1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "media/gpu/v4l2/v4l2_image_processor_backend.h"
#include <errno.h>
#include <fcntl.h>
#include <poll.h>
#include <string.h>
#include <sys/eventfd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <limits>
#include <memory>
#include <utility>
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/numerics/safe_conversions.h"
#include "base/task/sequenced_task_runner.h"
#include "base/task/task_traits.h"
#include "base/task/thread_pool.h"
#include "base/time/time.h"
#include "base/trace_event/trace_event.h"
#include "media/base/color_plane_layout.h"
#include "media/base/media_util.h"
#include "media/gpu/chromeos/fourcc.h"
#include "media/gpu/chromeos/platform_video_frame_utils.h"
#include "media/gpu/chromeos/video_frame_resource.h"
#include "media/gpu/macros.h"
#include "media/gpu/v4l2/v4l2_utils.h"
namespace media {
namespace {
std::optional<gfx::GpuMemoryBufferHandle> CreateHandle(
const FrameResource* frame) {
gfx::GpuMemoryBufferHandle handle = frame->CreateGpuMemoryBufferHandle();
if (handle.is_null() || handle.type != gfx::NATIVE_PIXMAP)
return std::nullopt;
return handle;
}
void FillV4L2BufferByGpuMemoryBufferHandle(
const Fourcc& fourcc,
const gfx::Size& coded_size,
const gfx::GpuMemoryBufferHandle& gmb_handle,
V4L2WritableBufferRef* buffer) {
DCHECK_EQ(buffer->Memory(), V4L2_MEMORY_DMABUF);
const size_t num_planes = GetNumPlanesOfV4L2PixFmt(fourcc.ToV4L2PixFmt());
const std::vector<gfx::NativePixmapPlane>& planes =
gmb_handle.native_pixmap_handle().planes;
for (size_t i = 0; i < num_planes; ++i) {
if (fourcc.IsMultiPlanar()) {
// TODO(crbug.com/901264): The way to pass an offset within a DMA-buf
// is not defined in V4L2 specification, so we abuse data_offset for
// now. Fix it when we have the right interface, including any
// necessary validation and potential alignment
buffer->SetPlaneDataOffset(i, planes[i].offset);
// V4L2 counts data_offset as used bytes
buffer->SetPlaneSize(i, planes[i].size + planes[i].offset);
// Workaround: filling length should not be needed. This is a bug of
// videobuf2 library.
buffer->SetPlaneBytesUsed(i, planes[i].size + planes[i].offset);
} else {
// There is no need of filling data_offset for a single-planar format.
buffer->SetPlaneBytesUsed(i, planes[i].size);
}
}
}
bool AllocateV4L2Buffers(V4L2Queue* queue,
const size_t num_buffers,
v4l2_memory memory_type) {
DCHECK(queue);
size_t requested_buffers = num_buffers;
// If we are using DMABUFs, then we will try to keep using the same V4L2
// buffer for a given input or output frame. In that case, allocate as many
// V4L2 buffers as we can to avoid running out of them. Unused buffers won't
// use backed memory and are thus virtually free.
if (memory_type == V4L2_MEMORY_DMABUF)
requested_buffers = VIDEO_MAX_FRAME;
// Note that MDP does not support incoherent buffer allocations.
if (queue->AllocateBuffers(requested_buffers, memory_type,
/*incoherent=*/false) == 0u)
return false;
if (queue->AllocatedBuffersCount() < num_buffers) {
VLOGF(1) << "Failed to allocate buffers. Allocated number="
<< queue->AllocatedBuffersCount()
<< ", Requested number=" << num_buffers;
return false;
}
return true;
}
} // namespace
V4L2ImageProcessorBackend::JobRecord::JobRecord()
: output_buffer_id(std::numeric_limits<size_t>::max()) {}
V4L2ImageProcessorBackend::JobRecord::~JobRecord() = default;
V4L2ImageProcessorBackend::V4L2ImageProcessorBackend(
scoped_refptr<V4L2Device> device,
const PortConfig& input_config,
const PortConfig& output_config,
v4l2_memory input_memory_type,
v4l2_memory output_memory_type,
OutputMode output_mode,
ErrorCB error_cb)
: ImageProcessorBackend(
input_config,
output_config,
output_mode,
std::move(error_cb),
// This class doesn't use a backend runner because the V4L2 operations
// are fast and non-blocking(except for poll() which happens in its
// own TaskRunner)
base::SequencedTaskRunner::GetCurrentDefault()),
input_memory_type_(input_memory_type),
output_memory_type_(output_memory_type),
device_(device),
// We poll V4L2 device on this task runner, which blocks the task runner.
