1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "media/gpu/v4l2/v4l2_device.h"
#include <errno.h>
#include <fcntl.h>
#include <libdrm/drm_fourcc.h>
#include <linux/media.h>
#include <linux/videodev2.h>
#include <poll.h>
#include <string.h>
#include <sys/eventfd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <unistd.h>
#include <algorithm>
#include <set>
#include "base/containers/contains.h"
#include "base/functional/bind.h"
#include "base/logging.h"
#include "base/not_fatal_until.h"
#include "base/posix/eintr_wrapper.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/stringprintf.h"
#include "build/build_config.h"
#include "media/base/color_plane_layout.h"
#include "media/base/media_switches.h"
#include "media/base/video_types.h"
#include "media/gpu/chromeos/fourcc.h"
#include "media/gpu/macros.h"
#include "media/gpu/v4l2/v4l2_queue.h"
#include "media/gpu/v4l2/v4l2_utils.h"
namespace media {
namespace {
uint32_t V4L2PixFmtToDrmFormat(uint32_t format) {
switch (format) {
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_NV12M:
return DRM_FORMAT_NV12;
case V4L2_PIX_FMT_YUV420:
case V4L2_PIX_FMT_YUV420M:
return DRM_FORMAT_YUV420;
case V4L2_PIX_FMT_YVU420:
return DRM_FORMAT_YVU420;
case V4L2_PIX_FMT_RGB32:
return DRM_FORMAT_ARGB8888;
default:
DVLOGF(1) << "Unrecognized format " << FourccToString(format);
return 0;
}
}
} // namespace
// This class is used to expose V4L2Queue's constructor to this module. This is
// to ensure that nobody else can create instances of it.
class V4L2QueueFactory {
public:
static scoped_refptr<V4L2Queue> CreateQueue(scoped_refptr<V4L2Device> dev,
enum v4l2_buf_type type,
base::OnceClosure destroy_cb) {
return base::MakeRefCounted<V4L2Queue>(
V4L2Queue::PassKey::Get(), base::BindRepeating(&V4L2Device::Ioctl, dev),
base::BindRepeating(&V4L2Device::SchedulePoll, dev),
base::BindRepeating(&V4L2Device::Mmap, dev),
dev->get_secure_allocate_cb(), type, std::move(destroy_cb));
}
};
V4L2Device::V4L2Device() {
DETACH_FROM_SEQUENCE(client_sequence_checker_);
}
V4L2Device::~V4L2Device() {
CloseDevice();
}
scoped_refptr<V4L2Queue> V4L2Device::GetQueue(enum v4l2_buf_type type) {
DCHECK_CALLED_ON_VALID_SEQUENCE(client_sequence_checker_);
switch (type) {
// Supported queue types.
case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
break;
default:
VLOGF(1) << "Unsupported V4L2 queue type: " << type;
return nullptr;
}
// TODO(acourbot): we should instead query the device for available queues,
// and allocate them accordingly. This will do for now though.
auto it = queues_.find(type);
if (it != queues_.end())
return scoped_refptr<V4L2Queue>(it->second);
scoped_refptr<V4L2Queue> queue = V4L2QueueFactory::CreateQueue(
this, type, base::BindOnce(&V4L2Device::OnQueueDestroyed, this, type));
queues_[type] = queue.get();
return queue;
}
void V4L2Device::OnQueueDestroyed(v4l2_buf_type buf_type) {
DCHECK_CALLED_ON_VALID_SEQUENCE(client_sequence_checker_);
auto it = queues_.find(buf_type);
CHECK(it != queues_.end());
queues_.erase(it);
}
bool V4L2Device::Open(Type type, uint32_t v4l2_pixfmt) {
DVLOGF(3);
std::string path = GetDevicePathFor(type, v4l2_pixfmt);
if (path.empty()) {
