1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
|
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "media/gpu/v4l2/v4l2_stateful_video_decoder.h"
#include <fcntl.h>
#include <libdrm/drm_fourcc.h>
#include <poll.h>
#include <sys/eventfd.h>
#include <sys/ioctl.h>
#include "base/containers/contains.h"
#include "base/containers/heap_array.h"
#include "base/files/file_util.h"
#include "base/location.h"
#include "base/memory/ptr_util.h"
#include "base/metrics/histogram_macros.h"
#include "base/posix/eintr_wrapper.h"
#include "base/task/bind_post_task.h"
#include "base/task/sequenced_task_runner.h"
#include "base/task/thread_pool.h"
#include "base/trace_event/trace_event.h"
#include "media/base/media_log.h"
#include "media/base/media_switches.h"
#include "media/gpu/chromeos/video_frame_resource.h"
#include "media/gpu/macros.h"
#include "media/gpu/v4l2/v4l2_framerate_control.h"
#include "media/gpu/v4l2/v4l2_queue.h"
#include "media/gpu/v4l2/v4l2_utils.h"
#include "media/parsers/h264_parser.h"
#include "third_party/abseil-cpp/absl/cleanup/cleanup.h"
#include "ui/gfx/geometry/size.h"
namespace {
// Numerical value of ioctl() OK return value;
constexpr int kIoctlOk = 0;
int HandledIoctl(int fd, int request, void* arg) {
return HANDLE_EINTR(ioctl(fd, request, arg));
}
void* Mmap(int fd,
void* addr,
unsigned int len,
int prot,
int flags,
unsigned int offset) {
return mmap(addr, len, prot, flags, fd, offset);
}
// This method blocks waiting for an event from either |device_fd| or
// |wake_event|; then if it's of the type POLLIN (meaning there's data) or
// POLLPRI (meaning a resolution change event) and from |device_fd|, this
// function calls |dequeue_callback| or |resolution_change_callback|,
// respectively. Since it blocks, it needs to work on its own
// SingleThreadTaskRunner, in this case |event_task_runner_|.
// TODO(mcasas): Add an error callback too.
void WaitOnceForEvents(int device_fd,
int wake_event,
base::OnceClosure dequeue_callback,
base::OnceClosure resolution_change_callback) {
VLOGF(5) << "Going to poll()";
// POLLERR, POLLHUP, or POLLNVAL are always return-able and anyway ignored
// when set in pollfd.events.
// https://www.kernel.org/doc/html/v5.15/userspace-api/media/v4l/func-poll.html
struct pollfd pollfds[] = {{.fd = device_fd, .events = POLLIN | POLLPRI},
{.fd = wake_event, .events = POLLIN}};
constexpr int kInfiniteTimeout = -1;
if (HANDLE_EINTR(poll(pollfds, std::size(pollfds), kInfiniteTimeout)) <
kIoctlOk) {
PLOG(ERROR) << "Poll()ing for events failed";
return;
}
const auto events_from_device = pollfds[0].revents;
const auto other_events = pollfds[1].revents;
// At least Qualcomm Venus likes to bundle events.
const auto pollin_or_pollpri_event = events_from_device & (POLLIN | POLLPRI);
if (pollin_or_pollpri_event) {
// "POLLIN There is data to read."
// https://man7.org/linux/man-pages/man2/poll.2.html
if (events_from_device & POLLIN) {
std::move(dequeue_callback).Run();
}
// "If an event occurred (see ioctl VIDIOC_DQEVENT) then POLLPRI will be set
// in the revents field and poll() will return."
// https://www.kernel.org/doc/html/v5.15/userspace-api/media/v4l/func-poll.html
if (events_from_device & POLLPRI) {
VLOGF(2) << "Resolution change event";
// Dequeue the event otherwise it'll be stuck in the driver forever.
struct v4l2_event event;
memset(&event, 0, sizeof(event)); // Must do: v4l2_event has a union.
if (HandledIoctl(device_fd, VIDIOC_DQEVENT, &event) != kIoctlOk) {
PLOG(ERROR) << "Failed dequeing an event";
return;
}
// If we get an event, it must be an V4L2_EVENT_SOURCE_CHANGE since it's
// the only one we're subscribed to.
DCHECK_EQ(event.type,
static_cast<unsigned int>(V4L2_EVENT_SOURCE_CHANGE));
DCHECK(event.u.src_change.changes & V4L2_EVENT_SRC_CH_RESOLUTION);
std::move(resolution_change_callback).Run();
}
return;
}
if (other_events & POLLIN) {
// Somebody woke us up because they didn't want us waiting on |device_fd|.
// Do nothing.
return;
}
// This could mean that |device_fd| has become invalid (closed, maybe);
// there's little we can do here.
// TODO(mcasas): Use the error callback to be added.
CHECK((events_from_device & (POLLERR | POLLHUP | POLLNVAL)) ||
(other_events & (POLLERR | POLLHUP | POLLNVAL)));
VLOG(2) << "Unhandled |events_from_device|: 0x" << std::hex
<< events_from_device << ", or |other_events|: 0x" << other_events;
}
// Lifted from the similarly named method in platform/drm-tests [1].
// ITU-T H.264 7.4.1.2.4 implementation. Assumes non-interlaced.
// [1] https://source.chromium.org/chromiumos/chromiumos/codesearch/+/main:src/platform/drm-tests/bitstreams/bitstream_helper_h264.c;l=72-104;drc=a094a84679084106598763d0a551ef33a9ad422b
bool IsNewH264Frame(const media::H264SPS* sps,
const media::H264PPS* pps,
const media::H264SliceHeader* prev_slice_header,
const media::H264SliceHeader* curr_slice_header) {
if (curr_slice_header->frame_num != prev_slice_header->frame_num ||
curr_slice_header->pic_parameter_set_id != pps->pic_parameter_set_id ||
curr_slice_header->nal_ref_idc != prev_slice_header->nal_ref_idc ||
curr_slice_header->idr_pic_flag != prev_slice_header->idr_pic_flag ||
(curr_slice_header->idr_pic_flag &&
(curr_slice_header->idr_pic_id != prev_slice_header->idr_pic_id ||
curr_slice_header->first_mb_in_slice == 0))) {
return true;
}
if (sps->pic_order_cnt_type == 0) {
if (curr_slice_header->pic_order_cnt_lsb !=
prev_slice_header->pic_order_cnt_lsb ||
curr_slice_header->delta_pic_order_cnt_bottom !=
prev_slice_header->delta_pic_order_cnt_bottom) {
return true;
}
} else if (sps->pic_order_cnt_type == 1) {
if (curr_slice_header->delta_pic_order_cnt0 !=
prev_slice_header->delta_pic_order_cnt0 ||
curr_slice_header->delta_pic_order_cnt1 !=
prev_slice_header->delta_pic_order_cnt1) {
return true;
}
}
return false;
}
// Concatenates |fragments| into a larger DecoderBuffer and empties |fragments|.
scoped_refptr<media::DecoderBuffer> ReassembleFragments(
std::vector<scoped_refptr<media::DecoderBuffer>>& fragments) {
size_t frame_size = 0;
for (const auto& fragment : fragments) {
frame_size += fragment->size();
}
auto temp_buffer = base::HeapArray<uint8_t>::Uninit(frame_size);
uint8_t* dst = temp_buffer.data();
for (const auto& fragment : fragments) {
auto fragment_span = base::span(*fragment);
memcpy(dst, fragment_span.data(), fragment_span.size());
dst += fragment_span.size();
}
auto reassembled_frame =
media::DecoderBuffer::FromArray(std::move(temp_buffer));
// Use the last fragment's timestamp as the |reassembled_frame|'s' timestamp.
reassembled_frame->set_timestamp(fragments.back()->timestamp());
fragments.clear();
return reassembled_frame;
}
} // namespace
namespace media {
// Stateful drivers need to be passed whole frames (see IsNewH264Frame() above).