// Therefore we use dedicated SingleThreadTaskRunner here.
poll_task_runner_(base::ThreadPool::CreateSingleThreadTaskRunner(
{},
base::SingleThreadTaskRunnerThreadMode::DEDICATED)) {
DVLOGF(2);
DETACH_FROM_SEQUENCE(poll_sequence_checker_);
DCHECK_NE(output_memory_type_, V4L2_MEMORY_USERPTR);
VLOGF(2) << "V4L2ImageProcessorBackend constructed with input: "
<< input_config_.ToString()
<< ", output: " << output_config_.ToString();
weak_this_ = weak_this_factory_.GetWeakPtr();
poll_weak_this_ = poll_weak_this_factory_.GetWeakPtr();
}
std::string V4L2ImageProcessorBackend::type() const {
return "V4L2ImageProcessor";
}
void V4L2ImageProcessorBackend::Destroy() {
DVLOGF(3);
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
weak_this_factory_.InvalidateWeakPtrs();
if (input_queue_) {
if (!input_queue_->Streamoff())
VLOGF(1) << "Failed to turn stream off";
if (!input_queue_->DeallocateBuffers())
VLOGF(1) << "Failed to deallocate buffers";
input_queue_ = nullptr;
}
if (output_queue_) {
if (!output_queue_->Streamoff())
VLOGF(1) << "Failed to turn stream off";
if (!output_queue_->DeallocateBuffers())
VLOGF(1) << "Failed to deallocate buffers";
output_queue_ = nullptr;
}
// Reset all our accounting info.
input_job_queue_ = {};
running_jobs_ = {};
// Stop the running DevicePollTask() if it exists.
if (!device_->SetDevicePollInterrupt())
NotifyError();
// After stopping queue, we don't schedule new DevicePollTask() to
// |poll_task_runner_|. Now clean up |poll_task_runner_|.
poll_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2ImageProcessorBackend::DestroyOnPollSequence,
poll_weak_this_));
}
void V4L2ImageProcessorBackend::DestroyOnPollSequence() {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(poll_sequence_checker_);
poll_weak_this_factory_.InvalidateWeakPtrs();
delete this;
}
V4L2ImageProcessorBackend::~V4L2ImageProcessorBackend() {
VLOGF(3);
DCHECK_CALLED_ON_VALID_SEQUENCE(poll_sequence_checker_);
}
void V4L2ImageProcessorBackend::NotifyError() {
VLOGF(1);
// Note: |error_cb_| must be thread safe for this to work from any task runner
// and it is, but it should be enforced somehow.
error_cb_.Run();
}
namespace {
v4l2_memory InputStorageTypeToV4L2Memory(VideoFrame::StorageType storage_type) {
switch (storage_type) {
case VideoFrame::STORAGE_OWNED_MEMORY:
case VideoFrame::STORAGE_UNOWNED_MEMORY:
case VideoFrame::STORAGE_SHMEM:
return V4L2_MEMORY_USERPTR;
case VideoFrame::STORAGE_DMABUFS:
case VideoFrame::STORAGE_GPU_MEMORY_BUFFER:
return V4L2_MEMORY_DMABUF;
default:
return static_cast<v4l2_memory>(0);
}
}
} // namespace
// static
std::unique_ptr<ImageProcessorBackend> V4L2ImageProcessorBackend::Create(
scoped_refptr<V4L2Device> device,
size_t num_buffers,
const PortConfig& input_config,
const PortConfig& output_config,
OutputMode output_mode,
ErrorCB error_cb) {
VLOGF(2);
DCHECK_GT(num_buffers, 0u);
// Most of the users of this class are decoders that only want a pixel format
// conversion (with the same coded dimensions and visible rectangles). Video
// encoding, however, can try and ask for cropping (this is common for camera
// capture for example). Although the V4L2 ImageProcessor might support it,
// it's a better idea to use libyuv instead.