VLOGF(1) << "No devices supporting " << FourccToString(v4l2_pixfmt)
<< " for type: " << static_cast<int>(type);
return false;
}
if (!OpenDevicePath(path)) {
VLOGF(1) << "Failed opening " << path;
return false;
}
device_poll_interrupt_fd_.reset(eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC));
if (!device_poll_interrupt_fd_.is_valid()) {
VLOGF(1) << "Failed creating a poll interrupt fd";
return false;
}
return true;
}
bool V4L2Device::IsValid() {
return device_poll_interrupt_fd_.is_valid();
}
std::string V4L2Device::GetDriverName() {
struct v4l2_capability caps;
memset(&caps, 0, sizeof(caps));
if (Ioctl(VIDIOC_QUERYCAP, &caps) != 0) {
VPLOGF(1) << "ioctl() failed: VIDIOC_QUERYCAP"
<< ", caps check failed: 0x" << std::hex << caps.capabilities;
return "";
}
return std::string(reinterpret_cast<const char*>(caps.driver));
}
// static
int32_t V4L2Device::VideoCodecProfileToV4L2H264Profile(
VideoCodecProfile profile) {
switch (profile) {
case H264PROFILE_BASELINE:
return V4L2_MPEG_VIDEO_H264_PROFILE_BASELINE;
case H264PROFILE_MAIN:
return V4L2_MPEG_VIDEO_H264_PROFILE_MAIN;
case H264PROFILE_EXTENDED:
return V4L2_MPEG_VIDEO_H264_PROFILE_EXTENDED;
case H264PROFILE_HIGH:
return V4L2_MPEG_VIDEO_H264_PROFILE_HIGH;
case H264PROFILE_HIGH10PROFILE:
return V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_10;
case H264PROFILE_HIGH422PROFILE:
return V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_422;
case H264PROFILE_HIGH444PREDICTIVEPROFILE:
return V4L2_MPEG_VIDEO_H264_PROFILE_HIGH_444_PREDICTIVE;
case H264PROFILE_SCALABLEBASELINE:
return V4L2_MPEG_VIDEO_H264_PROFILE_SCALABLE_BASELINE;
case H264PROFILE_SCALABLEHIGH:
return V4L2_MPEG_VIDEO_H264_PROFILE_SCALABLE_HIGH;
case H264PROFILE_STEREOHIGH:
return V4L2_MPEG_VIDEO_H264_PROFILE_STEREO_HIGH;
case H264PROFILE_MULTIVIEWHIGH:
return V4L2_MPEG_VIDEO_H264_PROFILE_MULTIVIEW_HIGH;
default:
DVLOGF(1) << "Add more cases as needed";
return -1;
}
}
// static
int32_t V4L2Device::H264LevelIdcToV4L2H264Level(uint8_t level_idc) {
switch (level_idc) {
case 10:
return V4L2_MPEG_VIDEO_H264_LEVEL_1_0;
case 9:
return V4L2_MPEG_VIDEO_H264_LEVEL_1B;
case 11:
return V4L2_MPEG_VIDEO_H264_LEVEL_1_1;
case 12:
return V4L2_MPEG_VIDEO_H264_LEVEL_1_2;
case 13:
return V4L2_MPEG_VIDEO_H264_LEVEL_1_3;
case 20:
return V4L2_MPEG_VIDEO_H264_LEVEL_2_0;
case 21:
return V4L2_MPEG_VIDEO_H264_LEVEL_2_1;
case 22:
return V4L2_MPEG_VIDEO_H264_LEVEL_2_2;
case 30:
return V4L2_MPEG_VIDEO_H264_LEVEL_3_0;
case 31:
return V4L2_MPEG_VIDEO_H264_LEVEL_3_1;
case 32:
return V4L2_MPEG_VIDEO_H264_LEVEL_3_2;
case 40:
return V4L2_MPEG_VIDEO_H264_LEVEL_4_0;
case 41:
return V4L2_MPEG_VIDEO_H264_LEVEL_4_1;
case 42:
return V4L2_MPEG_VIDEO_H264_LEVEL_4_2;
case 50:
return V4L2_MPEG_VIDEO_H264_LEVEL_5_0;
case 51:
return V4L2_MPEG_VIDEO_H264_LEVEL_5_1;
default:
DVLOGF(1) << "Unrecognized level_idc: " << static_cast<int>(level_idc);
return -1;
}
}
// static
gfx::Size V4L2Device::AllocatedSizeFromV4L2Format(
const struct v4l2_format& format) {
gfx::Size coded_size;
gfx::Size visible_size;
VideoPixelFormat frame_format = PIXEL_FORMAT_UNKNOWN;
size_t bytesperline = 0;
// Total bytes in the frame.