// Some implementations (Hana MTK8173, but not Trogdor SC7180), don't support
// multiple whole frames enqueued in a single OUTPUT queue buffer. This class
// helps processing, slicing and gathering DecoderBuffers into full frames.
class H264FrameReassembler {
public:
H264FrameReassembler() = default;
~H264FrameReassembler() = default;
// Not copyable, not movable (move ctors will be implicitly deleted).
H264FrameReassembler(const H264FrameReassembler&) = delete;
H264FrameReassembler& operator=(const H264FrameReassembler&) = delete;
// This method parses |buffer| and decides whether it's part of a frame, it
// marks the beginning of a new frame, it's a full frame itself, or if it
// contains multiple frames. In any case, it might return a vector of
// DecoderBuffer + DecodeCB; if so, the caller can treat those as ready to be
// enqueued in the driver: this method will hold onto and reassemble
// fragments as needed. This method is guaranteed to return a vector. If a
// partial frame is not ready, only the DecodeCB associated with |buffer|
// will returned.
std::vector<std::pair<scoped_refptr<DecoderBuffer>, VideoDecoder::DecodeCB>>
Process(scoped_refptr<DecoderBuffer> buffer,
VideoDecoder::DecodeCB decode_cb);
// Used for End-of-Stream situations when a caller needs to reassemble
// explicitly (an EOS marks a frame boundary, we can't parse it).
scoped_refptr<DecoderBuffer> AssembleAndFlushFragments() {
return ReassembleFragments(frame_fragments_);
}
bool HasFragments() const { return !frame_fragments_.empty(); }
private:
// Data structure returned by FindH264FrameBoundary().
struct FrameBoundaryInfo {
// True if the NALU immediately before the boundary is a whole frame, e.g.
// an SPS, PPS, EOSeq or SEIMessage.
bool is_whole_frame;
// True if the NALU marks the beginning of a new frame (but itself isn't
// necessarily a whole frame, for that see |is_whole_frame|). This implies
// that any previously buffered fragments/slices can be reassembled into a
// whole frame.
bool is_start_of_new_frame;
// Size in bytes of the NALU under analysis.
off_t nalu_size;
};
// Parses |data| and returns either std::nullopt, if parsing |data| fails, or
// a FrameBoundaryInfo describing the first |nalu_size| bytes of |data|.
//
// It is assumed that |data| contains an integer number of NALUs.
std::optional<struct FrameBoundaryInfo> FindH264FrameBoundary(
const uint8_t* const data,
size_t size);
H264Parser h264_parser_;
static constexpr int kInvalidSPS = -1;
int sps_id_ = kInvalidSPS;
static constexpr int kInvalidPPS = -1;
int pps_id_ = kInvalidPPS;
std::unique_ptr<H264SliceHeader> previous_slice_header_;
std::vector<scoped_refptr<DecoderBuffer>> frame_fragments_;
};
// static
base::AtomicRefCount V4L2StatefulVideoDecoder::num_decoder_instances_(0);
// static
std::unique_ptr<VideoDecoderMixin> V4L2StatefulVideoDecoder::Create(
std::unique_ptr<MediaLog> media_log,
scoped_refptr<base::SequencedTaskRunner> task_runner,
base::WeakPtr<VideoDecoderMixin::Client> client) {
DCHECK(task_runner->RunsTasksInCurrentSequence());
DCHECK(client);
return base::WrapUnique<VideoDecoderMixin>(new V4L2StatefulVideoDecoder(
std::move(media_log), std::move(task_runner), std::move(client)));
}
void V4L2StatefulVideoDecoder::Initialize(const VideoDecoderConfig& config,
bool /*low_delay*/,
CdmContext* cdm_context,
InitCB init_cb,
const PipelineOutputCB& output_cb,
const WaitingCB& /*waiting_cb*/) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(config.IsValidConfig());
DVLOGF(1) << config.AsHumanReadableString();
if (config.is_encrypted() || !!cdm_context) {
std::move(init_cb).Run(DecoderStatus::Codes::kUnsupportedEncryptionMode);
return;
}
// Verify there's still room for more decoders before querying whether
// |config| is supported because some drivers (e.g. Qualcomm Venus on SC7180)
// would not allow for opening the device fd and we'd think it an error.
static const auto decoder_instances_limit =
V4L2StatefulVideoDecoder::GetMaxNumDecoderInstances();
const bool can_create_decoder =
num_decoder_instances_.Increment() < decoder_instances_limit;
if (!can_create_decoder) {
num_decoder_instances_.Decrement();
LOG(ERROR) << "Too many decoder instances, max=" << decoder_instances_limit;
std::move(init_cb).Run(DecoderStatus::Codes::kTooManyDecoders);
return;
}
if (supported_configs_.empty()) {
supported_configs_ = GetSupportedV4L2DecoderConfigs().value_or(
SupportedVideoDecoderConfigs());
DCHECK(!supported_configs_.empty());
}
// Make sure that the |config| requested is supported by the driver,
// which must provide such information.
if (!IsVideoDecoderConfigSupported(supported_configs_, config)) {
VLOGF(1) << "Video configuration is not supported: "
<< config.AsHumanReadableString();
MEDIA_LOG(INFO, media_log_) << "Video configuration is not supported: "
<< config.AsHumanReadableString();
std::move(init_cb).Run(DecoderStatus::Codes::kUnsupportedConfig);
return;
}
if (!device_fd_.is_valid()) {
constexpr char kVideoDeviceDriverPath[] = "/dev/video-dec0";
device_fd_.reset(HANDLE_EINTR(
open(kVideoDeviceDriverPath, O_RDWR | O_NONBLOCK | O_CLOEXEC)));
if (!device_fd_.is_valid()) {
std::move(init_cb).Run(DecoderStatus::Codes::kFailedToCreateDecoder);
return;
}
wake_event_.reset(eventfd(/*initval=*/0, EFD_NONBLOCK | EFD_CLOEXEC));
if (!wake_event_.is_valid()) {
PLOG(ERROR) << "Failed to create an eventfd.";
std::move(init_cb).Run(DecoderStatus::Codes::kFailedToCreateDecoder);
return;
}
struct v4l2_capability caps = {};
if (HandledIoctl(device_fd_.get(), VIDIOC_QUERYCAP, &caps) != kIoctlOk) {
PLOG(ERROR) << "Failed querying caps";
std::move(init_cb).Run(DecoderStatus::Codes::kFailedToCreateDecoder);
return;
}
is_mtk8173_ = base::Contains(
std::string(reinterpret_cast<const char*>(caps.card)), "8173");
DVLOGF_IF(1, is_mtk8173_) << "This is an MTK8173 device (Hana, Oak)";
}
if (IsInitialized()) {
// Almost always we'll be here when the MSE feeding the HTML <video> changes
// tracks; this is implemented via a flush (a Decode() call with an
// end_of_stream() DecoderBuffer) and then this very Initialize() call.
// Technically, a V4L2 Memory-to-Memory stateful decoder can start decoding
// after a flush ("Drain" in the V4L2 documentation) via either a START
// command or sending a VIDIOC_STREAMOFF - VIDIOC_STREAMON to either queue
// [1]. The START command is what we issue when seeing the LAST dequeued
// CAPTURE buffer, but this is not enough for Hana MTK8173, so we issue a
// full stream off here (see crbug.com/270039 for historical context).
// [1] https://www.kernel.org/doc/html/v5.15/userspace-api/media/v4l/dev-decoder.html#drain
// There should be no pending work.
