new_resolution);
  } else {
    frame_hdr.width = OUTPUT_queue_->resolution().width();
    frame_hdr.height = OUTPUT_queue_->resolution().height();
  }

  VLOG_IF(2, !frame_hdr.show_frame) << "Not displaying frame";
  last_decoded_frame_visible_ = frame_hdr.show_frame;

  uint32_t buffer_id = 0;
  // Copies the frame data into the V4L2 buffer of OUTPUT |queue|.
  scoped_refptr<MmappedBuffer> OUTPUT_queue_buffer =
      OUTPUT_queue_->GetBuffer(buffer_id);
  OUTPUT_queue_buffer->mmapped_planes()[0].CopyIn(frame_hdr.data,
                                                  frame_hdr.frame_size);
  OUTPUT_queue_buffer->set_frame_number(frame_number);

  if (!v4l2_ioctl_->QBuf(OUTPUT_queue_, buffer_id)) {
    LOG(FATAL) << "VIDIOC_QBUF failed for OUTPUT queue.";
  }

  struct v4l2_ctrl_vp8_frame v4l2_frame_headers = SetupFrameHeaders(frame_hdr);

  // Set controls required by the OUTPUT format to enumerate the CAPTURE formats
  struct v4l2_ext_control ext_ctrl = {.id = V4L2_CID_STATELESS_VP8_FRAME,
                                      .size = sizeof(v4l2_frame_headers),
                                      .ptr = &v4l2_frame_headers};

  struct v4l2_ext_controls ext_ctrls = {.count = 1, .controls = &ext_ctrl};

  // Before the CAPTURE queue is set up the first frame must be parsed by the
  // driver. This is done so that when VIDIOC_G_FMT is called the frame
  // dimensions and format will be ready. Specifying V4L2_CTRL_WHICH_CUR_VAL
  // when VIDIOC_S_EXT_CTRLS processes the request immediately so that the frame
  // is parsed by the driver and the state is readied.
  v4l2_ioctl_->SetExtCtrls(OUTPUT_queue_, &ext_ctrls, is_OUTPUT_queue_new);
  v4l2_ioctl_->MediaRequestIocQueue(OUTPUT_queue_);

  if (!CAPTURE_queue_) {
    CreateCAPTUREQueue(kNumberOfBuffersInCaptureQueue);
  }

  v4l2_ioctl_->WaitForRequestCompletion(OUTPUT_queue_);

  v4l2_ioctl_->DQBuf(CAPTURE_queue_, &buffer_id);
  CAPTURE_queue_->DequeueBufferId(buffer_id);

  scoped_refptr<MmappedBuffer> buffer = CAPTURE_queue_->GetBuffer(buffer_id);
  bit_depth =
      ConvertToYUV(y_plane, u_plane, v_plane, OUTPUT_queue_->resolution(),
                   buffer->mmapped_planes(), CAPTURE_queue_->resolution(),
                   CAPTURE_queue_->fourcc());

  const std::set<int> reusable_buffer_slots = RefreshReferenceSlots(
      frame_hdr, CAPTURE_queue_->GetBuffer(buffer_id).get(),
      CAPTURE_queue_->queued_buffer_ids());

  for (const auto reusable_buffer_slot : reusable_buffer_slots) {
    if (v4l2_ioctl_->QBuf(CAPTURE_queue_, reusable_buffer_slot)) {
      // After decoding a key frame, all CAPTURE buffer slots can be reused and
      // queued, except the buffer holding the key frame. We want to avoid
      // queuing the CAPTURE buffer slots that are already queued from the
      // previous key frame. So we need to keep track of which buffers are
      // queued for all frames.
      CAPTURE_queue_->QueueBufferId(reusable_buffer_slot);
    } else {
      LOG(ERROR) << "VIDIOC_QBUF failed for CAPTURE queue.";
    }
  }

  v4l2_ioctl_->DQBuf(OUTPUT_queue_, &buffer_id);

  CHECK_EQ(buffer_id, uint32_t(0))
      << "Buffer ID of the buffer in OUTPUT queue is greater than size";

  v4l2_ioctl_->MediaRequestIocReinit(OUTPUT_queue_);

  return VideoDecoder::kOk;
}
}  // namespace v4l2_test
}  // namespace media