size_t sizeimage = 0;
if (V4L2_TYPE_IS_MULTIPLANAR(format.type)) {
DCHECK_GT(format.fmt.pix_mp.num_planes, 0);
bytesperline =
base::checked_cast<int>(format.fmt.pix_mp.plane_fmt[0].bytesperline);
for (size_t i = 0; i < format.fmt.pix_mp.num_planes; ++i) {
sizeimage +=
base::checked_cast<int>(format.fmt.pix_mp.plane_fmt[i].sizeimage);
}
visible_size.SetSize(base::checked_cast<int>(format.fmt.pix_mp.width),
base::checked_cast<int>(format.fmt.pix_mp.height));
const uint32_t pix_fmt = format.fmt.pix_mp.pixelformat;
const auto frame_fourcc = Fourcc::FromV4L2PixFmt(pix_fmt);
if (!frame_fourcc) {
VLOGF(1) << "Unsupported format " << FourccToString(pix_fmt);
return coded_size;
}
frame_format = frame_fourcc->ToVideoPixelFormat();
} else {
bytesperline = base::checked_cast<int>(format.fmt.pix.bytesperline);
sizeimage = base::checked_cast<int>(format.fmt.pix.sizeimage);
visible_size.SetSize(base::checked_cast<int>(format.fmt.pix.width),
base::checked_cast<int>(format.fmt.pix.height));
const uint32_t fourcc = format.fmt.pix.pixelformat;
const auto frame_fourcc = Fourcc::FromV4L2PixFmt(fourcc);
if (!frame_fourcc) {
VLOGF(1) << "Unsupported format " << FourccToString(fourcc);
return coded_size;
}
frame_format = frame_fourcc ? frame_fourcc->ToVideoPixelFormat()
: PIXEL_FORMAT_UNKNOWN;
}
// V4L2 does not provide per-plane bytesperline (bpl) when different
// components are sharing one physical plane buffer. In this case, it only
// provides bpl for the first component in the plane. So we can't depend on it
// for calculating height, because bpl may vary within one physical plane
// buffer. For example, YUV420 contains 3 components in one physical plane,
// with Y at 8 bits per pixel, and Cb/Cr at 4 bits per pixel per component,
// but we only get 8 pits per pixel from bytesperline in physical plane 0.
// So we need to get total frame bpp from elsewhere to calculate coded height.
// We need bits per pixel for one component only to calculate
// coded_width from bytesperline.
int plane_horiz_bits_per_pixel =
VideoFrame::PlaneHorizontalBitsPerPixel(frame_format, 0);
// Adding up bpp for each component will give us total bpp for all components.
int total_bpp = 0;
for (size_t i = 0; i < VideoFrame::NumPlanes(frame_format); ++i)
total_bpp += VideoFrame::PlaneBitsPerPixel(frame_format, i);
if (sizeimage == 0 || bytesperline == 0 || plane_horiz_bits_per_pixel == 0 ||
total_bpp == 0 || (bytesperline * 8) % plane_horiz_bits_per_pixel != 0) {
VLOGF(1) << "Invalid format provided";
return coded_size;
}
// Coded width can be calculated by taking the first component's bytesperline,
// which in V4L2 always applies to the first component in physical plane
// buffer.
int coded_width = bytesperline * 8 / plane_horiz_bits_per_pixel;
// Sizeimage is coded_width * coded_height * total_bpp. In the case that we
// don't have exact alignment due to padding in the driver, round up so that
// the buffer is large enough.
std::div_t res = std::div(sizeimage * 8, coded_width * total_bpp);
int coded_height = res.quot + std::min(res.rem, 1);
coded_size.SetSize(coded_width, coded_height);
DVLOGF(3) << "coded_size=" << coded_size.ToString();
// Sanity checks. Calculated coded size has to contain given visible size
// and fulfill buffer byte size requirements.
