1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/gpu/v4l2/v4l2_video_decoder_delegate_av1.h"
#include <linux/v4l2-controls.h>
#include <linux/videodev2.h>
#include "base/memory/scoped_refptr.h"
#include "media/gpu/macros.h"
#include "media/gpu/v4l2/v4l2_decode_surface.h"
#include "media/gpu/v4l2/v4l2_decode_surface_handler.h"
#include "third_party/libgav1/src/src/obu_parser.h"
#include "third_party/libgav1/src/src/utils/common.h"
#include "third_party/libgav1/src/src/warp_prediction.h"
namespace media {
using DecodeStatus = AV1Decoder::AV1Accelerator::Status;
class V4L2AV1Picture : public AV1Picture {
public:
V4L2AV1Picture(scoped_refptr<V4L2DecodeSurface> dec_surface)
: dec_surface_(std::move(dec_surface)) {}
V4L2AV1Picture(const V4L2AV1Picture&) = delete;
V4L2AV1Picture& operator=(const V4L2AV1Picture&) = delete;
const scoped_refptr<V4L2DecodeSurface>& dec_surface() const {
return dec_surface_;
}
private:
~V4L2AV1Picture() override = default;
scoped_refptr<AV1Picture> CreateDuplicate() override {
return base::MakeRefCounted<V4L2AV1Picture>(dec_surface_);
}
scoped_refptr<V4L2DecodeSurface> dec_surface_;
};
namespace {
// TODO(stevecho): Remove this when AV1 uAPI RFC v3 change
// (crrev/c/3859126) lands.
#ifndef BIT
#define BIT(nr) (1U << (nr))
#endif
// Section 5.5. Sequence header OBU syntax in the AV1 spec.
// https://aomediacodec.github.io/av1-spec
struct v4l2_ctrl_av1_sequence FillSequenceParams(
const libgav1::ObuSequenceHeader& seq_header) {
struct v4l2_ctrl_av1_sequence v4l2_seq_params = {};
if (seq_header.still_picture)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_STILL_PICTURE;
if (seq_header.use_128x128_superblock)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_USE_128X128_SUPERBLOCK;
if (seq_header.enable_filter_intra)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_FILTER_INTRA;
if (seq_header.enable_intra_edge_filter)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_INTRA_EDGE_FILTER;
if (seq_header.enable_interintra_compound)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_INTERINTRA_COMPOUND;
if (seq_header.enable_masked_compound)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_MASKED_COMPOUND;
if (seq_header.enable_warped_motion)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_WARPED_MOTION;
if (seq_header.enable_dual_filter)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_DUAL_FILTER;
if (seq_header.enable_order_hint)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_ORDER_HINT;
if (seq_header.enable_jnt_comp)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_JNT_COMP;
if (seq_header.enable_ref_frame_mvs)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_REF_FRAME_MVS;
if (seq_header.enable_superres)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_SUPERRES;
if (seq_header.enable_cdef)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_CDEF;
if (seq_header.enable_restoration)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_ENABLE_RESTORATION;
if (seq_header.color_config.is_monochrome)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_MONO_CHROME;
if (seq_header.color_config.color_range)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_COLOR_RANGE;
if (seq_header.color_config.subsampling_x)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_SUBSAMPLING_X;
if (seq_header.color_config.subsampling_y)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_SUBSAMPLING_Y;
if (seq_header.film_grain_params_present)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_FILM_GRAIN_PARAMS_PRESENT;
if (seq_header.color_config.separate_uv_delta_q)
v4l2_seq_params.flags |= V4L2_AV1_SEQUENCE_FLAG_SEPARATE_UV_DELTA_Q;
v4l2_seq_params.seq_profile = seq_header.profile;
v4l2_seq_params.order_hint_bits = seq_header.order_hint_bits;
v4l2_seq_params.bit_depth = seq_header.color_config.bitdepth;
v4l2_seq_params.max_frame_width_minus_1 = seq_header.max_frame_width - 1;
v4l2_seq_params.max_frame_height_minus_1 = seq_header.max_frame_height - 1;
return v4l2_seq_params;
}
// Section 5.9.11. Loop filter params syntax.