DCHECK(decoder_buffer_and_callbacks_.empty());
// Invalidate pointers from and cancel all hypothetical in-flight requests
// to the WaitOnceForEvents() routine.
weak_ptr_factory_for_events_.InvalidateWeakPtrs();
weak_ptr_factory_for_CAPTURE_availability_.InvalidateWeakPtrs();
cancelable_task_tracker_.TryCancelAll();
encoding_timestamps_.clear();
if (OUTPUT_queue_ && !OUTPUT_queue_->Streamoff()) {
LOG(ERROR) << "Failed to stop (VIDIOC_STREAMOFF) |OUTPUT_queue_|.";
}
if (CAPTURE_queue_ && !CAPTURE_queue_->Streamoff()) {
LOG(ERROR) << "Failed to stop (VIDIOC_STREAMOFF) |CAPTURE_queue_|.";
}
}
framerate_control_ = std::make_unique<V4L2FrameRateControl>(
base::BindRepeating(&HandledIoctl, device_fd_.get()),
base::SequencedTaskRunner::GetCurrentDefault());
// At this point we initialize the |OUTPUT_queue_| only, following
// instructions in e.g. [1]. The decoded video frames queue configuration
// must wait until there are enough encoded chunks fed into said
// |OUTPUT_queue_| for the driver to know the output details. The driver will
// let us know that moment via a V4L2_EVENT_SOURCE_CHANGE.
// [1] https://www.kernel.org/doc/html/v5.15/userspace-api/media/v4l/dev-decoder.html#initialization
OUTPUT_queue_ = base::MakeRefCounted<V4L2Queue>(
V4L2Queue::PassKey::Get(),
base::BindRepeating(&HandledIoctl, device_fd_.get()),
/*schedule_poll_cb=*/base::DoNothing(),
/*mmap_cb=*/base::BindRepeating(&Mmap, device_fd_.get()),
AllocateSecureBufferAsCallback(), V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE,
/*destroy_cb=*/base::DoNothing());
const auto profile_as_v4l2_fourcc =
VideoCodecProfileToV4L2PixFmt(config.profile(), /*slice_based=*/false);
// Allocate larger |OUTPUT_queue_| buffers for resolutions above 1080p.
// TODO(hnt): Investigate ways to reduce this size.
constexpr size_t kMiB = 1024 * 1024;
constexpr int kFullHDNumPixels = 1920 * 1080;
const size_t kInputBufferInMBs =
(config.coded_size().GetArea() <= kFullHDNumPixels) ? 2 : 4;
const auto v4l2_format = OUTPUT_queue_->SetFormat(
profile_as_v4l2_fourcc, gfx::Size(), kInputBufferInMBs * kMiB);
if (!v4l2_format) {
std::move(init_cb).Run(DecoderStatus::Codes::kFailedToCreateDecoder);
return;
}
DCHECK_EQ(v4l2_format->fmt.pix_mp.pixelformat, profile_as_v4l2_fourcc);
const bool is_h264 =
VideoCodecProfileToVideoCodec(config.profile()) == VideoCodec::kH264;
constexpr size_t kNumInputBuffersH264 = 16;
constexpr size_t kNumInputBuffersVPx = 2;
const auto num_input_buffers =
is_h264 ? kNumInputBuffersH264 : kNumInputBuffersVPx;
if (OUTPUT_queue_->AllocateBuffers(num_input_buffers, V4L2_MEMORY_MMAP,
/*incoherent=*/false) <
num_input_buffers) {
std::move(init_cb).Run(DecoderStatus::Codes::kFailedToCreateDecoder);
return;
}
if (!OUTPUT_queue_->Streamon()) {
std::move(init_cb).Run(DecoderStatus::Codes::kFailedToCreateDecoder);
return;
}
client_->NotifyEstimatedMaxDecodeRequests(base::checked_cast<int>(
std::min(static_cast<size_t>(4), num_input_buffers)));
// Subscribe to the resolution change event. This is needed for resolution
// changes mid stream but also to initialize the |CAPTURE_queue|.
struct v4l2_event_subscription sub = {.type = V4L2_EVENT_SOURCE_CHANGE};
if (HandledIoctl(device_fd_.get(), VIDIOC_SUBSCRIBE_EVENT, &sub) !=
kIoctlOk) {
PLOG(ERROR) << "Failed to subscribe to V4L2_EVENT_SOURCE_CHANGE";
std::move(init_cb).Run(DecoderStatus::Codes::kFailedToCreateDecoder);
return;
}
config_ = config;
output_cb_ = std::move(output_cb);
if (is_h264) {
h264_frame_reassembler_ = std::make_unique<H264FrameReassembler>();
}
std::move(init_cb).Run(DecoderStatus::Codes::kOk);
}
void V4L2StatefulVideoDecoder::Decode(scoped_refptr<DecoderBuffer> buffer,
DecodeCB decode_cb) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
VLOGF(3) << buffer->AsHumanReadableString(/*verbose=*/false);
if (!IsInitialized()) {
DecoderStatus init_result;
Initialize(
config_, /*low_delay=*/false, /*cdm_context=*/nullptr,
base::BindOnce([](DecoderStatus* out, DecoderStatus in) { *out = in; },
&init_result),
output_cb_,
/*waiting_cb=*/base::DoNothing());
if (!init_result.is_ok()) {
// Destroy output queue so IsInitialized() return false.
OUTPUT_queue_.reset();
std::move(decode_cb).Run(init_result);
return;
}
}
if (buffer->end_of_stream()) {
if (!event_task_runner_) {
// Receiving Flush before any "normal" Decode() calls. This is a bit of a
// contrived situation but possible, nonetheless ,and also a test case.
std::move(decode_cb).Run(DecoderStatus::Codes::kOk);
return;
}
if (h264_frame_reassembler_ && h264_frame_reassembler_->HasFragments()) {
decoder_buffer_and_callbacks_.emplace(
h264_frame_reassembler_->AssembleAndFlushFragments(),
base::DoNothing());
TryAndEnqueueOUTPUTQueueBuffers();
}
const bool is_pending_work = !decoder_buffer_and_callbacks_.empty();
const bool decoding = !!CAPTURE_queue_;
if (is_pending_work || !decoding) {
// We still have |buffer|s that haven't been enqueued in |OUTPUT_queue_|,
// or we're not decoding yet; if we were to SendStopCommand(), they would
// not be processed. So let's store the end_of_stream() |buffer| for
// later processing.
decoder_buffer_and_callbacks_.emplace(std::move(buffer),
std::move(decode_cb));
return;
}
if (!OUTPUT_queue_->SendStopCommand()) {
std::move(decode_cb).Run(DecoderStatus::Codes::kFailed);
return;
}
RearmCAPTUREQueueMonitoring();
flush_cb_ = std::move(decode_cb);
return;
}
PrintAndTraceQueueStates(FROM_HERE);
if (VideoCodecProfileToVideoCodec(config_.profile()) == VideoCodec::kH264) {
auto processed_buffer_and_decode_cbs = h264_frame_reassembler_->Process(
std::move(buffer), std::move(decode_cb));
// If Process() returns nothing, then it swallowed its arguments and
// there's nothing further to do. Otherwise, just treat whatever it
// returned as a normal sequence of DecoderBuffer + DecodeCB.
if (processed_buffer_and_decode_cbs.empty()) {
return;
}
for (auto& a : processed_buffer_and_decode_cbs) {
decoder_buffer_and_callbacks_.push(std::move(a));
}
} else if (VideoCodecProfileToVideoCodec(config_.profile()) ==
VideoCodec::kHEVC) {
NOTIMPLEMENTED();
std::move(decode_cb).Run(DecoderStatus::Codes::kUnsupportedCodec);
return;
} else {
decoder_buffer_and_callbacks_.emplace(std::move(buffer),
std::move(decode_cb));
}
if (!TryAndEnqueueOUTPUTQueueBuffers()) {
// All accepted entries in |decoder_buffer_and_callbacks_| must have had
// their |decode_cb|s Run() from inside TryAndEnqueueOUTPUTQueueBuffers().
return;
}
if (!event_task_runner_) {
CHECK(!CAPTURE_queue_); // It's the first configuration event.