if (input_config.size != output_config.size ||
input_config.visible_rect != output_config.visible_rect) {
VLOGF(2) << "V4L2ImageProcessor cannot adapt size/visible_rects, input "
<< input_config.ToString() << ", output "
<< output_config.ToString();
return nullptr;
}
if (!device) {
VLOGF(2) << "Failed creating V4L2Device";
return nullptr;
}
const v4l2_memory input_memory_type =
InputStorageTypeToV4L2Memory(input_config.storage_type);
if (input_memory_type != V4L2_MEMORY_USERPTR &&
input_memory_type != V4L2_MEMORY_DMABUF) {
VLOGF(2) << "Unsupported input storage type";
return nullptr;
}
// When |output_mode| is ALLOCATE, then |output_config.storage_type| is
// ignored. The output memory type will be V4L2_MEMORY_MMAP.
const v4l2_memory output_memory_type =
output_mode == OutputMode::ALLOCATE
? V4L2_MEMORY_MMAP
: InputStorageTypeToV4L2Memory(output_config.storage_type);
if (output_memory_type != V4L2_MEMORY_MMAP &&
output_memory_type != V4L2_MEMORY_DMABUF) {
VLOGF(2) << "Unsupported output storage type";
return nullptr;
}
if (!device->IsImageProcessingSupported()) {
VLOGF(1) << "V4L2ImageProcessorBackend not supported in this platform";
return nullptr;
}
if (!device->Open(V4L2Device::Type::kImageProcessor,
input_config.fourcc.ToV4L2PixFmt())) {
VLOGF(1) << "Failed to open device with input fourcc: "
<< input_config.fourcc.ToString();
return nullptr;
}
// Try to set input format.
struct v4l2_format format;
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
format.fmt.pix_mp.width = input_config.size.width();
format.fmt.pix_mp.height = input_config.size.height();
format.fmt.pix_mp.pixelformat = input_config.fourcc.ToV4L2PixFmt();
if (device->Ioctl(VIDIOC_S_FMT, &format) != 0 ||
format.fmt.pix_mp.pixelformat != input_config.fourcc.ToV4L2PixFmt()) {
VLOGF(1) << "Failed to negotiate input format";
return nullptr;
}
const v4l2_pix_format_mplane& pix_mp = format.fmt.pix_mp;
const gfx::Size negotiated_input_size(pix_mp.width, pix_mp.height);
if (!gfx::Rect(negotiated_input_size).Contains(input_config.visible_rect)) {
VLOGF(1) << "Negotiated input allocated size: "
<< negotiated_input_size.ToString()
<< " should contain visible size: "
<< input_config.visible_rect.size().ToString();
return nullptr;
}
std::vector<ColorPlaneLayout> input_planes(pix_mp.num_planes);
for (size_t i = 0; i < pix_mp.num_planes; ++i) {
input_planes[i].stride = pix_mp.plane_fmt[i].bytesperline;
// offset will be specified for a buffer in each VIDIOC_QBUF.
input_planes[i].offset = 0;
input_planes[i].size = pix_mp.plane_fmt[i].sizeimage;
}
// Try to set output format.
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
v4l2_pix_format_mplane& out_pix_mp = format.fmt.pix_mp;
out_pix_mp.width = output_config.size.width();
out_pix_mp.height = output_config.size.height();
out_pix_mp.pixelformat = output_config.fourcc.ToV4L2PixFmt();
out_pix_mp.num_planes = output_config.planes.size();
for (size_t i = 0; i < output_config.planes.size(); ++i) {
out_pix_mp.plane_fmt[i].sizeimage = output_config.planes[i].size;
out_pix_mp.plane_fmt[i].bytesperline = output_config.planes[i].stride;
}
if (device->Ioctl(VIDIOC_S_FMT, &format) != 0 ||
format.fmt.pix_mp.pixelformat != output_config.fourcc.ToV4L2PixFmt()) {
VLOGF(1) << "Failed to negotiate output format";
return nullptr;
}
out_pix_mp = format.fmt.pix_mp;
const gfx::Size negotiated_output_size(out_pix_mp.width, out_pix_mp.height);
if (!gfx::Rect(negotiated_output_size)
.Contains(gfx::Rect(output_config.size))) {
VLOGF(1) << "Negotiated output allocated size: "
<< negotiated_output_size.ToString()
<< " should contain original output allocated size: "
<< output_config.size.ToString();
return nullptr;
}
std::vector<ColorPlaneLayout> output_planes(out_pix_mp.num_planes);
for (size_t i = 0; i < pix_mp.num_planes; ++i) {
output_planes[i].stride = pix_mp.plane_fmt[i].bytesperline;
// offset will be specified for a buffer in each VIDIOC_QBUF.