// Note that |update_ref_delta| and |update_mode_delta| flags in the spec
// are not needed for V4L2 AV1 API.
void FillLoopFilterParams(v4l2_av1_loop_filter& v4l2_lf,
const libgav1::LoopFilter& lf) {
if (lf.delta_enabled)
v4l2_lf.flags |= V4L2_AV1_LOOP_FILTER_FLAG_DELTA_ENABLED;
if (lf.delta_update)
v4l2_lf.flags |= V4L2_AV1_LOOP_FILTER_FLAG_DELTA_UPDATE;
static_assert(std::size(decltype(v4l2_lf.level){}) == libgav1::kFrameLfCount,
"Invalid size of loop filter level (strength) array");
for (size_t i = 0; i < libgav1::kFrameLfCount; i++)
v4l2_lf.level[i] = base::checked_cast<__u8>(lf.level[i]);
v4l2_lf.sharpness = lf.sharpness;
static_assert(std::size(decltype(v4l2_lf.ref_deltas){}) ==
libgav1::kNumReferenceFrameTypes,
"Invalid size of ref deltas array");
for (size_t i = 0; i < libgav1::kNumReferenceFrameTypes; i++)
v4l2_lf.ref_deltas[i] = lf.ref_deltas[i];
static_assert(std::size(decltype(v4l2_lf.mode_deltas){}) ==
libgav1::kLoopFilterMaxModeDeltas,
"Invalid size of mode deltas array");
for (size_t i = 0; i < libgav1::kLoopFilterMaxModeDeltas; i++)
v4l2_lf.mode_deltas[i] = lf.mode_deltas[i];
}
// Section 5.9.12. Quantization params syntax
void FillQuantizationParams(v4l2_av1_quantization& v4l2_quant,
const libgav1::QuantizerParameters& quant) {
if (quant.use_matrix)
v4l2_quant.flags |= V4L2_AV1_QUANTIZATION_FLAG_USING_QMATRIX;
v4l2_quant.base_q_idx = quant.base_index;
// Note that quant.delta_ac[0] is useless
// because it is always 0 according to libgav1.
v4l2_quant.delta_q_y_dc = quant.delta_dc[0];
v4l2_quant.delta_q_u_dc = quant.delta_dc[1];
v4l2_quant.delta_q_u_ac = quant.delta_ac[1];
v4l2_quant.delta_q_v_dc = quant.delta_dc[2];
v4l2_quant.delta_q_v_ac = quant.delta_ac[2];
if (!quant.use_matrix)
return;
v4l2_quant.qm_y = base::checked_cast<uint8_t>(quant.matrix_level[0]);
v4l2_quant.qm_u = base::checked_cast<uint8_t>(quant.matrix_level[1]);
v4l2_quant.qm_v = base::checked_cast<uint8_t>(quant.matrix_level[2]);
}
// Section 5.9.14. Segmentation params syntax
struct v4l2_av1_segmentation FillSegmentationParams(
const libgav1::Segmentation& seg) {
struct v4l2_av1_segmentation v4l2_seg = {};
if (seg.enabled)
v4l2_seg.flags |= V4L2_AV1_SEGMENTATION_FLAG_ENABLED;
if (seg.update_map)
v4l2_seg.flags |= V4L2_AV1_SEGMENTATION_FLAG_UPDATE_MAP;
if (seg.temporal_update)
v4l2_seg.flags |= V4L2_AV1_SEGMENTATION_FLAG_TEMPORAL_UPDATE;
if (seg.update_data)
v4l2_seg.flags |= V4L2_AV1_SEGMENTATION_FLAG_UPDATE_DATA;
if (seg.segment_id_pre_skip)
v4l2_seg.flags |= V4L2_AV1_SEGMENTATION_FLAG_SEG_ID_PRE_SKIP;
static_assert(
std::size(decltype(v4l2_seg.feature_enabled){}) == libgav1::kMaxSegments,
"Invalid size of |feature_enabled| array in |v4l2_av1_segmentation| "
"struct");
static_assert(
std::size(decltype(v4l2_seg.feature_data){}) == libgav1::kMaxSegments &&
std::extent<decltype(v4l2_seg.feature_data), 0>::value ==
libgav1::kSegmentFeatureMax,
"Invalid size of |feature_data| array in |v4l2_av1_segmentation| struct");
for (size_t i = 0; i < libgav1::kMaxSegments; ++i) {
for (size_t j = 0; j < libgav1::kSegmentFeatureMax; ++j) {
v4l2_seg.feature_enabled[i] |= (seg.feature_enabled[i][j] << j);
v4l2_seg.feature_data[i][j] = seg.feature_data[i][j];
}
}