DCHECK(gfx::Rect(coded_size).Contains(gfx::Rect(visible_size)));
DCHECK_LE(sizeimage, VideoFrame::AllocationSize(frame_format, coded_size));
return coded_size;
}
int V4L2Device::Ioctl(int request, void* arg) {
DCHECK(device_fd_.is_valid());
return HANDLE_EINTR(ioctl(device_fd_.get(), request, arg));
}
bool V4L2Device::Poll(bool poll_device, bool* event_pending) {
struct pollfd pollfds[2];
nfds_t nfds;
int pollfd = -1;
pollfds[0].fd = device_poll_interrupt_fd_.get();
pollfds[0].events = POLLIN | POLLERR;
nfds = 1;
if (poll_device) {
DVLOGF(5) << "adding device fd to poll() set";
pollfds[nfds].fd = device_fd_.get();
pollfds[nfds].events = POLLIN | POLLOUT | POLLERR | POLLPRI;
pollfd = nfds;
nfds++;
}
if (HANDLE_EINTR(poll(pollfds, nfds, -1)) == -1) {
VPLOGF(1) << "poll() failed";
return false;
}
*event_pending = (pollfd != -1 && pollfds[pollfd].revents & POLLPRI);
return true;
}
void* V4L2Device::Mmap(void* addr,
unsigned int len,
int prot,
int flags,
unsigned int offset) {
DCHECK(device_fd_.is_valid());
return mmap(addr, len, prot, flags, device_fd_.get(), offset);
}
void V4L2Device::Munmap(void* addr, unsigned int len) {
munmap(addr, len);
}
bool V4L2Device::SetDevicePollInterrupt() {
DVLOGF(4);
const uint64_t buf = 1;
if (HANDLE_EINTR(write(device_poll_interrupt_fd_.get(), &buf, sizeof(buf))) ==
-1) {
VPLOGF(1) << "write() failed";
return false;
}
return true;
}
bool V4L2Device::ClearDevicePollInterrupt() {
DVLOGF(5);
uint64_t buf;
if (HANDLE_EINTR(read(device_poll_interrupt_fd_.get(), &buf, sizeof(buf))) ==
-1) {
if (errno == EAGAIN) {
// No interrupt flag set, and we're reading nonblocking. Not an error.
return true;
} else {
VPLOGF(1) << "read() failed";
return false;
}
}
return true;
}
bool V4L2Device::CanCreateEGLImageFrom(const Fourcc fourcc) const {
static uint32_t kEGLImageDrmFmtsSupported[] = {
DRM_FORMAT_ARGB8888,
#if defined(ARCH_CPU_ARM_FAMILY)
DRM_FORMAT_NV12,
DRM_FORMAT_YVU420,
#endif
};
return base::Contains(kEGLImageDrmFmtsSupported,
V4L2PixFmtToDrmFormat(fourcc.ToV4L2PixFmt()));
}
std::vector<uint32_t> V4L2Device::PreferredInputFormat(Type type) const {
if (type == Type::kEncoder) {
return {V4L2_PIX_FMT_NV12M, V4L2_PIX_FMT_NV12};
}
return {};
}
VideoEncodeAccelerator::SupportedRateControlMode
V4L2Device::GetSupportedRateControlMode() {
auto rate_control_mode = VideoEncodeAccelerator::kNoMode;
v4l2_queryctrl query_ctrl;
memset(&query_ctrl, 0, sizeof(query_ctrl));
query_ctrl.id = V4L2_CID_MPEG_VIDEO_BITRATE_MODE;
if (Ioctl(VIDIOC_QUERYCTRL, &query_ctrl)) {
DPLOG(WARNING) << "QUERYCTRL for bitrate mode failed";
return rate_control_mode;
}
v4l2_querymenu query_menu;
memset(&query_menu, 0, sizeof(query_menu));
query_menu.id = query_ctrl.id;
for (query_menu.index = query_ctrl.minimum;
base::checked_cast<int>(query_menu.index) <= query_ctrl.maximum;
query_menu.index++) {
if (Ioctl(VIDIOC_QUERYMENU, &query_menu) == 0) {
switch (query_menu.index) {
case V4L2_MPEG_VIDEO_BITRATE_MODE_CBR:
rate_control_mode |= VideoEncodeAccelerator::kConstantMode;
break;
case V4L2_MPEG_VIDEO_BITRATE_MODE_VBR:
if (!base::FeatureList::IsEnabled(kChromeOSHWVBREncoding)) {
DVLOGF(3) << "Skip VBR capability";
break;
}
rate_control_mode |= VideoEncodeAccelerator::kVariableMode;
break;
default:
DVLOGF(4) << "Skip bitrate mode: " << query_menu.index;
break;
}
}
}
return rate_control_mode;
}
std::vector<uint32_t> V4L2Device::GetSupportedImageProcessorPixelformats(
v4l2_buf_type buf_type) {
std::vector<uint32_t> supported_pixelformats;
Type type = Type::kImageProcessor;
const auto& devices = GetDevicesForType(type);
for (const auto& device : devices) {
if (!OpenDevicePath(device.first)) {
VLOGF(1) << "Failed opening " << device.first;
continue;
}
const auto pixelformats = EnumerateSupportedPixFmts(
