1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "media/gpu/v4l2/test/vp8_decoder.h"
#include <linux/v4l2-controls.h>
#include <linux/videodev2.h>
#include "base/memory/ptr_util.h"
#include "base/notreached.h"
#include "media/base/video_types.h"
#include "media/gpu/macros.h"
#include "media/gpu/v4l2/test/v4l2_ioctl_shim.h"
#include "media/parsers/ivf_parser.h"
#include "media/parsers/vp8_parser.h"
namespace {
constexpr uint32_t kDriverCodecFourcc = V4L2_PIX_FMT_VP8_FRAME;
constexpr size_t kVp8FrameLast = 0;
constexpr size_t kVp8FrameGolden = 1;
constexpr size_t kVp8FrameAltref = 2;
using TypeOfVp8RefType = std::underlying_type_t<media::Vp8RefType>;
static_assert(kVp8FrameLast ==
base::strict_cast<TypeOfVp8RefType>(media::VP8_FRAME_LAST),
"Invalid index value for Last reference frame");
static_assert(kVp8FrameGolden ==
base::strict_cast<TypeOfVp8RefType>(media::VP8_FRAME_GOLDEN),
"Invalid index value for Golden reference frame");
static_assert(kVp8FrameAltref ==
base::strict_cast<TypeOfVp8RefType>(media::VP8_FRAME_ALTREF),
"Invalid index value for Altref reference frame");
// The resolution encoded in the bitstream is required for queue creation. Note
// that parsing ivf file and parsing the first frame VP8 parser happen
// again later in the code. This is intentionally duplicated.
const gfx::Size GetResolutionFromBitstream(
const base::MemoryMappedFile& stream) {
media::IvfParser ivf_parser{};
media::IvfFileHeader ivf_file_header{};
if (!ivf_parser.Initialize(stream.data(), stream.length(),
&ivf_file_header)) {
LOG(FATAL) << "Couldn't initialize IVF parser.";
}
media::IvfFrameHeader ivf_frame_header{};
const uint8_t* ivf_frame_data;
if (!ivf_parser.ParseNextFrame(&ivf_frame_header, &ivf_frame_data)) {
LOG(FATAL) << "Failed to parse the first frame with IVF parser.";
}
VLOG(2) << "Ivf file header: " << ivf_file_header.width << " x "
<< ivf_file_header.height;
media::Vp8Parser vp8_parser;
media::Vp8FrameHeader vp8_frame_header;
vp8_parser.ParseFrame(ivf_frame_data, ivf_frame_header.frame_size,
&vp8_frame_header);
return gfx::Size(vp8_frame_header.width, vp8_frame_header.height);
}
// Section 9.4. Loop filter type and levels syntax in VP8 specs.
// https://datatracker.ietf.org/doc/rfc6386/
struct v4l2_vp8_loop_filter FillV4L2VP8LoopFilterHeader(
const media::Vp8LoopFilterHeader& vp8_lf_hdr) {
struct v4l2_vp8_loop_filter v4l2_lf = {};
v4l2_lf.sharpness_level = vp8_lf_hdr.sharpness_level;
v4l2_lf.level = vp8_lf_hdr.level;
if (vp8_lf_hdr.type == 1)
v4l2_lf.flags |= V4L2_VP8_LF_FILTER_TYPE_SIMPLE;
if (vp8_lf_hdr.loop_filter_adj_enable)
v4l2_lf.flags |= V4L2_VP8_LF_ADJ_ENABLE;
if (vp8_lf_hdr.mode_ref_lf_delta_update)
v4l2_lf.flags |= V4L2_VP8_LF_DELTA_UPDATE;
static_assert(
std::size(decltype(v4l2_lf.ref_frm_delta){}) == media::kNumBlockContexts,
"Invalid size of ref_frm_delta");
static_assert(
std::size(decltype(v4l2_lf.mb_mode_delta){}) == media::kNumBlockContexts,
"Invalid size of mb_mode_delta");
media::SafeArrayMemcpy(v4l2_lf.ref_frm_delta, vp8_lf_hdr.ref_frame_delta);
media::SafeArrayMemcpy(v4l2_lf.mb_mode_delta, vp8_lf_hdr.mb_mode_delta);
return v4l2_lf;
}
// Section 9.6. Dequantization indices.