v4l2_seg.last_active_seg_id = seg.last_active_segment_id;
return v4l2_seg;
}
// Section 5.9.15. Tile info syntax
struct v4l2_av1_tile_info FillTileInfo(const libgav1::TileInfo& ti) {
struct v4l2_av1_tile_info v4l2_ti = {};
if (ti.uniform_spacing)
v4l2_ti.flags |= V4L2_AV1_TILE_INFO_FLAG_UNIFORM_TILE_SPACING;
static_assert(std::size(decltype(v4l2_ti.mi_col_starts){}) ==
(libgav1::kMaxTileColumns + 1),
"Size of |mi_col_starts| array in |v4l2_av1_tile_info| struct "
"does not match libgav1 expectation");
for (size_t i = 0; i < libgav1::kMaxTileColumns + 1; i++) {
v4l2_ti.mi_col_starts[i] =
base::checked_cast<uint32_t>(ti.tile_column_start[i]);
}
static_assert(std::size(decltype(v4l2_ti.mi_row_starts){}) ==
(libgav1::kMaxTileRows + 1),
"Size of |mi_row_starts| array in |v4l2_av1_tile_info| struct "
"does not match libgav1 expectation");
for (size_t i = 0; i < libgav1::kMaxTileRows + 1; i++) {
v4l2_ti.mi_row_starts[i] =
base::checked_cast<uint32_t>(ti.tile_row_start[i]);
}
if (!ti.uniform_spacing) {
// Confirmed that |kMaxTileColumns| is enough size for
// |width_in_sbs_minus_1| and |kMaxTileRows| is enough size for
// |height_in_sbs_minus_1|
// https://b.corp.google.com/issues/187828854#comment19
static_assert(
std::size(decltype(v4l2_ti.width_in_sbs_minus_1){}) ==
libgav1::kMaxTileColumns,
"Size of |width_in_sbs_minus_1| array in |v4l2_av1_tile_info| struct "
"does not match libgav1 expectation");
for (size_t i = 0; i < libgav1::kMaxTileColumns; i++) {
if (ti.tile_column_width_in_superblocks[i] >= 1) {
v4l2_ti.width_in_sbs_minus_1[i] = base::checked_cast<uint32_t>(
ti.tile_column_width_in_superblocks[i] - 1);
}
}
static_assert(
std::size(decltype(v4l2_ti.height_in_sbs_minus_1){}) ==
libgav1::kMaxTileRows,
"Size of |height_in_sbs_minus_1| array in |v4l2_av1_tile_info| struct "
"does not match libgav1 expectation");
for (size_t i = 0; i < libgav1::kMaxTileRows; i++) {
if (ti.tile_row_height_in_superblocks[i] >= 1) {
v4l2_ti.height_in_sbs_minus_1[i] = base::checked_cast<uint32_t>(
ti.tile_row_height_in_superblocks[i] - 1);
}
}
}
v4l2_ti.tile_size_bytes = ti.tile_size_bytes;
v4l2_ti.context_update_tile_id = ti.context_update_id;
v4l2_ti.tile_cols = ti.tile_columns;
v4l2_ti.tile_rows = ti.tile_rows;
return v4l2_ti;
}
// Section 5.9.17. Quantizer index delta parameters syntax
void FillQuantizerIndexDeltaParams(struct v4l2_av1_quantization& v4l2_quant,
const libgav1::ObuSequenceHeader& seq_header,
const libgav1::ObuFrameHeader& frm_header) {
// |diff_uv_delta| in the spec doesn't exist in libgav1,
// because libgav1 infers it using the following logic.
const bool diff_uv_delta = (frm_header.quantizer.base_index != 0) &&
(!seq_header.color_config.is_monochrome) &&
(seq_header.color_config.separate_uv_delta_q);
if (diff_uv_delta)
v4l2_quant.flags |= V4L2_AV1_QUANTIZATION_FLAG_DIFF_UV_DELTA;
if (frm_header.delta_q.present)
v4l2_quant.flags |= V4L2_AV1_QUANTIZATION_FLAG_DELTA_Q_PRESENT;
// |scale| is used to store |delta_q_res| value. This is because libgav1 uses
// the same struct |Delta| both for quantizer index delta parameters and loop
// filter delta parameters.
v4l2_quant.delta_q_res = frm_header.delta_q.scale;
}
// Section 5.9.18. Loop filter delta parameters syntax.