base::BindRepeating(&V4L2Device::Ioctl, this), buf_type);
supported_pixelformats.insert(supported_pixelformats.end(),
pixelformats.begin(), pixelformats.end());
CloseDevice();
}
return supported_pixelformats;
}
VideoDecodeAccelerator::SupportedProfiles
V4L2Device::GetSupportedDecodeProfiles(
const std::vector<uint32_t>& pixelformats) {
VideoDecodeAccelerator::SupportedProfiles supported_profiles;
Type type = Type::kDecoder;
const auto& devices = GetDevicesForType(type);
for (const auto& device : devices) {
if (!OpenDevicePath(device.first)) {
VLOGF(1) << "Failed opening " << device.first;
continue;
}
const auto& profiles = EnumerateSupportedDecodeProfiles(pixelformats);
supported_profiles.insert(supported_profiles.end(), profiles.begin(),
profiles.end());
CloseDevice();
}
return supported_profiles;
}
VideoEncodeAccelerator::SupportedProfiles
V4L2Device::GetSupportedEncodeProfiles() {
VideoEncodeAccelerator::SupportedProfiles supported_profiles;
Type type = Type::kEncoder;
const auto& devices = GetDevicesForType(type);
for (const auto& device : devices) {
if (!OpenDevicePath(device.first)) {
VLOGF(1) << "Failed opening " << device.first;
continue;
}
const auto& profiles = EnumerateSupportedEncodeProfiles();
supported_profiles.insert(supported_profiles.end(), profiles.begin(),
profiles.end());
CloseDevice();
}
return supported_profiles;
}
bool V4L2Device::IsImageProcessingSupported() {
const auto& devices = GetDevicesForType(Type::kImageProcessor);
return !devices.empty();
}
bool V4L2Device::IsJpegDecodingSupported() {
const auto& devices = GetDevicesForType(Type::kJpegDecoder);
return !devices.empty();
}
bool V4L2Device::IsJpegEncodingSupported() {
const auto& devices = GetDevicesForType(Type::kJpegEncoder);
return !devices.empty();
}
VideoDecodeAccelerator::SupportedProfiles
V4L2Device::EnumerateSupportedDecodeProfiles(
const std::vector<uint32_t>& pixelformats) {
VideoDecodeAccelerator::SupportedProfiles profiles;
const auto v4l2_codecs_as_pix_fmts =
EnumerateSupportedPixFmts(base::BindRepeating(&V4L2Device::Ioctl, this),
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
for (uint32_t pixelformat : v4l2_codecs_as_pix_fmts) {
if (!base::Contains(pixelformats, pixelformat)) {
continue;
}
VideoDecodeAccelerator::SupportedProfile profile;
GetSupportedResolution(base::BindRepeating(&V4L2Device::Ioctl, this),
pixelformat, &profile.min_resolution,
&profile.max_resolution);
const auto video_codec_profiles = EnumerateSupportedProfilesForV4L2Codec(
base::BindRepeating(&V4L2Device::Ioctl, this), pixelformat);
for (const auto& video_codec_profile : video_codec_profiles) {
profile.profile = video_codec_profile;
profiles.push_back(profile);
DVLOGF(3) << "Found decoder profile " << GetProfileName(profile.profile)
<< ", resolutions: " << profile.min_resolution.ToString() << " "
<< profile.max_resolution.ToString();
}
}
return profiles;
}
VideoEncodeAccelerator::SupportedProfiles
V4L2Device::EnumerateSupportedEncodeProfiles() {
VideoEncodeAccelerator::SupportedProfiles profiles;
const auto v4l2_codecs_as_pix_fmts =
EnumerateSupportedPixFmts(base::BindRepeating(&V4L2Device::Ioctl, this),
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
for (const auto& pixelformat : v4l2_codecs_as_pix_fmts) {
VideoEncodeAccelerator::SupportedProfile profile;
profile.max_framerate_numerator = 30;
profile.max_framerate_denominator = 1;
profile.rate_control_modes = GetSupportedRateControlMode();
if (profile.rate_control_modes == VideoEncodeAccelerator::kNoMode) {
DLOG(ERROR) << "Skipped because no bitrate mode is supported for "
<< FourccToString(pixelformat);
continue;
}
gfx::Size min_resolution;
GetSupportedResolution(base::BindRepeating(&V4L2Device::Ioctl, this),
pixelformat, &min_resolution,
&profile.max_resolution);