struct v4l2_vp8_quantization FillV4L2Vp8QuantizationHeader(
const media::Vp8QuantizationHeader& vp8_quantization_hdr) {
struct v4l2_vp8_quantization v4l2_quant = {};
v4l2_quant.y_ac_qi = base::checked_cast<__u8>(vp8_quantization_hdr.y_ac_qi);
v4l2_quant.y_dc_delta =
base::checked_cast<__s8>(vp8_quantization_hdr.y_dc_delta);
v4l2_quant.y2_dc_delta =
base::checked_cast<__s8>(vp8_quantization_hdr.y2_dc_delta);
v4l2_quant.y2_ac_delta =
base::checked_cast<__s8>(vp8_quantization_hdr.y2_ac_delta);
v4l2_quant.uv_dc_delta =
base::checked_cast<__s8>(vp8_quantization_hdr.uv_dc_delta);
v4l2_quant.uv_ac_delta =
base::checked_cast<__s8>(vp8_quantization_hdr.uv_ac_delta);
return v4l2_quant;
}
// Section 9.9. DCT Coefficient Probability Update
struct v4l2_vp8_entropy FillV4L2VP8EntropyHeader(
const media::Vp8EntropyHeader& vp8_entropy_hdr) {
struct v4l2_vp8_entropy v4l2_entr = {};
static_assert(
std::size(decltype(v4l2_entr.coeff_probs){}) == media::kNumBlockTypes,
"Invalid size of coeff_probs");
static_assert(
std::size(decltype(v4l2_entr.y_mode_probs){}) == media::kNumYModeProbs,
"Invalid size of y_mode_probs");
static_assert(
std::size(decltype(v4l2_entr.uv_mode_probs){}) == media::kNumUVModeProbs,
"Invalid size of uv_mode_probs");
static_assert(
std::size(decltype(v4l2_entr.mv_probs){}) == media::kNumMVContexts,
"Invalid size of mv_probs");
media::SafeArrayMemcpy(v4l2_entr.coeff_probs, vp8_entropy_hdr.coeff_probs);
media::SafeArrayMemcpy(v4l2_entr.y_mode_probs, vp8_entropy_hdr.y_mode_probs);
media::SafeArrayMemcpy(v4l2_entr.uv_mode_probs,
vp8_entropy_hdr.uv_mode_probs);
media::SafeArrayMemcpy(v4l2_entr.mv_probs, vp8_entropy_hdr.mv_probs);
return v4l2_entr;
}
// Section 9.3. Segment-Based Adjustments
struct v4l2_vp8_segment FillV4L2VP8SegmentationHeader(
const media::Vp8SegmentationHeader& vp8_segmentation_hdr) {
struct v4l2_vp8_segment v4l2_segment = {};
if (vp8_segmentation_hdr.segmentation_enabled)
v4l2_segment.flags |= V4L2_VP8_SEGMENT_FLAG_ENABLED;
if (vp8_segmentation_hdr.update_mb_segmentation_map)
v4l2_segment.flags |= V4L2_VP8_SEGMENT_FLAG_UPDATE_MAP;
if (vp8_segmentation_hdr.update_segment_feature_data)
v4l2_segment.flags |= V4L2_VP8_SEGMENT_FLAG_UPDATE_FEATURE_DATA;
if (vp8_segmentation_hdr.segment_feature_mode ==
media::Vp8SegmentationHeader::FEATURE_MODE_DELTA) {
v4l2_segment.flags |= V4L2_VP8_SEGMENT_FLAG_DELTA_VALUE_MODE;
}
static_assert(
std::size(decltype(v4l2_segment.quant_update){}) == media::kMaxMBSegments,
"Invalid size of quant_update");
static_assert(
std::size(decltype(v4l2_segment.lf_update){}) == media::kMaxMBSegments,
"Invalid size of lf_update");