// Note that |delta_lf_res| in |v4l2_av1_loop_filter| corresponds to
// |delta_lf.scale| in the frame header defined in libgav1.
void FillLoopFilterDeltaParams(struct v4l2_av1_loop_filter& v4l2_lf,
const libgav1::Delta& delta_lf) {
if (delta_lf.present)
v4l2_lf.flags |= V4L2_AV1_LOOP_FILTER_FLAG_DELTA_LF_PRESENT;
if (delta_lf.multi)
v4l2_lf.flags |= V4L2_AV1_LOOP_FILTER_FLAG_DELTA_LF_MULTI;
v4l2_lf.delta_lf_res = delta_lf.scale;
}
// Section 5.9.19. CDEF params syntax
struct v4l2_av1_cdef FillCdefParams(const libgav1::Cdef& cdef,
uint8_t color_bitdepth) {
struct v4l2_av1_cdef v4l2_cdef = {};
// Damping value parsed in libgav1 is from the spec + (|color_bitdepth| - 8).
CHECK_GE(color_bitdepth, 8u);
const uint8_t coeff_shift = color_bitdepth - 8u;
v4l2_cdef.damping_minus_3 =
base::checked_cast<uint8_t>(cdef.damping - coeff_shift - 3u);
v4l2_cdef.bits = cdef.bits;
static_assert(std::size(decltype(v4l2_cdef.y_pri_strength){}) ==
libgav1::kMaxCdefStrengths,
"Invalid size of cdef y_pri_strength strength");
static_assert(std::size(decltype(v4l2_cdef.y_sec_strength){}) ==
libgav1::kMaxCdefStrengths,
"Invalid size of cdef y_sec_strength strength");
static_assert(std::size(decltype(v4l2_cdef.uv_pri_strength){}) ==
libgav1::kMaxCdefStrengths,
"Invalid size of cdef uv_pri_strength strength");
static_assert(std::size(decltype(v4l2_cdef.uv_sec_strength){}) ==
libgav1::kMaxCdefStrengths,
"Invalid size of cdef uv_sec_strength strength");
SafeArrayMemcpy(v4l2_cdef.y_pri_strength, cdef.y_primary_strength);
SafeArrayMemcpy(v4l2_cdef.y_sec_strength, cdef.y_secondary_strength);
SafeArrayMemcpy(v4l2_cdef.uv_pri_strength, cdef.uv_primary_strength);
SafeArrayMemcpy(v4l2_cdef.uv_sec_strength, cdef.uv_secondary_strength);
// All the strength values parsed in libgav1 are from the AV1 spec and left
// shifted by (|color_bitdepth| - 8). So these values need to be right shifted
// by (|color_bitdepth| - 8) before passing to a driver.
for (size_t i = 0; i < libgav1::kMaxCdefStrengths; i++) {
v4l2_cdef.y_pri_strength[i] >>= coeff_shift;
v4l2_cdef.y_sec_strength[i] >>= coeff_shift;
v4l2_cdef.uv_pri_strength[i] >>= coeff_shift;
v4l2_cdef.uv_sec_strength[i] >>= coeff_shift;
}
return v4l2_cdef;
}
// 5.9.20. Loop restoration params syntax
struct v4l2_av1_loop_restoration FillLoopRestorationParams(
const libgav1::LoopRestoration& lr) {
struct v4l2_av1_loop_restoration v4l2_lr = {};
for (size_t i = 0; i < V4L2_AV1_NUM_PLANES_MAX; i++) {
switch (lr.type[i]) {
case libgav1::LoopRestorationType::kLoopRestorationTypeNone:
v4l2_lr.frame_restoration_type[i] = V4L2_AV1_FRAME_RESTORE_NONE;
break;
case libgav1::LoopRestorationType::kLoopRestorationTypeWiener:
v4l2_lr.frame_restoration_type[i] = V4L2_AV1_FRAME_RESTORE_WIENER;
break;
case libgav1::LoopRestorationType::kLoopRestorationTypeSgrProj:
v4l2_lr.frame_restoration_type[i] = V4L2_AV1_FRAME_RESTORE_SGRPROJ;
break;
case libgav1::LoopRestorationType::kLoopRestorationTypeSwitchable:
v4l2_lr.frame_restoration_type[i] = V4L2_AV1_FRAME_RESTORE_SWITCHABLE;
break;
default:
NOTREACHED() << "Invalid loop restoration type";
}
if (v4l2_lr.frame_restoration_type[i] != V4L2_AV1_FRAME_RESTORE_NONE) {
if (true)
v4l2_lr.flags |= V4L2_AV1_LOOP_RESTORATION_FLAG_USES_LR;
if (i > 0)
v4l2_lr.flags |= V4L2_AV1_LOOP_RESTORATION_FLAG_USES_CHROMA_LR;
}
}
const bool use_loop_restoration =
std::find_if(std::begin(lr.type),
std::begin(lr.type) + libgav1::kMaxPlanes,
[](const auto type) {
return type != libgav1::kLoopRestorationTypeNone;
}) != (lr.type + libgav1::kMaxPlanes);
if (use_loop_restoration) {
DCHECK_GE(lr.unit_size_log2[0], lr.unit_size_log2[1]);
DCHECK_LE(lr.unit_size_log2[0] - lr.unit_size_log2[1], 1);
v4l2_lr.lr_unit_shift = lr.unit_size_log2[0] - 6;
v4l2_lr.lr_uv_shift = lr.unit_size_log2[0] - lr.unit_size_log2[1];
// AV1 spec (p.52) uses this formula with hard coded value 2.