// |event_task_runner_| will block on OS resources, so it has to be a full
// ThreadRunner ISO a SequencedTaskRunner, to avoid interfering with other
// runners of the pool.
event_task_runner_ = base::ThreadPool::CreateSingleThreadTaskRunner(
{base::TaskShutdownBehavior::CONTINUE_ON_SHUTDOWN},
base::SingleThreadTaskRunnerThreadMode::DEDICATED);
CHECK(event_task_runner_);
}
RearmCAPTUREQueueMonitoring();
}
void V4L2StatefulVideoDecoder::Reset(base::OnceClosure closure) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DVLOGF(2);
// In order to preserve the order of the callbacks between Decode() and
// Reset(), we also trampoline |closure|.
absl::Cleanup scoped_trampoline_reset = [closure =
std::move(closure)]() mutable {
base::SequencedTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, std::move(closure));
};
// Invalidate pointers from and cancel all hypothetical in-flight requests
// to the WaitOnceForEvents() routine.
weak_ptr_factory_for_events_.InvalidateWeakPtrs();
weak_ptr_factory_for_CAPTURE_availability_.InvalidateWeakPtrs();
cancelable_task_tracker_.TryCancelAll();
if (h264_frame_reassembler_) {
h264_frame_reassembler_ = std::make_unique<H264FrameReassembler>();
}
// Signal any pending work as kAborted.
while (!decoder_buffer_and_callbacks_.empty()) {
auto media_decode_cb =
std::move(decoder_buffer_and_callbacks_.front().second);
decoder_buffer_and_callbacks_.pop();
std::move(media_decode_cb).Run(DecoderStatus::Codes::kAborted);
}
OUTPUT_queue_.reset();
CAPTURE_queue_.reset();
device_fd_.reset();
event_task_runner_.reset();
num_decoder_instances_.Decrement();
encoding_timestamps_.clear();
if (flush_cb_) {
std::move(flush_cb_).Run(DecoderStatus::Codes::kAborted);
}
}
bool V4L2StatefulVideoDecoder::NeedsBitstreamConversion() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
NOTREACHED() << "Our only owner VideoDecoderPipeline never calls here";
}
bool V4L2StatefulVideoDecoder::CanReadWithoutStalling() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
NOTREACHED() << "Our only owner VideoDecoderPipeline never calls here";
}
int V4L2StatefulVideoDecoder::GetMaxDecodeRequests() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
NOTREACHED() << "Our only owner VideoDecoderPipeline never calls here";
}
VideoDecoderType V4L2StatefulVideoDecoder::GetDecoderType() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
NOTREACHED() << "Our only owner VideoDecoderPipeline never calls here";
}
bool V4L2StatefulVideoDecoder::IsPlatformDecoder() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
NOTREACHED() << "Our only owner VideoDecoderPipeline never calls here";
}
void V4L2StatefulVideoDecoder::ApplyResolutionChange() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DVLOGF(2);
// It's possible that we have been Reset()ed in the interval between receiving
// the resolution change event in WaitOnceForEvents() (in a background thread)
// and arriving here from our |client_|. Check if that's the case.
if (IsInitialized())
InitializeCAPTUREQueue();
}
size_t V4L2StatefulVideoDecoder::GetMaxOutputFramePoolSize() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// VIDEO_MAX_FRAME is used as a size in V4L2 decoder drivers like Qualcomm
// Venus. We should not exceed this limit for the frame pool that the decoder
// writes into.
return VIDEO_MAX_FRAME;
}
void V4L2StatefulVideoDecoder::SetDmaIncoherentV4L2(bool incoherent) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
NOTIMPLEMENTED();
}
V4L2StatefulVideoDecoder::V4L2StatefulVideoDecoder(
std::unique_ptr<MediaLog> media_log,
scoped_refptr<base::SequencedTaskRunner> task_runner,
base::WeakPtr<VideoDecoderMixin::Client> client)
: VideoDecoderMixin(std::move(media_log),
std::move(task_runner),
std::move(client)),
weak_ptr_factory_for_events_(this),
weak_ptr_factory_for_CAPTURE_availability_(this) {
DCHECK(decoder_task_runner_->RunsTasksInCurrentSequence());
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DVLOGF(1);
}
V4L2StatefulVideoDecoder::~V4L2StatefulVideoDecoder() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DVLOGF(1);
weak_ptr_factory_for_events_.InvalidateWeakPtrs();
weak_ptr_factory_for_CAPTURE_availability_.InvalidateWeakPtrs();
cancelable_task_tracker_.TryCancelAll(); // Not needed, but good explicit.
if (wake_event_.is_valid()) {
const uint64_t buf = 1;
const auto res = HANDLE_EINTR(write(wake_event_.get(), &buf, sizeof(buf)));
PLOG_IF(ERROR, res < 0) << "Error writing to |wake_event_|";
}
CAPTURE_queue_.reset();
OUTPUT_queue_.reset();
num_decoder_instances_.Decrement();
if (event_task_runner_) {
// Destroy the two ScopedFDs (hence the PostTask business ISO DeleteSoon) on
// |event_task_runner_| for proper teardown threading. This must be the last
// operation in the destructor and after having explicitly destroyed other
// objects that might use |device_fd|.
event_task_runner_->PostTask(
FROM_HERE,
base::BindOnce([](base::ScopedFD fd) {}, std::move(device_fd_)));
event_task_runner_->PostTask(
FROM_HERE,
base::BindOnce([](base::ScopedFD fd) {}, std::move(wake_event_)));
}
}
bool V4L2StatefulVideoDecoder::InitializeCAPTUREQueue() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(IsInitialized()) << "V4L2StatefulVideoDecoder must be Initialize()d";
CAPTURE_queue_ = base::MakeRefCounted<V4L2Queue>(
V4L2Queue::PassKey::Get(),
base::BindRepeating(&HandledIoctl, device_fd_.get()),
/*schedule_poll_cb=*/base::DoNothing(),
/*mmap_cb=*/base::BindRepeating(&Mmap, device_fd_.get()),
AllocateSecureBufferAsCallback(), V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE,
/*destroy_cb=*/base::DoNothing());
const auto v4l2_format_or_error = CAPTURE_queue_->GetFormat();
if (!v4l2_format_or_error.first || v4l2_format_or_error.second != kIoctlOk) {
return false;
}
const struct v4l2_format v4l2_format = *(v4l2_format_or_error.first);
VLOG(3) << "Out-of-the-box |CAPTURE_queue_| configuration: "
<< V4L2FormatToString(v4l2_format);
const gfx::Size coded_size(v4l2_format.fmt.pix_mp.width,
v4l2_format.fmt.pix_mp.height);
std::vector<ImageProcessor::PixelLayoutCandidate> candidates =
EnumeratePixelLayoutCandidates(coded_size);
// |visible_rect| is a subset of |coded_size| and represents the "natural"
// size of the video, e.g. a 1080p sequence could have 1920x1080 "natural" or
// |visible_rect|, but |coded_size| of 1920x1088 because of codec block
// alignment of 16 samples.
std::optional<gfx::Rect> visible_rect = CAPTURE_queue_->GetVisibleRect();
if (!visible_rect) {
return false;
}
CHECK(gfx::Rect(coded_size).Contains(*visible_rect));
visible_rect_ = *visible_rect;
const auto num_codec_reference_frames = GetNumberOfReferenceFrames();
// Ask the pipeline to pick the output format from |CAPTURE_queue_|'s
// |candidates|. If needed, it will try to instantiate an ImageProcessor.