const auto video_codec_profiles = EnumerateSupportedProfilesForV4L2Codec(
base::BindRepeating(&V4L2Device::Ioctl, this), pixelformat);
for (const auto& video_codec_profile : video_codec_profiles) {
profile.profile = video_codec_profile;
profile.scalability_modes = GetSupportedScalabilityModesForV4L2Codec(
base::BindRepeating(&V4L2Device::Ioctl, this), video_codec_profile);
profiles.push_back(profile);
DVLOGF(3) << "Found encoder profile " << GetProfileName(profile.profile)
<< ", max resolution: " << profile.max_resolution.ToString();
}
}
return profiles;
}
bool V4L2Device::StartPolling(V4L2DevicePoller::EventCallback event_callback,
base::RepeatingClosure error_callback) {
DCHECK_CALLED_ON_VALID_SEQUENCE(client_sequence_checker_);
if (!device_poller_) {
device_poller_ =
std::make_unique<V4L2DevicePoller>(this, "V4L2DevicePollerThread");
}
bool ret = device_poller_->StartPolling(std::move(event_callback),
std::move(error_callback));
if (!ret)
device_poller_ = nullptr;
return ret;
}
bool V4L2Device::StopPolling() {
DCHECK_CALLED_ON_VALID_SEQUENCE(client_sequence_checker_);
return !device_poller_ || device_poller_->StopPolling();
}
void V4L2Device::SchedulePoll() {
DCHECK_CALLED_ON_VALID_SEQUENCE(client_sequence_checker_);
if (!device_poller_ || !device_poller_->IsPolling())
return;
device_poller_->SchedulePoll();
}
std::optional<struct v4l2_event> V4L2Device::DequeueEvent() {
DCHECK_CALLED_ON_VALID_SEQUENCE(client_sequence_checker_);
struct v4l2_event event;
memset(&event, 0, sizeof(event));
if (Ioctl(VIDIOC_DQEVENT, &event) != 0) {
// The ioctl will fail if there are no pending events. This is part of the
// normal flow, so keep this log level low.
VPLOGF(4) << "Failed to dequeue event";
return std::nullopt;
}
return event;
}
V4L2RequestsQueue* V4L2Device::GetRequestsQueue() {
DCHECK_CALLED_ON_VALID_SEQUENCE(client_sequence_checker_);
if (requests_queue_creation_called_)
return requests_queue_.get();
requests_queue_creation_called_ = true;
struct v4l2_capability caps;
if (Ioctl(VIDIOC_QUERYCAP, &caps)) {
VPLOGF(1) << "Failed to query device capabilities.";
return nullptr;
}
// Some devices, namely the RK3399, have multiple hardware decoder blocks.
// We have to find and use the matching media device, or the kernel gets
// confused.
// Note that the match persists for the lifetime of V4L2Device. In practice
// this should be fine, since |GetRequestsQueue()| is only called after
// the codec format is configured, and the VD/VDA instance is always tied
// to a specific format, so it will never need to switch media devices.
#if BUILDFLAG(IS_CHROMEOS)
static const std::string kRequestDevicePrefix = "/dev/media-dec";
#else
static const std::string kRequestDevicePrefix = "/dev/media";
#endif
// We are sandboxed, so we can't query directory contents to check which
// devices are actually available. Try to open the first 10; if not present,
// we will just fail to open immediately.
base::ScopedFD media_fd;
for (int i = 0; i < 10; ++i) {
const auto path = kRequestDevicePrefix + base::NumberToString(i);
base::ScopedFD candidate_media_fd(
HANDLE_EINTR(open(path.c_str(), O_RDWR, 0)));
if (!candidate_media_fd.is_valid()) {
VPLOGF(2) << "Failed to open media device: " << path;
continue;
}
struct media_device_info media_info;
if (HANDLE_EINTR(ioctl(candidate_media_fd.get(), MEDIA_IOC_DEVICE_INFO,
&media_info)) < 0) {
RecordMediaIoctlUMA(MediaIoctlRequests::kMediaIocDeviceInfo);
VPLOGF(2) << "Failed to Query media device info.";
continue;
}
// Match the video device and the media controller by the bus_info
// field. This works better than the driver field if there are multiple
// instances of the same decoder driver in the system. However old MediaTek
// drivers didn't fill in the bus_info field for the media device.