// https://aomediacodec.github.io/av1-spec/#loop-restoration-params-syntax
v4l2_lr.loop_restoration_size[0] =
V4L2_AV1_RESTORATION_TILESIZE_MAX >> (2 - v4l2_lr.lr_unit_shift);
v4l2_lr.loop_restoration_size[1] =
v4l2_lr.loop_restoration_size[0] >> v4l2_lr.lr_uv_shift;
v4l2_lr.loop_restoration_size[2] =
v4l2_lr.loop_restoration_size[0] >> v4l2_lr.lr_uv_shift;
}
return v4l2_lr;
}
// Section 5.9.24. Global motion params syntax
struct v4l2_av1_global_motion FillGlobalMotionParams(
const std::array<libgav1::GlobalMotion, libgav1::kNumReferenceFrameTypes>&
gm_array) {
struct v4l2_av1_global_motion v4l2_gm = {};
// gm_array[0] (for kReferenceFrameIntra) is not used because global motion is
// not relevant for intra frames
for (size_t i = 1; i < libgav1::kNumReferenceFrameTypes; ++i) {
auto gm = gm_array[i];
switch (gm.type) {
case libgav1::kGlobalMotionTransformationTypeIdentity:
v4l2_gm.type[i] = V4L2_AV1_WARP_MODEL_IDENTITY;
break;
case libgav1::kGlobalMotionTransformationTypeTranslation:
v4l2_gm.type[i] = V4L2_AV1_WARP_MODEL_TRANSLATION;
v4l2_gm.flags[i] |= V4L2_AV1_GLOBAL_MOTION_FLAG_IS_TRANSLATION;
break;
case libgav1::kGlobalMotionTransformationTypeRotZoom:
v4l2_gm.type[i] = V4L2_AV1_WARP_MODEL_ROTZOOM;
v4l2_gm.flags[i] |= V4L2_AV1_GLOBAL_MOTION_FLAG_IS_ROT_ZOOM;
break;
case libgav1::kGlobalMotionTransformationTypeAffine:
v4l2_gm.type[i] = V4L2_AV1_WARP_MODEL_AFFINE;
v4l2_gm.flags[i] |= V4L2_AV1_WARP_MODEL_AFFINE;
break;
default:
NOTREACHED() << "Invalid global motion transformation type, "
<< v4l2_gm.type[i];
}
if (gm.type != libgav1::kGlobalMotionTransformationTypeIdentity)
v4l2_gm.flags[i] |= V4L2_AV1_GLOBAL_MOTION_FLAG_IS_GLOBAL;
constexpr auto kNumGlobalMotionParams = std::size(decltype(gm.params){});
for (size_t j = 0; j < kNumGlobalMotionParams; ++j) {
static_assert(
std::is_same<decltype(v4l2_gm.params[0][0]), int32_t&>::value,
"|v4l2_av1_global_motion::params|'s data type must be int32_t "
"starting from AV1 uAPI v4");
v4l2_gm.params[i][j] = gm.params[j];
}
if (!libgav1::SetupShear(&gm))
v4l2_gm.invalid |= V4L2_AV1_GLOBAL_MOTION_IS_INVALID(i);
}
return v4l2_gm;
}
// 5.9.2. Uncompressed header syntax
struct v4l2_ctrl_av1_frame SetupFrameParams(
const libgav1::ObuSequenceHeader& sequence_header,
const libgav1::ObuFrameHeader& frame_header,
const AV1ReferenceFrameVector& ref_frames) {
struct v4l2_ctrl_av1_frame v4l2_frame_params = {};
FillLoopFilterParams(v4l2_frame_params.loop_filter, frame_header.loop_filter);
FillLoopFilterDeltaParams(v4l2_frame_params.loop_filter,
frame_header.delta_lf);
FillQuantizationParams(v4l2_frame_params.quantization,
frame_header.quantizer);