CroStatus::Or<ImageProcessor::PixelLayoutCandidate> status_or_output_format =
client_->PickDecoderOutputFormat(
candidates, *visible_rect,
config_.aspect_ratio().GetNaturalSize(*visible_rect),
/*output_size=*/std::nullopt, num_codec_reference_frames,
/*use_protected=*/false, /*need_aux_frame_pool=*/false,
/*allocator=*/std::nullopt);
if (!status_or_output_format.has_value()) {
return false;
}
const ImageProcessor::PixelLayoutCandidate output_format =
std::move(status_or_output_format).value();
auto chosen_fourcc = output_format.fourcc;
const auto chosen_size = output_format.size;
const auto chosen_modifier = output_format.modifier;
// If our |client_| has a VideoFramePool to allocate buffers for us, we'll
// use it, otherwise we have to ask the driver.
const bool use_v4l2_allocated_buffers = !client_->GetVideoFramePool();
const v4l2_memory buffer_type =
use_v4l2_allocated_buffers ? V4L2_MEMORY_MMAP : V4L2_MEMORY_DMABUF;
// If we don't |use_v4l2_allocated_buffers|, request as many as possible
// (VIDEO_MAX_FRAME) since they are shallow allocations. Otherwise, allocate
// |num_codec_reference_frames| plus one for the video frame being decoded,
// and one for our client (presumably |client_|s ImageProcessor).
const size_t v4l2_num_buffers = use_v4l2_allocated_buffers
? num_codec_reference_frames + 2
: VIDEO_MAX_FRAME;
if (!use_v4l2_allocated_buffers) {
std::optional<GpuBufferLayout> layout =
client_->GetVideoFramePool()->GetGpuBufferLayout();
if (!layout.has_value()) {
return false;
}
if (layout->modifier() == DRM_FORMAT_MOD_QCOM_COMPRESSED) {
// V4L2 has no API to set DRM modifiers; instead we translate here to
// the corresponding V4L2 pixel format.
if (!CAPTURE_queue_
->SetFormat(V4L2_PIX_FMT_QC08C, chosen_size, /*buffer_size=*/0)
.has_value()) {
return false;
}
chosen_fourcc = Fourcc::FromV4L2PixFmt(V4L2_PIX_FMT_QC08C).value();
}
}
VLOG(2) << "Chosen |CAPTURE_queue_| format: " << chosen_fourcc.ToString()
<< " " << chosen_size.ToString() << " (modifier: 0x" << std::hex
<< chosen_modifier << std::dec << "). Using " << v4l2_num_buffers
<< " |CAPTURE_queue_| slots.";
const auto allocated_buffers = CAPTURE_queue_->AllocateBuffers(
v4l2_num_buffers, buffer_type, /*incoherent=*/false);
if (allocated_buffers < v4l2_num_buffers) {
LOGF(ERROR) << "Failed to allocate enough CAPTURE buffers, requested= "
<< v4l2_num_buffers << " actual= " << allocated_buffers;
return false;
}
if (!CAPTURE_queue_->Streamon()) {
return false;
}
// We need to "enqueue" allocated buffers in the driver in order to use them.
TryAndEnqueueCAPTUREQueueBuffers();
TryAndEnqueueOUTPUTQueueBuffers();
RearmCAPTUREQueueMonitoring();
return true;
}
std::vector<ImageProcessor::PixelLayoutCandidate>
V4L2StatefulVideoDecoder::EnumeratePixelLayoutCandidates(
const gfx::Size& coded_size) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(CAPTURE_queue_) << "|CAPTURE_queue_| must be created at this point";
const auto v4l2_pix_fmts = EnumerateSupportedPixFmts(
base::BindRepeating(&HandledIoctl, device_fd_.get()),
V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
std::vector<ImageProcessor::PixelLayoutCandidate> candidates;
for (const uint32_t& pixfmt : v4l2_pix_fmts) {
const auto candidate_fourcc = Fourcc::FromV4L2PixFmt(pixfmt);
if (!candidate_fourcc) {
continue; // This is fine: means we don't recognize |candidate_fourcc|.
}
// TODO(mcasas): Consider what to do when the input bitstream is of higher
// bit depth: Some drivers (QC?) will support and enumerate both a high bit
// depth and a low bit depth pixel formats. We'd like to choose the higher
// bit depth and let Chrome's display pipeline decide what to do.
candidates.emplace_back(ImageProcessor::PixelLayoutCandidate{
.fourcc = *candidate_fourcc, .size = coded_size});
VLOG(2) << "CAPTURE queue candidate format: "
<< candidate_fourcc->ToString() << ", " << coded_size.ToString();
}
return candidates;
}
size_t V4L2StatefulVideoDecoder::GetNumberOfReferenceFrames() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(CAPTURE_queue_) << "|CAPTURE_queue_| must be created at this point";
// Estimate the number of buffers needed for the |CAPTURE_queue_| and for
// codec reference requirements. For VP9 and AV1, the maximum number of
// reference frames is constant and 8 (for VP8 is 4); for H.264 and other
// ITU-T codecs, it depends on the bitstream. Here we query it from the
// driver anyway.
constexpr size_t kDefaultNumReferenceFrames = 8;
constexpr size_t kDefaultNumReferenceFramesMTK8173 = 16;
size_t num_codec_reference_frames = is_mtk8173_
? kDefaultNumReferenceFramesMTK8173
: kDefaultNumReferenceFrames;
struct v4l2_ext_control ctrl = {.id = V4L2_CID_MIN_BUFFERS_FOR_CAPTURE};
struct v4l2_ext_controls ext_ctrls = {.count = 1, .controls = &ctrl};
if (HandledIoctl(device_fd_.get(), VIDIOC_G_EXT_CTRLS, &ext_ctrls) ==
kIoctlOk) {
num_codec_reference_frames = std::max(
base::checked_cast<size_t>(ctrl.value), num_codec_reference_frames);
}
VLOG(2) << "Driver wants: " << ctrl.value
<< " CAPTURE buffers. We'll use: " << num_codec_reference_frames;
// Verify |num_codec_reference_frames| has a reasonable value. Anecdotally 18
// is the largest amount of reference frames seen, on some ITU-T H.264 test
// vectors (e.g. CABA1_SVA_B.h264).
CHECK_LE(num_codec_reference_frames, 18u);
return num_codec_reference_frames;
}
void V4L2StatefulVideoDecoder::RearmCAPTUREQueueMonitoring() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
auto dequeue_callback = base::BindPostTaskToCurrentDefault(base::BindOnce(
&V4L2StatefulVideoDecoder::TryAndDequeueCAPTUREQueueBuffers,
weak_ptr_factory_for_events_.GetWeakPtr()));
// |client_| needs to be told of a hypothetical resolution change (to wait for
// frames in flight etc). Once that's done they will ping us via
// ApplyResolutionChange(). We use a trampoline lambda to make sure
// |weak_ptr_factory_for_events_|'s pointers have not been invalidated (e.g.
// by a Reset()).
auto resolution_change_callback =
base::BindPostTaskToCurrentDefault(base::BindOnce(
[](base::WeakPtr<VideoDecoderMixin::Client> client,
base::WeakPtr<V4L2StatefulVideoDecoder> weak_this) {
if (weak_this && client) {
client->PrepareChangeResolution();
}
},
client_, weak_ptr_factory_for_events_.GetWeakPtr()));
// Here we launch a single "wait for a |CAPTURE_queue_| event" monitoring
// Task (via an infinite-wait POSIX poll()). It lives on a background
// SequencedTaskRunner whose lifetime we don't control (comes from a pool), so
// it can outlive this class -- this is fine, however, because upon
// V4L2StatefulVideoDecoder destruction:
// - |cancelable_task_tracker_| is used to try to drop all such Tasks that
// have not been serviced.
// - Any WeakPtr used for WaitOnceForEvents() callbacks will be invalidated
// (in particular, |client_| is a WeakPtr).
// - A |wake_event_| is sent to break a hypothetical poll() wait;
// WaitOnceForEvents() should return immediately upon this happening.