output_planes[i].offset = 0;
output_planes[i].size = pix_mp.plane_fmt[i].sizeimage;
}
// Capabilities check.
struct v4l2_capability caps {};
const __u32 kCapsRequired = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
if (device->Ioctl(VIDIOC_QUERYCAP, &caps) != 0) {
VPLOGF(1) << "VIDIOC_QUERYCAP failed";
return nullptr;
}
if ((caps.capabilities & kCapsRequired) != kCapsRequired) {
VLOGF(1) << "VIDIOC_QUERYCAP failed: "
<< "caps check failed: 0x" << std::hex << caps.capabilities;
return nullptr;
}
// Set a few standard controls to default values.
struct v4l2_control rotation = {.id = V4L2_CID_ROTATE, .value = 0};
if (device->Ioctl(VIDIOC_S_CTRL, &rotation) != 0) {
VPLOGF(1) << "V4L2_CID_ROTATE failed";
return nullptr;
}
struct v4l2_control hflip = {.id = V4L2_CID_HFLIP, .value = 0};
if (device->Ioctl(VIDIOC_S_CTRL, &hflip) != 0) {
VPLOGF(1) << "V4L2_CID_HFLIP failed";
return nullptr;
}
struct v4l2_control vflip = {.id = V4L2_CID_VFLIP, .value = 0};
if (device->Ioctl(VIDIOC_S_CTRL, &vflip) != 0) {
VPLOGF(1) << "V4L2_CID_VFLIP failed";
return nullptr;
}
struct v4l2_control alpha = {.id = V4L2_CID_ALPHA_COMPONENT, .value = 255};
if (device->Ioctl(VIDIOC_S_CTRL, &alpha) != 0)
VPLOGF(1) << "V4L2_CID_ALPHA_COMPONENT failed";
std::unique_ptr<V4L2ImageProcessorBackend> image_processor(
new V4L2ImageProcessorBackend(
std::move(device), input_config, output_config, input_memory_type,
output_memory_type, output_mode, std::move(error_cb)));
if (!image_processor->CreateInputBuffers(num_buffers) ||
!image_processor->CreateOutputBuffers(num_buffers)) {
return nullptr;
}
// Enqueue a poll task with no devices to poll on - will wait only for the
// poll interrupt.
DVLOGF(3) << "starting device poll";
image_processor->TriggerPoll(/*poll_device=*/false);
return image_processor;
}
// static
bool V4L2ImageProcessorBackend::IsSupported() {
auto device = base::MakeRefCounted<V4L2Device>();
return device->IsImageProcessingSupported();
}
// static
std::vector<uint32_t> V4L2ImageProcessorBackend::GetSupportedInputFormats() {
auto device = base::MakeRefCounted<V4L2Device>();
return device->GetSupportedImageProcessorPixelformats(
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
}
// static
std::vector<uint32_t> V4L2ImageProcessorBackend::GetSupportedOutputFormats() {
auto device = base::MakeRefCounted<V4L2Device>();
return device->GetSupportedImageProcessorPixelformats(
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
}
// static
bool V4L2ImageProcessorBackend::TryOutputFormat(uint32_t input_pixelformat,
uint32_t output_pixelformat,
const gfx::Size& input_size,
gfx::Size* output_size,
size_t* num_planes) {
DVLOGF(3) << "input_format=" << FourccToString(input_pixelformat)
<< " input_size=" << input_size.ToString()
<< " output_format=" << FourccToString(output_pixelformat)
<< " output_size=" << output_size->ToString();
auto device = base::MakeRefCounted<V4L2Device>();
if (!device->Open(V4L2Device::Type::kImageProcessor, input_pixelformat)) {
return false;
}
// Set input format.
struct v4l2_format format;
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
format.fmt.pix_mp.width = input_size.width();
format.fmt.pix_mp.height = input_size.height();
format.fmt.pix_mp.pixelformat = input_pixelformat;
if (device->Ioctl(VIDIOC_S_FMT, &format) != 0 ||
format.fmt.pix_mp.pixelformat != input_pixelformat) {
DVLOGF(4) << "Failed to set image processor input format: "
<< V4L2FormatToString(format);
return false;
}
// Try output format.