FillQuantizerIndexDeltaParams(v4l2_frame_params.quantization, sequence_header,
frame_header);
v4l2_frame_params.segmentation =
FillSegmentationParams(frame_header.segmentation);
const auto color_bitdepth = sequence_header.color_config.bitdepth;
v4l2_frame_params.cdef = FillCdefParams(
frame_header.cdef, base::strict_cast<int8_t>(color_bitdepth));
v4l2_frame_params.loop_restoration =
FillLoopRestorationParams(frame_header.loop_restoration);
v4l2_frame_params.tile_info = FillTileInfo(frame_header.tile_info);
v4l2_frame_params.global_motion =
FillGlobalMotionParams(frame_header.global_motion);
if (frame_header.show_frame)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_SHOW_FRAME;
if (frame_header.showable_frame)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_SHOWABLE_FRAME;
if (frame_header.error_resilient_mode)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_ERROR_RESILIENT_MODE;
if (frame_header.enable_cdf_update == false)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_DISABLE_CDF_UPDATE;
if (frame_header.allow_screen_content_tools)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_ALLOW_SCREEN_CONTENT_TOOLS;
if (frame_header.force_integer_mv)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_FORCE_INTEGER_MV;
if (frame_header.allow_intrabc)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_ALLOW_INTRABC;
if (frame_header.use_superres)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_USE_SUPERRES;
if (frame_header.allow_high_precision_mv)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_ALLOW_HIGH_PRECISION_MV;
if (frame_header.is_motion_mode_switchable)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_IS_MOTION_MODE_SWITCHABLE;
if (frame_header.use_ref_frame_mvs)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_USE_REF_FRAME_MVS;
if (frame_header.enable_frame_end_update_cdf == false)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_DISABLE_FRAME_END_UPDATE_CDF;
if (frame_header.allow_warped_motion)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_ALLOW_WARPED_MOTION;
if (frame_header.reference_mode_select)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_REFERENCE_SELECT;
if (frame_header.reduced_tx_set)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_REDUCED_TX_SET;
if (frame_header.skip_mode_frame[0] > 0)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_SKIP_MODE_ALLOWED;
if (frame_header.skip_mode_present)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_SKIP_MODE_PRESENT;
if (frame_header.frame_size_override_flag)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_FRAME_SIZE_OVERRIDE;
// libgav1 header doesn't have |buffer_removal_time_present_flag|.