static_assert(std::size(decltype(v4l2_segment.segment_probs){}) ==
media::kNumMBFeatureTreeProbs,
"Invalid size of segment_probs");
media::SafeArrayMemcpy(v4l2_segment.quant_update,
vp8_segmentation_hdr.quantizer_update_value);
media::SafeArrayMemcpy(v4l2_segment.lf_update,
vp8_segmentation_hdr.lf_update_value);
media::SafeArrayMemcpy(v4l2_segment.segment_probs,
vp8_segmentation_hdr.segment_prob);
v4l2_segment.padding = 0;
return v4l2_segment;
}
// Checks if the buffer slot holding the reference frame is not used by other
// frames
bool IsBufferSlotInUse(
const media::Vp8FrameHeader& frame_hdr,
const std::array<scoped_refptr<media::v4l2_test::MmappedBuffer>,
media::kNumVp8ReferenceBuffers>& ref_frames,
size_t curr_ref_frame_index) {
for (size_t i = 0; i < media::kNumVp8ReferenceBuffers; i++) {
// Skips |curr_ref_frame_index| to avoid comparing against itself and
// removing it
if (i == curr_ref_frame_index)
continue;
bool is_frame_not_refreshed = false;
switch (i) {
case kVp8FrameAltref:
is_frame_not_refreshed = !frame_hdr.refresh_alternate_frame &&
frame_hdr.copy_buffer_to_alternate ==
media::Vp8FrameHeader::NO_ALT_REFRESH;
break;
case kVp8FrameGolden:
is_frame_not_refreshed = !frame_hdr.refresh_golden_frame &&
frame_hdr.copy_buffer_to_golden ==
media::Vp8FrameHeader::NO_GOLDEN_REFRESH;
break;
case kVp8FrameLast:
is_frame_not_refreshed = !frame_hdr.refresh_last;
break;
default:
NOTREACHED() << "Invalid reference frame index";
}
const bool is_candidate_in_use =
(ref_frames[i]->buffer_id() ==
ref_frames[curr_ref_frame_index]->buffer_id());
if (is_frame_not_refreshed && is_candidate_in_use)
return true;
}
return false;
}
} // namespace
namespace media {
namespace v4l2_test {
constexpr uint32_t kNumberOfBuffersInCaptureQueue = 6;
static_assert(kNumberOfBuffersInCaptureQueue <= 16,
"Too many CAPTURE buffers are used. The number of CAPTURE "
"buffers is currently assumed to be no larger than 16.");
Vp8Decoder::Vp8Decoder(std::unique_ptr<IvfParser> ivf_parser,
std::unique_ptr<V4L2IoctlShim> v4l2_ioctl,
gfx::Size display_resolution)
: VideoDecoder::VideoDecoder(std::move(v4l2_ioctl), display_resolution),
ivf_parser_(std::move(ivf_parser)),
vp8_parser_(std::make_unique<Vp8Parser>()) {
DCHECK(v4l2_ioctl_);
DCHECK(v4l2_ioctl_->QueryCtrl(V4L2_CID_STATELESS_VP8_FRAME));
std::fill(ref_frames_.begin(), ref_frames_.end(), nullptr);
}
Vp8Decoder::~Vp8Decoder() = default;
// static
std::unique_ptr<Vp8Decoder> Vp8Decoder::Create(
const base::MemoryMappedFile& stream) {
VLOG(2) << "Attempting to create decoder with codec "
<< media::FourccToString(kDriverCodecFourcc);
// Set up video parser.