// (|wake_event_| is needed because we cannot rely on POSIX to wake a
// thread that is blocked on a poll() upon the closing of an FD from a
// different thread, concretely the "result is unspecified").
// - Both |device_fd_| and |wake_event_| are posted for destruction on said
// background SingleThreadTaskRunner so that the FDs monitored by poll() are
// guaranteed to stay alive until poll() returns, thus avoiding unspecified
// behavior.
cancelable_task_tracker_.PostTask(
event_task_runner_.get(), FROM_HERE,
base::BindOnce(&WaitOnceForEvents, device_fd_.get(), wake_event_.get(),
std::move(dequeue_callback),
std::move(resolution_change_callback)));
}
void V4L2StatefulVideoDecoder::TryAndDequeueCAPTUREQueueBuffers() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(CAPTURE_queue_) << "|CAPTURE_queue_| must be created at this point";
const v4l2_memory queue_type = CAPTURE_queue_->GetMemoryType();
DCHECK(queue_type == V4L2_MEMORY_MMAP || queue_type == V4L2_MEMORY_DMABUF);
const bool use_v4l2_allocated_buffers = !client_->GetVideoFramePool();
DCHECK((queue_type == V4L2_MEMORY_MMAP && use_v4l2_allocated_buffers) ||
(queue_type == V4L2_MEMORY_DMABUF && !use_v4l2_allocated_buffers));
bool success;
scoped_refptr<V4L2ReadableBuffer> dequeued_buffer;
for (std::tie(success, dequeued_buffer) = CAPTURE_queue_->DequeueBuffer();
success && dequeued_buffer;
std::tie(success, dequeued_buffer) = CAPTURE_queue_->DequeueBuffer()) {
PrintAndTraceQueueStates(FROM_HERE);
const int64_t flat_timespec =
TimeValToTimeDelta(dequeued_buffer->GetTimeStamp()).InMilliseconds();
if (base::Contains(encoding_timestamps_, flat_timespec)) {
UMA_HISTOGRAM_TIMES(
"Media.PlatformVideoDecoding.Decode",
base::TimeTicks::Now() - encoding_timestamps_[flat_timespec]);
encoding_timestamps_.erase(flat_timespec);
}
// A buffer marked "last" indicates the end of a flush. Note that, according
// to spec, this buffer may or may not have zero |bytesused|.
// https://www.kernel.org/doc/html/v5.15/userspace-api/media/v4l/dev-decoder.html#drain
if (dequeued_buffer->IsLast()) {
VLOGF(3) << "Buffer marked LAST in |CAPTURE_queue_|";
// Make sure the |OUTPUT_queue_| is really empty before restarting.
if (!DrainOUTPUTQueue()) {
LOG(ERROR) << "Failed to drain resources from |OUTPUT_queue_|.";
}
// According to the spec, decoding can be restarted either sending a
// "V4L2_DEC_CMD_START - the decoder will not be reset and will resume
// operation normally, with all the state from before the drain," or
// sending a VIDIOC_STREAMOFF - VIDIOC_STREAMON to either queue. Since we
// want to keep the state (e.g. resolution, |client_| buffers), we try
// the first option.
if (!CAPTURE_queue_->SendStartCommand()) {
VLOGF(3) << "Failed to resume decoding after flush";
// TODO(mcasas): Handle this error.
}
// In some cases we still have enqueued work in |OUTPUT_queue_| after
// seeing the LAST buffer. This happens at least when there's a pending
// resolution change (see vp80-03-segmentation-1436.ivf), that according
// to [1] must be processed first.
// [1] https://www.kernel.org/doc/html/v5.15/userspace-api/media/v4l/dev-decoder.html#drain
const bool has_pending_OUTPUT_queue_work =
OUTPUT_queue_->QueuedBuffersCount();
if (flush_cb_ && !has_pending_OUTPUT_queue_work) {
std::move(flush_cb_).Run(DecoderStatus::Codes::kOk);
}
return;
} else if (!dequeued_buffer->IsError()) {
// IsError() doesn't flag a fatal error, but more a discard-this-buffer
// marker. This is seen -seldom- from venus driver (QC) when entering a
// dynamic resolution mode: the driver flushes the queue with errored
// buffers before sending the IsLast() buffer.
scoped_refptr<FrameResource> frame = dequeued_buffer->GetFrameResource();
CHECK(frame);
frame->set_timestamp(TimeValToTimeDelta(dequeued_buffer->GetTimeStamp()));
frame->set_color_space(config_.color_space_info().ToGfxColorSpace());
frame->set_hdr_metadata(config_.hdr_metadata());
// For a V4L2_MEMORY_MMAP |CAPTURE_queue_| we wrap |frame| to return
// |dequeued_buffer| to |CAPTURE_queue_|, where they are "pooled". For a
// V4L2_MEMORY_DMABUF |CAPTURE_queue_|, we don't do that because the
// VideoFrames are pooled in |client_|s;
// TryAndEnqueueCAPTUREQueueBuffers() will find them there.
if (queue_type == V4L2_MEMORY_MMAP) {
// Don't query |CAPTURE_queue_|'s GetVisibleRect() here because it races
// with hypothetical resolution changes.
CHECK(gfx::Rect(frame->coded_size()).Contains(visible_rect_));
CHECK(frame->visible_rect().Contains(visible_rect_));
auto wrapped_frame =
frame->CreateWrappingFrame(visible_rect_,
/*natural_size=*/visible_rect_.size());
// Make sure |dequeued_buffer| stays alive and its reference released as
// |wrapped_frame| is destroyed, allowing -maybe- for it to get back to
// |CAPTURE_queue_|s free buffers.
wrapped_frame->AddDestructionObserver(
base::BindPostTaskToCurrentDefault(base::BindOnce(
[](scoped_refptr<V4L2ReadableBuffer> buffer,
base::WeakPtr<V4L2StatefulVideoDecoder> weak_this) {
// See also TryAndEnqueueCAPTUREQueueBuffers(), V4L2Queue is
// funny: We need to "enqueue" released buffers in the driver
// in order to use them (otherwise they would stay as "free").
if (weak_this) {
weak_this->TryAndEnqueueCAPTUREQueueBuffers();
weak_this->PrintAndTraceQueueStates(FROM_HERE);
}
},
std::move(dequeued_buffer),
weak_ptr_factory_for_CAPTURE_availability_.GetWeakPtr())));
CHECK(wrapped_frame);
VLOGF(3) << wrapped_frame->AsHumanReadableString();
output_cb_.Run(std::move(wrapped_frame));
} else {
DCHECK_EQ(queue_type, V4L2_MEMORY_DMABUF);
VLOGF(3) << frame->AsHumanReadableString();
framerate_control_->AttachToFrameResource(frame);
output_cb_.Run(std::move(frame));
}
// We just dequeued one decoded |frame|; try to reclaim |OUTPUT_queue|
// resources that might just have been released.
if (!DrainOUTPUTQueue()) {
LOG(ERROR) << "Failed to drain resources from |OUTPUT_queue_|.";
}
}
}
LOG_IF(ERROR, !success) << "Failed dequeueing from |CAPTURE_queue_|";
// Not an error if |dequeued_buffer| is empty, it's just an empty queue.
// There might be available resources for |CAPTURE_queue_| from previous
// cycles; try and make them available for the driver.