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
format.fmt.pix_mp.width = output_size->width();
format.fmt.pix_mp.height = output_size->height();
format.fmt.pix_mp.pixelformat = output_pixelformat;
if (device->Ioctl(VIDIOC_TRY_FMT, &format) != 0 ||
format.fmt.pix_mp.pixelformat != output_pixelformat) {
return false;
}
*num_planes = format.fmt.pix_mp.num_planes;
*output_size = V4L2Device::AllocatedSizeFromV4L2Format(format);
DVLOGF(3) << "Adjusted output_size=" << output_size->ToString()
<< ", num_planes=" << *num_planes;
return true;
}
void V4L2ImageProcessorBackend::ProcessLegacyFrame(
scoped_refptr<FrameResource> frame,
LegacyFrameResourceReadyCB cb) {
DVLOGF(4) << "ts=" << frame->timestamp().InMilliseconds();
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
CHECK_EQ(output_memory_type_, V4L2_MEMORY_MMAP);
auto job_record = std::make_unique<JobRecord>();
job_record->input_frame = std::move(frame);
job_record->legacy_ready_cb = std::move(cb);
if (MediaTraceIsEnabled()) {
job_record->start_time = base::TimeTicks::Now();
}
input_job_queue_.emplace(std::move(job_record));
ProcessJobs();
}
void V4L2ImageProcessorBackend::ProcessFrame(
scoped_refptr<FrameResource> input_frame,
scoped_refptr<FrameResource> output_frame,
FrameResourceReadyCB cb) {
DVLOGF(4) << "ts=" << input_frame->timestamp().InMilliseconds();
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
auto job_record = std::make_unique<JobRecord>();
job_record->input_frame = std::move(input_frame);
job_record->output_frame = std::move(output_frame);
job_record->ready_cb = std::move(cb);
if (MediaTraceIsEnabled()) {
job_record->start_time = base::TimeTicks::Now();
}
input_job_queue_.emplace(std::move(job_record));
ProcessJobs();
}
void V4L2ImageProcessorBackend::ProcessJobs() {
DVLOGF(4);
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
while (!input_job_queue_.empty()) {
if (!input_queue_->IsStreaming()) {
const FrameResource& input_frame =
*(input_job_queue_.front()->input_frame.get());
const gfx::Size input_buffer_size(
input_frame.stride(0) /
VideoFrame::BytesPerElement(input_frame.format(), 0),
input_frame.coded_size().height());
if (!ReconfigureV4L2Format(input_buffer_size,
V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)) {
NotifyError();
return;
}
}
if (input_job_queue_.front()
->output_frame && // output_frame is nullptr in ALLOCATE mode.
!output_queue_->IsStreaming()) {
const FrameResource& output_frame =
*(input_job_queue_.front()->output_frame.get());
const gfx::Size output_buffer_size(
output_frame.stride(0) /
VideoFrame::BytesPerElement(output_frame.format(), 0),
output_frame.coded_size().height());
if (!ReconfigureV4L2Format(output_buffer_size,
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE)) {
NotifyError();
return;
}
}
// We need one input and one output buffer to schedule the job
std::optional<V4L2WritableBufferRef> input_buffer;
// If we are using DMABUF frames, try to always obtain the same V4L2 buffer.
if (input_memory_type_ == V4L2_MEMORY_DMABUF) {
const std::optional<base::UnguessableToken> tracking_token =
input_job_queue_.front()->input_frame->metadata().tracking_token;
if (tracking_token.has_value()) {
input_buffer = input_queue_->GetFreeBufferForFrame(*tracking_token);
}
}
if (!input_buffer)
input_buffer = input_queue_->GetFreeBuffer();
std::optional<V4L2WritableBufferRef> output_buffer;
// If we are using DMABUF frames, try to always obtain the same V4L2 buffer.