auto ivf_parser = std::make_unique<media::IvfParser>();
media::IvfFileHeader file_header{};
if (!ivf_parser->Initialize(stream.data(), stream.length(), &file_header)) {
LOG(ERROR) << "Couldn't initialize IVF parser";
return nullptr;
}
const auto driver_codec_fourcc =
media::v4l2_test::FileFourccToDriverFourcc(file_header.fourcc);
if (driver_codec_fourcc != kDriverCodecFourcc) {
VLOG(2) << "File fourcc (" << media::FourccToString(driver_codec_fourcc)
<< ") does not match expected fourcc("
<< media::FourccToString(kDriverCodecFourcc) << ").";
return nullptr;
}
auto v4l2_ioctl = std::make_unique<V4L2IoctlShim>(kDriverCodecFourcc);
const gfx::Size bitstream_coded_size = GetResolutionFromBitstream(stream);
LOG(INFO) << "Ivf file header: "
<< gfx::Size(file_header.width, file_header.height).ToString();
return base::WrapUnique(new Vp8Decoder(
std::move(ivf_parser), std::move(v4l2_ioctl), bitstream_coded_size));
}
struct v4l2_ctrl_vp8_frame Vp8Decoder::SetupFrameHeaders(
const Vp8FrameHeader& frame_hdr) {
struct v4l2_ctrl_vp8_frame v4l2_frame_headers = {};
v4l2_frame_headers.lf = FillV4L2VP8LoopFilterHeader(frame_hdr.loopfilter_hdr);
v4l2_frame_headers.quant =
FillV4L2Vp8QuantizationHeader(frame_hdr.quantization_hdr);
v4l2_frame_headers.coder_state.range = frame_hdr.bool_dec_range;
v4l2_frame_headers.coder_state.value = frame_hdr.bool_dec_value;
v4l2_frame_headers.coder_state.bit_count = frame_hdr.bool_dec_count;
v4l2_frame_headers.width = frame_hdr.width;
v4l2_frame_headers.height = frame_hdr.height;
v4l2_frame_headers.horizontal_scale = frame_hdr.horizontal_scale;
v4l2_frame_headers.vertical_scale = frame_hdr.vertical_scale;
v4l2_frame_headers.version = frame_hdr.version;
v4l2_frame_headers.prob_skip_false = frame_hdr.prob_skip_false;
v4l2_frame_headers.prob_intra = frame_hdr.prob_intra;
v4l2_frame_headers.prob_last = frame_hdr.prob_last;
v4l2_frame_headers.prob_gf = frame_hdr.prob_gf;
v4l2_frame_headers.num_dct_parts = frame_hdr.num_of_dct_partitions;
v4l2_frame_headers.first_part_size = frame_hdr.first_part_size;
// https://lwn.net/Articles/793069/: macroblock_bit_offset is renamed to
// first_part_header_bits
v4l2_frame_headers.first_part_header_bits = frame_hdr.macroblock_bit_offset;
if (frame_hdr.frame_type == media::Vp8FrameHeader::KEYFRAME)
v4l2_frame_headers.flags |= V4L2_VP8_FRAME_FLAG_KEY_FRAME;
if (frame_hdr.show_frame)
v4l2_frame_headers.flags |= V4L2_VP8_FRAME_FLAG_SHOW_FRAME;
if (frame_hdr.mb_no_skip_coeff)
v4l2_frame_headers.flags |= V4L2_VP8_FRAME_FLAG_MB_NO_SKIP_COEFF;
if (frame_hdr.sign_bias_golden)
v4l2_frame_headers.flags |= V4L2_VP8_FRAME_FLAG_SIGN_BIAS_GOLDEN;
if (frame_hdr.sign_bias_alternate)
v4l2_frame_headers.flags |= V4L2_VP8_FRAME_FLAG_SIGN_BIAS_ALT;
if (frame_hdr.is_experimental)
v4l2_frame_headers.flags |= V4L2_VP8_FRAME_FLAG_EXPERIMENTAL;
static_assert(std::size(decltype(v4l2_frame_headers.dct_part_sizes){}) ==
media::kMaxDCTPartitions,
"Invalid size of dct_part_sizes");
for (size_t i = 0; i < frame_hdr.num_of_dct_partitions &&
i < std::size(v4l2_frame_headers.dct_part_sizes);
++i) {
v4l2_frame_headers.dct_part_sizes[i] =
static_cast<size_t>(frame_hdr.dct_partition_sizes[i]);
}
v4l2_frame_headers.entropy = FillV4L2VP8EntropyHeader(frame_hdr.entropy_hdr);
v4l2_frame_headers.segment =
FillV4L2VP8SegmentationHeader(frame_hdr.segmentation_hdr);
constexpr uint64_t kInvalidSurface = std::numeric_limits<uint32_t>::max();
// We need to convert a reference frame's frame_number() (in microseconds)
// to reference ID (in nanoseconds). Technically, v4l2_timeval_to_ns() is
// suggested to be used to convert timestamp to nanoseconds, but multiplying
// the microseconds part of timestamp |tv_usec| by |kTimestampToNanoSecs| to
// make it nanoseconds is also known to work. This is how it is implemented
// in v4l2 video decode accelerator tests as well as in gstreamer.