if (strlen(reinterpret_cast<const char*>(caps.bus_info)) > 0 &&
strlen(reinterpret_cast<const char*>(media_info.bus_info)) > 0 &&
strncmp(reinterpret_cast<const char*>(caps.bus_info),
reinterpret_cast<const char*>(media_info.bus_info),
sizeof(caps.bus_info))) {
continue;
}
// Fall back to matching the video device and the media controller by the
// driver field. The mtk-vcodec driver does not fill the card and bus fields
// properly, so those won't work.
if (strncmp(reinterpret_cast<const char*>(caps.driver),
reinterpret_cast<const char*>(media_info.driver),
sizeof(caps.driver))) {
continue;
}
media_fd = std::move(candidate_media_fd);
break;
}
if (!media_fd.is_valid()) {
VLOGF(1) << "Failed to open matching media device.";
return nullptr;
}
// Not using std::make_unique because constructor is private.
std::unique_ptr<V4L2RequestsQueue> requests_queue(
new V4L2RequestsQueue(std::move(media_fd)));
requests_queue_ = std::move(requests_queue);
return requests_queue_.get();
}
bool V4L2Device::IsCtrlExposed(uint32_t ctrl_id) {
struct v4l2_queryctrl query_ctrl;
memset(&query_ctrl, 0, sizeof(query_ctrl));
query_ctrl.id = ctrl_id;
return Ioctl(VIDIOC_QUERYCTRL, &query_ctrl) == 0;
}
bool V4L2Device::SetExtCtrls(uint32_t ctrl_class,
std::vector<V4L2ExtCtrl> ctrls,
V4L2RequestRef* request_ref) {
DCHECK_CALLED_ON_VALID_SEQUENCE(client_sequence_checker_);
if (ctrls.empty())
return true;
struct v4l2_ext_controls ext_ctrls;
memset(&ext_ctrls, 0, sizeof(ext_ctrls));
ext_ctrls.which = V4L2_CTRL_WHICH_CUR_VAL;
ext_ctrls.count = 0;
const bool use_modern_s_ext_ctrls =
Ioctl(VIDIOC_S_EXT_CTRLS, &ext_ctrls) == 0;
ext_ctrls.which =
use_modern_s_ext_ctrls ? V4L2_CTRL_WHICH_CUR_VAL : ctrl_class;
ext_ctrls.count = ctrls.size();
ext_ctrls.controls = &ctrls[0].ctrl;
if (request_ref)
request_ref->ApplyCtrls(&ext_ctrls);
const int result = Ioctl(VIDIOC_S_EXT_CTRLS, &ext_ctrls);
if (result < 0) {
RecordVidiocIoctlErrorUMA(VidiocIoctlRequests::kVidiocSExtCtrls);
if (ext_ctrls.error_idx == ext_ctrls.count)
VPLOGF(1) << "VIDIOC_S_EXT_CTRLS: validation failed while trying to set "
"controls";
else
VPLOGF(1) << "VIDIOC_S_EXT_CTRLS: unable to set control (0x" << std::hex
<< ctrls[ext_ctrls.error_idx].ctrl.id << ") at index ("
<< ext_ctrls.error_idx << ") to 0x"
<< ctrls[ext_ctrls.error_idx].ctrl.value;
}
return result == 0;
}
std::optional<struct v4l2_ext_control> V4L2Device::GetCtrl(uint32_t ctrl_id) {
DCHECK_CALLED_ON_VALID_SEQUENCE(client_sequence_checker_);
struct v4l2_ext_control ctrl;
memset(&ctrl, 0, sizeof(ctrl));
struct v4l2_ext_controls ext_ctrls;
memset(&ext_ctrls, 0, sizeof(ext_ctrls));
ctrl.id = ctrl_id;
ext_ctrls.controls = &ctrl;
ext_ctrls.count = 1;
if (Ioctl(VIDIOC_G_EXT_CTRLS, &ext_ctrls) != 0) {
VPLOGF(3) << "Failed to get control";
return std::nullopt;
}
return ctrl;
}
bool V4L2Device::SetGOPLength(uint32_t gop_length) {
if (!SetExtCtrls(V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_GOP_SIZE, gop_length)})) {
// Some platforms allow setting the GOP length to 0 as
// a way of turning off keyframe placement. If the platform
// does not support turning off periodic keyframe placement,
// set the GOP to the maximum supported value.