if (output_memory_type_ == V4L2_MEMORY_DMABUF) {
const std::optional<base::UnguessableToken> tracking_token =
input_job_queue_.front()->output_frame->metadata().tracking_token;
if (tracking_token.has_value()) {
output_buffer = output_queue_->GetFreeBufferForFrame(*tracking_token);
}
}
if (!output_buffer)
output_buffer = output_queue_->GetFreeBuffer();
if (!input_buffer || !output_buffer)
break;
auto job_record = std::move(input_job_queue_.front());
input_job_queue_.pop();
EnqueueInput(job_record.get(), std::move(*input_buffer));
EnqueueOutput(job_record.get(), std::move(*output_buffer));
running_jobs_.emplace(std::move(job_record));
}
}
void V4L2ImageProcessorBackend::Reset() {
DVLOGF(3);
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
input_job_queue_ = {};
running_jobs_ = {};
}
bool V4L2ImageProcessorBackend::ReconfigureV4L2Format(const gfx::Size& size,
enum v4l2_buf_type type) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
struct v4l2_format format;
memset(&format, 0, sizeof(format));
format.type = type;
if (device_->Ioctl(VIDIOC_G_FMT, &format) != 0) {
VPLOGF(1) << "ioctl() failed: VIDIOC_G_FMT";
return false;
}
if (static_cast<int>(format.fmt.pix_mp.width) == size.width() &&
static_cast<int>(format.fmt.pix_mp.height) == size.height()) {
return true;
}
format.fmt.pix_mp.width = size.width();
format.fmt.pix_mp.height = size.height();
if (device_->Ioctl(VIDIOC_S_FMT, &format) != 0) {
VPLOGF(1) << "ioctl() failed: VIDIOC_S_FMT";
return false;
}
auto queue = device_->GetQueue(type);
const size_t num_buffers = queue->AllocatedBuffersCount();
const v4l2_memory memory_type = queue->GetMemoryType();
DCHECK_GT(num_buffers, 0u);
return queue->DeallocateBuffers() &&
AllocateV4L2Buffers(queue.get(), num_buffers, memory_type);
}
bool V4L2ImageProcessorBackend::CreateInputBuffers(size_t num_buffers) {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK_EQ(input_queue_, nullptr);
input_queue_ = device_->GetQueue(V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
return input_queue_ && AllocateV4L2Buffers(input_queue_.get(), num_buffers,
input_memory_type_);
}
bool V4L2ImageProcessorBackend::CreateOutputBuffers(size_t num_buffers) {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK_EQ(output_queue_, nullptr);
output_queue_ = device_->GetQueue(V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
return output_queue_ && AllocateV4L2Buffers(output_queue_.get(), num_buffers,
output_memory_type_);
}
void V4L2ImageProcessorBackend::TriggerPoll(bool poll_device) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
poll_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2ImageProcessorBackend::DevicePollTask,
poll_weak_this_, poll_device));
}
void V4L2ImageProcessorBackend::DevicePollTask(bool poll_device) {
DVLOGF(4);
DCHECK_CALLED_ON_VALID_SEQUENCE(poll_sequence_checker_);
bool event_pending;
if (!device_->Poll(poll_device, &event_pending)) {
NotifyError();
return;
}
// All processing should happen on ServiceDevice(), since we shouldn't
// touch processor state from this thread.
task_runner()->PostTask(
FROM_HERE,
base::BindOnce(&V4L2ImageProcessorBackend::ServiceDevice, weak_this_));
}
void V4L2ImageProcessorBackend::ServiceDevice() {
DVLOGF(4);
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(input_queue_);
Dequeue();
ProcessJobs();
if (!device_->ClearDevicePollInterrupt()) {
NotifyError();
return;
}
const bool poll_device = (input_queue_->QueuedBuffersCount() > 0 ||
output_queue_->QueuedBuffersCount() > 0);
TriggerPoll(poll_device);
DVLOGF(3) << __func__ << ": buffer counts: INPUT[" << input_job_queue_.size()
<< "] => DEVICE[" << input_queue_->FreeBuffersCount() << "+"
<< input_queue_->QueuedBuffersCount() << "/"
<< input_queue_->AllocatedBuffersCount() << "->"
<< output_queue_->AllocatedBuffersCount() -
output_queue_->QueuedBuffersCount()
<< "+" << output_queue_->QueuedBuffersCount() << "/"
<< output_queue_->AllocatedBuffersCount() << "]";
}
void V4L2ImageProcessorBackend::EnqueueInput(const JobRecord* job_record,
V4L2WritableBufferRef buffer) {
DVLOGF(4);
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(input_queue_);
const size_t old_inputs_queued = input_queue_->QueuedBuffersCount();
if (!EnqueueInputRecord(job_record, std::move(buffer))) {
NotifyError();
return;
}
if (old_inputs_queued == 0 && input_queue_->QueuedBuffersCount() != 0) {
// We started up a previously empty queue.