// https://www.kernel.org/doc/html/v5.10/userspace-api/media/v4l/dev-stateless-decoder.html#buffer-management-while-decoding
constexpr size_t kTimestampToNanoSecs = 1000;
v4l2_frame_headers.last_frame_ts =
ref_frames_[kVp8FrameLast]
? (ref_frames_[kVp8FrameLast]->frame_number() * kTimestampToNanoSecs)
: kInvalidSurface;
v4l2_frame_headers.golden_frame_ts =
ref_frames_[kVp8FrameGolden]
? (ref_frames_[kVp8FrameGolden]->frame_number() *
kTimestampToNanoSecs)
: kInvalidSurface;
v4l2_frame_headers.alt_frame_ts =
ref_frames_[kVp8FrameAltref]
? (ref_frames_[kVp8FrameAltref]->frame_number() *
kTimestampToNanoSecs)
: kInvalidSurface;
return v4l2_frame_headers;
}
void Vp8Decoder::UpdateReusableReferenceBufferSlots(
const Vp8FrameHeader& frame_hdr,
const size_t curr_ref_frame_index,
std::set<int>& reusable_buffer_slots) {
const auto reusable_candidate_buffer_id =
ref_frames_[curr_ref_frame_index]->buffer_id();
reusable_buffer_slots.insert(
base::checked_cast<int>(reusable_candidate_buffer_id));
bool is_buffer_slot_copied = false;
switch (curr_ref_frame_index) {
case kVp8FrameAltref:
is_buffer_slot_copied =
frame_hdr.copy_buffer_to_golden == Vp8FrameHeader::COPY_ALT_TO_GOLDEN;
break;
case kVp8FrameGolden:
is_buffer_slot_copied = frame_hdr.copy_buffer_to_alternate ==
Vp8FrameHeader::COPY_GOLDEN_TO_ALT;
break;
case kVp8FrameLast:
is_buffer_slot_copied = (frame_hdr.copy_buffer_to_alternate ==
Vp8FrameHeader::COPY_LAST_TO_ALT) ||
(frame_hdr.copy_buffer_to_golden ==
Vp8FrameHeader::COPY_LAST_TO_GOLDEN);
break;
default:
NOTREACHED() << "Invalid reference frame index";
}
const bool is_buffer_slot_in_use =
IsBufferSlotInUse(frame_hdr, ref_frames_, curr_ref_frame_index);
if (is_buffer_slot_copied || is_buffer_slot_in_use)
reusable_buffer_slots.erase(
base::checked_cast<int>(reusable_candidate_buffer_id));
}
std::set<int> Vp8Decoder::RefreshReferenceSlots(
const Vp8FrameHeader& frame_hdr,
MmappedBuffer* buffer,
std::set<uint32_t> queued_buffer_ids) {
std::set<int> reusable_buffer_slots = {};
if (frame_hdr.IsKeyframe()) {
// For key frames, all referenced frame are refreshed/replaced by the
// current reconstructed frame. Then all CAPTURE buffers can be reused
// except the CAPTURE buffer holding the key frame.