TryAndEnqueueCAPTUREQueueBuffers();
TryAndEnqueueOUTPUTQueueBuffers();
RearmCAPTUREQueueMonitoring();
}
void V4L2StatefulVideoDecoder::TryAndEnqueueCAPTUREQueueBuffers() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(CAPTURE_queue_) << "|CAPTURE_queue_| must be created at this point";
const v4l2_memory queue_type = CAPTURE_queue_->GetMemoryType();
DCHECK(queue_type == V4L2_MEMORY_MMAP || queue_type == V4L2_MEMORY_DMABUF);
// V4L2Queue is funny because even though it might have "free" buffers, the
// user (i.e. this code) needs to "enqueue" then for the actual v4l2 queue
// to use them.
if (queue_type == V4L2_MEMORY_MMAP) {
while (auto v4l2_buffer = CAPTURE_queue_->GetFreeBuffer()) {
if (!std::move(*v4l2_buffer).QueueMMap()) {
LOG(ERROR) << "CAPTURE queue failed to enqueue an MMAP buffer.";
return;
}
}
} else {
while (true) {
// When using a V4L2_MEMORY_DMABUF queue, resource ownership is in our
// |client_|s frame pool, and usually has less resources than what we
// have allocated here (because ours are just empty queue slots and we
// allocate conservatively). So, it's common that said frame pool gets
// exhausted before we run out of |CAPTURE_queue_|s free "buffers" here.
if (client_->GetVideoFramePool()->IsExhausted()) {
// All VideoFrames are elsewhere (maybe in flight). Request a callback
// when some of them are back.
// This weird jump is because the video frame pool cannot be called
// back (e.g. to query whether IsExhausted()) from the
// NotifyWhenFrameAvailable() callback because it would deadlock.
client_->GetVideoFramePool()->NotifyWhenFrameAvailable(base::BindOnce(
base::IgnoreResult(&base::SequencedTaskRunner::PostTask),
base::SequencedTaskRunner::GetCurrentDefault(), FROM_HERE,
base::BindOnce(
&V4L2StatefulVideoDecoder::TryAndEnqueueCAPTUREQueueBuffers,
weak_ptr_factory_for_CAPTURE_availability_.GetWeakPtr())));
return;
}
auto frame = client_->GetVideoFramePool()->GetFrame();
CHECK(frame);
// TODO(mcasas): Consider using GetFreeBufferForFrame().
auto v4l2_buffer = CAPTURE_queue_->GetFreeBuffer();
if (!v4l2_buffer) {
VLOGF(1) << "|CAPTURE_queue_| has no buffers";
return;
}
if (!std::move(*v4l2_buffer).QueueDMABuf(std::move(frame))) {
LOG(ERROR) << "CAPTURE queue failed to enqueue a DmaBuf buffer.";
return;
}
}
}
}
bool V4L2StatefulVideoDecoder::DrainOUTPUTQueue() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(IsInitialized()) << "V4L2StatefulVideoDecoder must be Initialize()d";
bool success;
scoped_refptr<V4L2ReadableBuffer> dequeued_buffer;
for (std::tie(success, dequeued_buffer) = OUTPUT_queue_->DequeueBuffer();
success && dequeued_buffer;
std::tie(success, dequeued_buffer) = OUTPUT_queue_->DequeueBuffer()) {
PrintAndTraceQueueStates(FROM_HERE);
}
return success;
}
bool V4L2StatefulVideoDecoder::TryAndEnqueueOUTPUTQueueBuffers() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(IsInitialized()) << "V4L2StatefulVideoDecoder must be Initialize()d";
// First try to recover some free slots in |OUTPUT_queue_|.
if (!DrainOUTPUTQueue()) {
PLOG(ERROR) << "Failed to drain resources from |OUTPUT_queue_|.";
return false;
}
for (std::optional<V4L2WritableBufferRef> v4l2_buffer =
OUTPUT_queue_->GetFreeBuffer();
v4l2_buffer && !decoder_buffer_and_callbacks_.empty();
v4l2_buffer = OUTPUT_queue_->GetFreeBuffer()) {
PrintAndTraceQueueStates(FROM_HERE);
auto media_buffer = std::move(decoder_buffer_and_callbacks_.front().first);
auto media_decode_cb =
std::move(decoder_buffer_and_callbacks_.front().second);
decoder_buffer_and_callbacks_.pop();
// Every |decoder_buffer_and_callbacks_| entry is guaranteed to contain a
// valid DecodeCB. However, when the |h264_frame_reassembler_| is in use,
// not every |decoder_buffer_and_callbacks_| entry will contain a valid
// DecoderBuffer.
if (media_buffer) {
if (media_buffer->end_of_stream()) {
// We had received an end_of_stream() buffer but there were still
// pending |decoder_buffer_and_callbacks_|, so we stored it; we can now
// process it and start the Flush.
if (!OUTPUT_queue_->SendStopCommand()) {
std::move(media_decode_cb).Run(DecoderStatus::Codes::kFailed);
return false;
}
flush_cb_ = std::move(media_decode_cb);
return true;
}
CHECK_EQ(v4l2_buffer->PlanesCount(), 1u);
uint8_t* dst = static_cast<uint8_t*>(v4l2_buffer->GetPlaneMapping(0));
auto media_buffer_span = base::span(*media_buffer);
CHECK_GE(v4l2_buffer->GetPlaneSize(/*plane=*/0),
media_buffer_span.size());
memcpy(dst, media_buffer_span.data(), media_buffer_span.size());
v4l2_buffer->SetPlaneBytesUsed(0, media_buffer_span.size());
VLOGF(4) << "Enqueuing " << media_buffer_span.size() << " bytes.";
v4l2_buffer->SetTimeStamp(TimeDeltaToTimeVal(media_buffer->timestamp()));
const int64_t flat_timespec = media_buffer->timestamp().InMilliseconds();
encoding_timestamps_[flat_timespec] = base::TimeTicks::Now();
if (!std::move(*v4l2_buffer).QueueMMap()) {
LOG(ERROR) << "Error while queuing input |media_buffer|!";
std::move(media_decode_cb)
.Run(DecoderStatus::Codes::kPlatformDecodeFailure);
return false;
}
}
std::move(media_decode_cb).Run(DecoderStatus::Codes::kOk);
}
return true;
}
void V4L2StatefulVideoDecoder::PrintAndTraceQueueStates(
const base::Location& from_here) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(IsInitialized()) << "V4L2StatefulVideoDecoder must be Initialize()d";
VLOG(4) << from_here.function_name() << "(): |OUTPUT_queue_| "
<< OUTPUT_queue_->QueuedBuffersCount() << "/"
<< OUTPUT_queue_->AllocatedBuffersCount() << ", |CAPTURE_queue_| "
<< (CAPTURE_queue_ ? CAPTURE_queue_->QueuedBuffersCount() : 0) << "/"
<< (CAPTURE_queue_ ? CAPTURE_queue_->AllocatedBuffersCount() : 0);
TRACE_COUNTER_ID1(
"media,gpu", "V4L2 OUTPUT Q used buffers", this,
base::checked_cast<int32_t>(OUTPUT_queue_->QueuedBuffersCount()));
TRACE_COUNTER_ID1("media,gpu", "V4L2 CAPTURE Q free buffers", this,
(CAPTURE_queue_ ? base::checked_cast<int32_t>(
CAPTURE_queue_->QueuedBuffersCount())
: 0));
}
bool V4L2StatefulVideoDecoder::IsInitialized() const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return !!OUTPUT_queue_;
}
// static
int V4L2StatefulVideoDecoder::GetMaxNumDecoderInstances() {
if (!base::FeatureList::IsEnabled(media::kLimitConcurrentDecoderInstances)) {
return std::numeric_limits<int>::max();
}
constexpr char kVideoDeviceDriverPath[] = "/dev/video-dec0";
base::ScopedFD device_fd(HANDLE_EINTR(
open(kVideoDeviceDriverPath, O_RDWR | O_NONBLOCK | O_CLOEXEC)));
if (!device_fd.is_valid()) {
return std::numeric_limits<int>::max();
}
struct v4l2_capability caps = {};
if (HandledIoctl(device_fd.get(), VIDIOC_QUERYCAP, &caps) != kIoctlOk) {
PLOG(ERROR) << "Failed querying caps";
return std::numeric_limits<int>::max();
}
const bool is_mtk8173 = base::Contains(
std::string(reinterpret_cast<const char*>(caps.card)), "8173");
// Experimentally MTK8173 (e.g. Hana) can initialize the driver up to 30
// times simultaneously, however legacy code limits this to 10 [1] . All other
// drivers used to limit this to 32 [2] but in practice I could only open up
// to 15 with e.g. Qualcomm SC7180.