if (gop_length == 0) {
v4l2_query_ext_ctrl queryctrl;
memset(&queryctrl, 0, sizeof(queryctrl));
queryctrl.id = V4L2_CTRL_CLASS_MPEG | V4L2_CID_MPEG_VIDEO_GOP_SIZE;
if (Ioctl(VIDIOC_QUERY_EXT_CTRL, &queryctrl) == 0) {
VPLOGF(3) << "Unable to set GOP to 0, instead using max : "
<< queryctrl.maximum;
return SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_GOP_SIZE, queryctrl.maximum)});
}
}
return false;
}
return true;
}
bool V4L2Device::OpenDevicePath(const std::string& path) {
DCHECK(!device_fd_.is_valid());
device_fd_.reset(
HANDLE_EINTR(open(path.c_str(), O_RDWR | O_NONBLOCK | O_CLOEXEC)));
return device_fd_.is_valid();
}
void V4L2Device::CloseDevice() {
DVLOGF(3);
device_fd_.reset();
}
void V4L2Device::EnumerateDevicesForType(Type type) {
#if BUILDFLAG(IS_CHROMEOS)
static const std::string kDecoderDevicePattern = "/dev/video-dec";
static const std::string kEncoderDevicePattern = "/dev/video-enc";
static const std::string kImageProcessorDevicePattern = "/dev/image-proc";
static const std::string kJpegDecoderDevicePattern = "/dev/jpeg-dec";
static const std::string kJpegEncoderDevicePattern = "/dev/jpeg-enc";
#else
static const std::string kDecoderDevicePattern = "/dev/video";
static const std::string kEncoderDevicePattern = "/dev/video";
static const std::string kImageProcessorDevicePattern = "/dev/video";
static const std::string kJpegDecoderDevicePattern = "/dev/video";
static const std::string kJpegEncoderDevicePattern = "/dev/video";
#endif
std::string device_pattern;
v4l2_buf_type buf_type;
switch (type) {
case Type::kDecoder:
device_pattern = kDecoderDevicePattern;
buf_type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
break;
case Type::kEncoder:
device_pattern = kEncoderDevicePattern;
buf_type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
break;
case Type::kImageProcessor:
device_pattern = kImageProcessorDevicePattern;
buf_type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
break;
case Type::kJpegDecoder:
device_pattern = kJpegDecoderDevicePattern;
buf_type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
break;
case Type::kJpegEncoder:
device_pattern = kJpegEncoderDevicePattern;
buf_type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
break;
}
std::vector<std::string> candidate_paths;
// We are sandboxed, so we can't query directory contents to check which
// devices are actually available. Try to open the first 10; if not present,
// we will just fail to open immediately.
#if BUILDFLAG(IS_CHROMEOS)
constexpr int kMaxDevices = 10;
candidate_paths.reserve(kMaxDevices + 1);
// TODO(posciak): Remove this legacy unnumbered device once
// all platforms are updated to use numbered devices.
candidate_paths.push_back(device_pattern);
#else
// On mainline Linux we need to check a much larger number of devices, mainly
// because the device pattern is shared with ISP devices.
constexpr int kMaxDevices = 256;
candidate_paths.reserve(kMaxDevices);
#endif
for (int i = 0; i < kMaxDevices; ++i) {
candidate_paths.push_back(
base::StringPrintf("%s%d", device_pattern.c_str(), i));
}
Devices devices;
for (const auto& path : candidate_paths) {
if (!OpenDevicePath(path)) {
continue;
}
const auto supported_pixelformats = EnumerateSupportedPixFmts(
base::BindRepeating(&V4L2Device::Ioctl, this), buf_type);
if (!supported_pixelformats.empty()) {
DVLOGF(3) << "Found device: " << path;
devices.push_back(std::make_pair(path, supported_pixelformats));
}
CloseDevice();
}
DCHECK_EQ(devices_by_type_.count(type), 0u);
devices_by_type_[type] = devices;
}
const V4L2Device::Devices& V4L2Device::GetDevicesForType(Type type) {
if (devices_by_type_.count(type) == 0) {
EnumerateDevicesForType(type);
}
DCHECK_NE(devices_by_type_.count(type), 0u);
return devices_by_type_[type];
}
std::string V4L2Device::GetDevicePathFor(Type type, uint32_t pixfmt) {
const Devices& devices = GetDevicesForType(type);
for (const auto& device : devices) {
if (base::Contains(device.second, pixfmt)) {
return device.first;
}
}
return std::string();
}
} // namespace media
|