for (size_t i = 0; i < kNumberOfBuffersInCaptureQueue; i++) {
if (!queued_buffer_ids.count(i)) {
reusable_buffer_slots.insert(i);
}
}
reusable_buffer_slots.erase(buffer->buffer_id());
ref_frames_.fill(buffer);
return reusable_buffer_slots;
}
if (frame_hdr.refresh_alternate_frame) {
UpdateReusableReferenceBufferSlots(frame_hdr, kVp8FrameAltref,
reusable_buffer_slots);
ref_frames_[kVp8FrameAltref] = buffer;
} else {
switch (frame_hdr.copy_buffer_to_alternate) {
case Vp8FrameHeader::COPY_LAST_TO_ALT:
DCHECK(ref_frames_[kVp8FrameLast]);
UpdateReusableReferenceBufferSlots(frame_hdr, kVp8FrameAltref,
reusable_buffer_slots);
ref_frames_[kVp8FrameAltref] = ref_frames_[kVp8FrameLast];
break;
case Vp8FrameHeader::COPY_GOLDEN_TO_ALT:
DCHECK(ref_frames_[kVp8FrameGolden]);
UpdateReusableReferenceBufferSlots(frame_hdr, kVp8FrameAltref,
reusable_buffer_slots);
ref_frames_[kVp8FrameAltref] = ref_frames_[kVp8FrameGolden];
break;
case Vp8FrameHeader::NO_ALT_REFRESH:
DCHECK(ref_frames_[kVp8FrameAltref]);
break;
default:
NOTREACHED() << "Invalid flag to refresh altenate frame: "
<< frame_hdr.copy_buffer_to_alternate;
}
}
if (frame_hdr.refresh_golden_frame) {
UpdateReusableReferenceBufferSlots(frame_hdr, kVp8FrameGolden,
reusable_buffer_slots);
ref_frames_[kVp8FrameGolden] = buffer;
} else {
switch (frame_hdr.copy_buffer_to_golden) {
case Vp8FrameHeader::COPY_LAST_TO_GOLDEN:
DCHECK(ref_frames_[kVp8FrameLast]);
UpdateReusableReferenceBufferSlots(frame_hdr, kVp8FrameGolden,
reusable_buffer_slots);
ref_frames_[kVp8FrameGolden] = ref_frames_[kVp8FrameLast];
break;
case Vp8FrameHeader::COPY_ALT_TO_GOLDEN:
DCHECK(ref_frames_[kVp8FrameAltref]);
UpdateReusableReferenceBufferSlots(frame_hdr, kVp8FrameGolden,
reusable_buffer_slots);
ref_frames_[kVp8FrameGolden] = ref_frames_[kVp8FrameAltref];
break;
case Vp8FrameHeader::NO_GOLDEN_REFRESH:
DCHECK(ref_frames_[kVp8FrameGolden]);
break;
default:
NOTREACHED() << "Invalid flag to refresh golden frame: "
<< frame_hdr.copy_buffer_to_golden;
}
}
if (frame_hdr.refresh_last) {
UpdateReusableReferenceBufferSlots(frame_hdr, kVp8FrameLast,
reusable_buffer_slots);
ref_frames_[kVp8FrameLast] = buffer;
}
DCHECK(ref_frames_[kVp8FrameLast]);
return reusable_buffer_slots;
}
Vp8Decoder::ParseResult Vp8Decoder::ReadNextFrame(
Vp8FrameHeader& vp8_frame_header) {
IvfFrameHeader ivf_frame_header{};
const uint8_t* ivf_frame_data;
if (!ivf_parser_->ParseNextFrame(&ivf_frame_header, &ivf_frame_data))
return kEOStream;
const bool result = vp8_parser_->ParseFrame(
ivf_frame_data, ivf_frame_header.frame_size, &vp8_frame_header);
return result ? Vp8Decoder::kOk : Vp8Decoder::kError;
}
VideoDecoder::Result Vp8Decoder::DecodeNextFrame(const int frame_number,
std::vector<uint8_t>& y_plane,
std::vector<uint8_t>& u_plane,
std::vector<uint8_t>& v_plane,
gfx::Size& size,
BitDepth& bit_depth) {
Vp8FrameHeader frame_hdr{};
Vp8Decoder::ParseResult parser_res = ReadNextFrame(frame_hdr);
switch (parser_res) {
case Vp8Decoder::kEOStream:
return VideoDecoder::kEOStream;
case Vp8Decoder::kError:
return VideoDecoder::kError;
case Vp8Decoder::kOk:
break;
}
const bool is_OUTPUT_queue_new = !OUTPUT_queue_;
if (!OUTPUT_queue_) {
CreateOUTPUTQueue(kDriverCodecFourcc);
}
const bool resolution_changed =
frame_hdr.width != OUTPUT_queue_->resolution().width() ||
frame_hdr.height != OUTPUT_queue_->resolution().height();
if (frame_hdr.IsKeyframe() && resolution_changed) {
const gfx::Size new_resolution(frame_hdr.width, frame_hdr.height);
LOG_ASSERT(!new_resolution.IsEmpty())
<< "New key frame resolution is empty.";
HandleDynamicResolutionChange(new_resolution);
} else {
frame_hdr.width = OUTPUT_queue_->resolution().width();
frame_hdr.height = OUTPUT_queue_->resolution().height();
}
VLOG_IF(2, !frame_hdr.show_frame) << "Not displaying frame";
last_decoded_frame_visible_ = frame_hdr.show_frame;
uint32_t buffer_id = 0;
// Copies the frame data into the V4L2 buffer of OUTPUT |queue|.