// [1] https://source.chromium.org/chromium/chromium/src/+/main:media/gpu/v4l2/legacy/v4l2_video_decode_accelerator.h;l=449-454;drc=83195d4d1e1a4e54f148ddc80d0edcf5daa755ff
// [2] https://source.chromium.org/chromium/chromium/src/+/main:media/gpu/v4l2/v4l2_video_decoder.h;l=183-189;drc=90fa47c897b589bc4857fb7ccafab46a4be2e2ae
return is_mtk8173 ? 10 : 15;
}
std::vector<std::pair<scoped_refptr<DecoderBuffer>, VideoDecoder::DecodeCB>>
H264FrameReassembler::Process(scoped_refptr<DecoderBuffer> buffer,
VideoDecoder::DecodeCB decode_cb) {
std::vector<std::pair<scoped_refptr<DecoderBuffer>, VideoDecoder::DecodeCB>>
frames;
auto remaining = base::span(*buffer);
do {
const auto nalu_info =
FindH264FrameBoundary(remaining.data(), remaining.size());
if (!nalu_info.has_value()) {
LOG(ERROR) << "Failed parsing H.264 DecoderBuffer";
std::move(decode_cb).Run(DecoderStatus::Codes::kFailed);
return {};
}
const size_t found_nalu_size =
base::checked_cast<size_t>(nalu_info->nalu_size);
if (nalu_info->is_start_of_new_frame && HasFragments()) {
VLOGF(4) << frame_fragments_.size()
<< " currently stored frame fragment(s) can be reassembled.";
frames.emplace_back(ReassembleFragments(frame_fragments_),
base::DoNothing());
}
if (nalu_info->is_whole_frame) {
VLOGF(3) << "Found a whole frame, size=" << found_nalu_size << " bytes";
frames.emplace_back(
DecoderBuffer::CopyFrom(remaining.take_first(found_nalu_size)),
base::DoNothing());
frames.back().first->set_timestamp(buffer->timestamp());
continue;
}
VLOGF(4) << "This was a frame fragment; storing it for later reassembly.";
frame_fragments_.emplace_back(
DecoderBuffer::CopyFrom(remaining.take_first(found_nalu_size)));
frame_fragments_.back()->set_timestamp(buffer->timestamp());
} while (!remaining.empty());
// |decode_cb| is used to signal to our client that encoded chunks have been
// "accepted", and that we are ready to receive more. It must be called in
// order of accepted frames. If there is no complete frame the callback still
// needs to be stuffed in |frames| so that when they are dequeued they are
// interleaved correctly. While there may not be compressed data to enqueue,
// there will always be a callback to enqueue.
if (frames.empty()) {
frames.emplace_back(nullptr, std::move(decode_cb));
} else {
frames.back().second = std::move(decode_cb);
}
return frames;
}
std::optional<struct H264FrameReassembler::FrameBoundaryInfo>
H264FrameReassembler::FindH264FrameBoundary(const uint8_t* const data,
size_t data_size) {
h264_parser_.SetStream(data, data_size);
while (true) {
H264NALU nalu = {};
H264Parser::Result result = h264_parser_.AdvanceToNextNALU(&nalu);
if (result == H264Parser::kInvalidStream ||
result == H264Parser::kUnsupportedStream) {
LOG(ERROR) << "Could not parse bitstream.";
return std::nullopt;
}
if (result == H264Parser::kEOStream) {
// Not an error per se, but strange to run out of data without having
// found a new NALU boundary. Pretend it's a frame boundary and move on.
return FrameBoundaryInfo{.is_whole_frame = true,
.is_start_of_new_frame = true,
.nalu_size = nalu.size};
}
DCHECK_EQ(result, H264Parser::kOk);
static const char* kKnownNALUNames[] = {
"Unspecified", "NonIDRSlice", "SliceDataA",
"SliceDataB", "SliceDataC", "IDRSlice",
"SEIMessage", "SPS", "PPS",
"AUD", "EOSeq", "EOStream",
"Filler", "SPSExt", "Prefix",
"SubsetSPS", "DPS", "Reserved17",
"Reserved18", "CodedSliceAux", "CodedSliceExtension",
};
constexpr auto kMaxNALUTypeValue = std::size(kKnownNALUNames);
if (base::checked_cast<size_t>(nalu.nal_unit_type) >= kMaxNALUTypeValue) {
LOG(ERROR) << "NALU type unknown.";
return std::nullopt;
}
CHECK_GE(nalu.data, data);
CHECK_LE(nalu.data, data + data_size);
const auto nalu_size = nalu.data - data + nalu.size;
VLOGF(4) << "H264NALU type " << kKnownNALUNames[nalu.nal_unit_type]
<< ", NALU size=" << nalu_size
<< " bytes, payload size=" << nalu.size << " bytes";
switch (nalu.nal_unit_type) {
case H264NALU::kSPS:
result = h264_parser_.ParseSPS(&sps_id_);
if (result != H264Parser::kOk) {
LOG(ERROR) << "Could not parse SPS header.";
return std::nullopt;
}
previous_slice_header_.reset();
return FrameBoundaryInfo{.is_whole_frame = true,
.is_start_of_new_frame = true,
.nalu_size = nalu_size};
case H264NALU::kPPS:
result = h264_parser_.ParsePPS(&pps_id_);
if (result != H264Parser::kOk) {
LOG(ERROR) << "Could not parse PPS header.";
return std::nullopt;
}
previous_slice_header_.reset();
return FrameBoundaryInfo{.is_whole_frame = true,
.is_start_of_new_frame = true,
.nalu_size = nalu_size};
case H264NALU::kNonIDRSlice:
case H264NALU::kIDRSlice: {
H264SliceHeader curr_slice_header;
result = h264_parser_.ParseSliceHeader(nalu, &curr_slice_header);
if (result != H264Parser::kOk) {
// In this function we just want to find frame boundaries, so return
// but don't mark an error.
LOG(WARNING) << "Could not parse NALU header.";
return FrameBoundaryInfo{.is_whole_frame = true,
.is_start_of_new_frame = false,
.nalu_size = nalu_size};
}
const bool is_new_frame =
previous_slice_header_ &&
IsNewH264Frame(h264_parser_.GetSPS(sps_id_),
h264_parser_.GetPPS(pps_id_),
previous_slice_header_.get(), &curr_slice_header);
previous_slice_header_ =
std::make_unique<H264SliceHeader>(curr_slice_header);
return FrameBoundaryInfo{.is_whole_frame = false,
.is_start_of_new_frame = is_new_frame,
.nalu_size = nalu_size};
}
case H264NALU::kSEIMessage:
case H264NALU::kAUD:
case H264NALU::kEOSeq:
case H264NALU::kEOStream:
case H264NALU::kFiller:
case H264NALU::kSPSExt:
case H264NALU::kPrefix:
case H264NALU::kSubsetSPS:
case H264NALU::kDPS:
case H264NALU::kReserved17:
case H264NALU::kReserved18:
// Anything else than SPS, PPS and Non/IDRs marks a new frame boundary.
previous_slice_header_.reset();
return FrameBoundaryInfo{.is_whole_frame = true,
.is_start_of_new_frame = true,
.nalu_size = nalu_size};
default:
VLOGF(4) << "Unsupported NALU " << kKnownNALUNames[nalu.nal_unit_type];
}
}
}
} // namespace media
|