// Queue state changed; signal interrupt.
if (!device_->SetDevicePollInterrupt()) {
NotifyError();
return;
}
// VIDIOC_STREAMON if we haven't yet.
if (!input_queue_->Streamon())
return;
}
}
void V4L2ImageProcessorBackend::EnqueueOutput(JobRecord* job_record,
V4L2WritableBufferRef buffer) {
DVLOGF(4);
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(output_queue_);
const int old_outputs_queued = output_queue_->QueuedBuffersCount();
if (!EnqueueOutputRecord(job_record, std::move(buffer))) {
NotifyError();
return;
}
if (old_outputs_queued == 0 && output_queue_->QueuedBuffersCount() != 0) {
// We just started up a previously empty queue.
// Queue state changed; signal interrupt.
if (!device_->SetDevicePollInterrupt()) {
NotifyError();
return;
}
// Start VIDIOC_STREAMON if we haven't yet.
if (!output_queue_->Streamon())
return;
}
}
// static
void V4L2ImageProcessorBackend::V4L2VFRecycleThunk(
scoped_refptr<base::SequencedTaskRunner> task_runner,
std::optional<base::WeakPtr<V4L2ImageProcessorBackend>> image_processor,
V4L2ReadableBufferRef buf) {
DVLOGF(4);
DCHECK(image_processor);
task_runner->PostTask(
FROM_HERE, base::BindOnce(&V4L2ImageProcessorBackend::V4L2VFRecycleTask,
*image_processor, std::move(buf)));
}
void V4L2ImageProcessorBackend::V4L2VFRecycleTask(V4L2ReadableBufferRef buf) {
DVLOGF(4);
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Release the buffer reference so we can directly call ProcessJobs()
// knowing that we have an extra output buffer.
#if DCHECK_IS_ON()
size_t original_free_buffers_count = output_queue_->FreeBuffersCount();
#endif
buf = nullptr;
#if DCHECK_IS_ON()
DCHECK_EQ(output_queue_->FreeBuffersCount(), original_free_buffers_count + 1);
#endif
// A CAPTURE buffer has just been returned to the free list, let's see if
// we can make progress on some jobs.
ProcessJobs();
}
void V4L2ImageProcessorBackend::Dequeue() {
DVLOGF(4);
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(input_queue_);
DCHECK(output_queue_);
DCHECK(input_queue_->IsStreaming());
// Dequeue completed input (VIDEO_OUTPUT) buffers,
// and recycle to the free list.
while (input_queue_->QueuedBuffersCount() > 0) {
auto [res, buffer] = input_queue_->DequeueBuffer();
if (!res) {
NotifyError();
return;
}
if (!buffer) {
// No error occurred, we are just out of buffers to dequeue.
break;
}
}
// Dequeue completed output (VIDEO_CAPTURE) buffers.
// Return the finished buffer to the client via the job ready callback.
while (output_queue_->QueuedBuffersCount() > 0) {
DCHECK(output_queue_->IsStreaming());
auto [res, buffer] = output_queue_->DequeueBuffer();
if (!res) {
NotifyError();
return;
} else if (!buffer) {
break;
}
// Jobs are always processed in FIFO order.
if (running_jobs_.empty() ||
running_jobs_.front()->output_buffer_id != buffer->BufferId()) {
DVLOGF(3) << "previous Reset() abandoned the job, ignore.";
continue;
}
std::unique_ptr<JobRecord> job_record = std::move(running_jobs_.front());
running_jobs_.pop();
scoped_refptr<FrameResource> output_frame;
switch (output_memory_type_) {
case V4L2_MEMORY_MMAP:
// Wrap the V4L2 frame into another one with a destruction observer so
// we can reuse the MMAP buffer once the client is done with it.