scoped_refptr<MmappedBuffer> OUTPUT_queue_buffer =
OUTPUT_queue_->GetBuffer(buffer_id);
OUTPUT_queue_buffer->mmapped_planes()[0].CopyIn(frame_hdr.data,
frame_hdr.frame_size);
OUTPUT_queue_buffer->set_frame_number(frame_number);
if (!v4l2_ioctl_->QBuf(OUTPUT_queue_, buffer_id)) {
LOG(FATAL) << "VIDIOC_QBUF failed for OUTPUT queue.";
}
struct v4l2_ctrl_vp8_frame v4l2_frame_headers = SetupFrameHeaders(frame_hdr);
// Set controls required by the OUTPUT format to enumerate the CAPTURE formats
struct v4l2_ext_control ext_ctrl = {.id = V4L2_CID_STATELESS_VP8_FRAME,
.size = sizeof(v4l2_frame_headers),
.ptr = &v4l2_frame_headers};
struct v4l2_ext_controls ext_ctrls = {.count = 1, .controls = &ext_ctrl};
// Before the CAPTURE queue is set up the first frame must be parsed by the
// driver. This is done so that when VIDIOC_G_FMT is called the frame
// dimensions and format will be ready. Specifying V4L2_CTRL_WHICH_CUR_VAL
// when VIDIOC_S_EXT_CTRLS processes the request immediately so that the frame
// is parsed by the driver and the state is readied.
v4l2_ioctl_->SetExtCtrls(OUTPUT_queue_, &ext_ctrls, is_OUTPUT_queue_new);
v4l2_ioctl_->MediaRequestIocQueue(OUTPUT_queue_);
if (!CAPTURE_queue_) {
CreateCAPTUREQueue(kNumberOfBuffersInCaptureQueue);
}
v4l2_ioctl_->WaitForRequestCompletion(OUTPUT_queue_);
v4l2_ioctl_->DQBuf(CAPTURE_queue_, &buffer_id);
CAPTURE_queue_->DequeueBufferId(buffer_id);
scoped_refptr<MmappedBuffer> buffer = CAPTURE_queue_->GetBuffer(buffer_id);
bit_depth =
ConvertToYUV(y_plane, u_plane, v_plane, OUTPUT_queue_->resolution(),
buffer->mmapped_planes(), CAPTURE_queue_->resolution(),
CAPTURE_queue_->fourcc());
const std::set<int> reusable_buffer_slots = RefreshReferenceSlots(
frame_hdr, CAPTURE_queue_->GetBuffer(buffer_id).get(),
CAPTURE_queue_->queued_buffer_ids());
for (const auto reusable_buffer_slot : reusable_buffer_slots) {
if (v4l2_ioctl_->QBuf(CAPTURE_queue_, reusable_buffer_slot)) {
// After decoding a key frame, all CAPTURE buffer slots can be reused and
// queued, except the buffer holding the key frame. We want to avoid
// queuing the CAPTURE buffer slots that are already queued from the
// previous key frame. So we need to keep track of which buffers are
// queued for all frames.
CAPTURE_queue_->QueueBufferId(reusable_buffer_slot);
} else {
LOG(ERROR) << "VIDIOC_QBUF failed for CAPTURE queue.";
}
}
v4l2_ioctl_->DQBuf(OUTPUT_queue_, &buffer_id);
CHECK_EQ(buffer_id, uint32_t(0))
<< "Buffer ID of the buffer in OUTPUT queue is greater than size";
v4l2_ioctl_->MediaRequestIocReinit(OUTPUT_queue_);
return VideoDecoder::kOk;
}
} // namespace v4l2_test
} // namespace media
|