{
const auto& orig_frame = buffer->GetFrameResource();
// Need to wrap the original frame since the timestamp needs to be
// set.
output_frame = orig_frame->CreateWrappingFrame();
// Because VideoFrame destruction callback might be executed on any
// sequence, we use a thunk to post the task to the current task
// runner.
output_frame->AddDestructionObserver(
base::BindOnce(&V4L2ImageProcessorBackend::V4L2VFRecycleThunk,
task_runner(), weak_this_, buffer));
break;
}
case V4L2_MEMORY_DMABUF:
output_frame = std::move(job_record->output_frame);
break;
default:
NOTREACHED();
}
const auto timestamp = job_record->input_frame->timestamp();
output_frame->set_timestamp(timestamp);
output_frame->set_color_space(job_record->input_frame->ColorSpace());
if (job_record->start_time) {
TRACE_EVENT_NESTABLE_ASYNC_BEGIN_WITH_TIMESTAMP0(
"media", "V4L2ImageProcessorBackend::Process", TRACE_ID_LOCAL(this),
job_record->start_time.value());
TRACE_EVENT_NESTABLE_ASYNC_END_WITH_TIMESTAMP1(
"media", "V4L2ImageProcessorBackend::Process", TRACE_ID_LOCAL(this),
base::TimeTicks::Now(), "timestamp", timestamp.InMilliseconds());
}
if (!job_record->legacy_ready_cb.is_null()) {
std::move(job_record->legacy_ready_cb)
.Run(buffer->BufferId(), std::move(output_frame));
} else {
std::move(job_record->ready_cb).Run(std::move(output_frame));
}
}
}
bool V4L2ImageProcessorBackend::EnqueueInputRecord(
const JobRecord* job_record,
V4L2WritableBufferRef buffer) {
DVLOGF(4);
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(input_queue_);
switch (input_memory_type_) {
case V4L2_MEMORY_USERPTR: {
const size_t num_planes =
GetNumPlanesOfV4L2PixFmt(input_config_.fourcc.ToV4L2PixFmt());
std::vector<void*> user_ptrs(num_planes);
for (size_t i = 0; i < num_planes; ++i) {
int bytes_used =
VideoFrame::PlaneSize(job_record->input_frame->format(), i,
input_config_.size)
.GetArea();
buffer.SetPlaneBytesUsed(i, bytes_used);
user_ptrs[i] = const_cast<uint8_t*>(job_record->input_frame->data(i));
}
if (!std::move(buffer).QueueUserPtr(user_ptrs)) {
VPLOGF(1) << "Failed to queue a DMABUF buffer to input queue";
NotifyError();
return false;
}
break;
}
case V4L2_MEMORY_DMABUF: {
auto input_handle = CreateHandle(job_record->input_frame.get());
if (!input_handle) {
VLOGF(1) << "Failed to create native GpuMemoryBufferHandle";
NotifyError();
return false;
}
FillV4L2BufferByGpuMemoryBufferHandle(
input_config_.fourcc, input_config_.size, *input_handle, &buffer);
if (!std::move(buffer).QueueDMABuf(
input_handle->native_pixmap_handle().planes)) {
VPLOGF(1) << "Failed to queue a DMABUF buffer to input queue";
NotifyError();
return false;
}
break;
}
default:
NOTREACHED();
}
DVLOGF(4) << "enqueued frame ts="
<< job_record->input_frame->timestamp().InMilliseconds()
<< " to device.";
return true;
}
bool V4L2ImageProcessorBackend::EnqueueOutputRecord(
JobRecord* job_record,
V4L2WritableBufferRef buffer) {
DVLOGF(4);
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
job_record->output_buffer_id = buffer.BufferId();
switch (buffer.Memory()) {
case V4L2_MEMORY_MMAP:
return std::move(buffer).QueueMMap();
case V4L2_MEMORY_DMABUF: {
auto output_handle = CreateHandle(job_record->output_frame.get());
if (!output_handle) {
VLOGF(1) << "Failed to create native GpuMemoryBufferHandle";
NotifyError();
return false;
}
FillV4L2BufferByGpuMemoryBufferHandle(
output_config_.fourcc, output_config_.size, *output_handle, &buffer);
return std::move(buffer).QueueDMABuf(
output_handle->native_pixmap_handle().planes);
}
default:
NOTREACHED();
}
}
} // namespace media
|