if (frame_header.buffer_removal_time[0] > 0)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_BUFFER_REMOVAL_TIME_PRESENT;
if (frame_header.frame_refs_short_signaling)
v4l2_frame_params.flags |= V4L2_AV1_FRAME_FLAG_FRAME_REFS_SHORT_SIGNALING;
switch (frame_header.frame_type) {
case libgav1::kFrameKey:
v4l2_frame_params.frame_type = V4L2_AV1_KEY_FRAME;
break;
case libgav1::kFrameInter:
v4l2_frame_params.frame_type = V4L2_AV1_INTER_FRAME;
break;
case libgav1::kFrameIntraOnly:
v4l2_frame_params.frame_type = V4L2_AV1_INTRA_ONLY_FRAME;
break;
case libgav1::kFrameSwitch:
v4l2_frame_params.frame_type = V4L2_AV1_SWITCH_FRAME;
break;
default:
NOTREACHED() << "Invalid frame type, " << frame_header.frame_type;
}
v4l2_frame_params.order_hint = frame_header.order_hint;
v4l2_frame_params.superres_denom = frame_header.superres_scale_denominator;
v4l2_frame_params.upscaled_width = frame_header.upscaled_width;
switch (frame_header.interpolation_filter) {
case libgav1::kInterpolationFilterEightTap:
v4l2_frame_params.interpolation_filter =
V4L2_AV1_INTERPOLATION_FILTER_EIGHTTAP;
break;
case libgav1::kInterpolationFilterEightTapSmooth:
v4l2_frame_params.interpolation_filter =
V4L2_AV1_INTERPOLATION_FILTER_EIGHTTAP_SMOOTH;
break;
case libgav1::kInterpolationFilterEightTapSharp:
v4l2_frame_params.interpolation_filter =
V4L2_AV1_INTERPOLATION_FILTER_EIGHTTAP_SHARP;
break;
case libgav1::kInterpolationFilterBilinear:
v4l2_frame_params.interpolation_filter =
V4L2_AV1_INTERPOLATION_FILTER_BILINEAR;
break;
case libgav1::kInterpolationFilterSwitchable:
v4l2_frame_params.interpolation_filter =
V4L2_AV1_INTERPOLATION_FILTER_SWITCHABLE;
break;
default:
NOTREACHED() << "Invalid interpolation filter, "
<< frame_header.interpolation_filter;
}
switch (frame_header.tx_mode) {
case libgav1::kTxModeOnly4x4:
v4l2_frame_params.tx_mode = V4L2_AV1_TX_MODE_ONLY_4X4;
break;
case libgav1::kTxModeLargest:
v4l2_frame_params.tx_mode = V4L2_AV1_TX_MODE_LARGEST;
break;
case libgav1::kTxModeSelect:
v4l2_frame_params.tx_mode = V4L2_AV1_TX_MODE_SELECT;
break;
default:
NOTREACHED() << "Invalid tx mode, " << frame_header.tx_mode;
}
v4l2_frame_params.frame_width_minus_1 = frame_header.width - 1;
v4l2_frame_params.frame_height_minus_1 = frame_header.height - 1;
v4l2_frame_params.render_width_minus_1 = frame_header.render_width - 1;
v4l2_frame_params.render_height_minus_1 = frame_header.render_height - 1;
v4l2_frame_params.current_frame_id = frame_header.current_frame_id;
v4l2_frame_params.primary_ref_frame = frame_header.primary_reference_frame;
SafeArrayMemcpy(v4l2_frame_params.buffer_removal_time,
frame_header.buffer_removal_time);
v4l2_frame_params.refresh_frame_flags = frame_header.refresh_frame_flags;
// |reference_frame_index| indicates which reference frame slot is used for
// different reference frame types: L(1), L2(2), L3(3), G(4), BWD(5), A2(6),
// A(7). As |ref_frames[i]| is a |AV1Picture| with frame header info, we can
// extract |order_hint| directly for each reference frame type instead of
// maintaining |RefOrderHint| array in the AV1 spec.
static_assert(std::size(decltype(v4l2_frame_params.order_hints){}) ==
libgav1::kNumInterReferenceFrameTypes + 1,
"Invalid size of |order_hints| array");
if (!libgav1::IsIntraFrame(frame_header.frame_type)) {
for (size_t i = 0; i < libgav1::kNumInterReferenceFrameTypes; ++i) {
const int8_t reference_frame_index =
frame_header.reference_frame_index[i];
// The DCHECK()s are guaranteed by
// AV1Decoder::CheckAndCleanUpReferenceFrames().
DCHECK_GE(reference_frame_index, 0);
DCHECK_LT(reference_frame_index, libgav1::kNumReferenceFrameTypes);
DCHECK(ref_frames[reference_frame_index]);
const uint8_t order_hint =
ref_frames[reference_frame_index]->frame_header.order_hint;
v4l2_frame_params.order_hints[i + 1] =
base::strict_cast<__u32>(order_hint);
}
}
// TODO(b/230891887): use uint64_t when v4l2_timeval_to_ns() function is used.
constexpr uint32_t kInvalidSurface = std::numeric_limits<uint32_t>::max();
for (size_t i = 0; i < libgav1::kNumReferenceFrameTypes; ++i) {
if (!ref_frames[i]) {
v4l2_frame_params.reference_frame_ts[i] = kInvalidSurface;
continue;
}
const auto* v4l2_ref_pic =
static_cast<const V4L2AV1Picture*>(ref_frames[i].get());
v4l2_frame_params.reference_frame_ts[i] =
v4l2_ref_pic->dec_surface()->GetReferenceID();
}
static_assert(std::size(decltype(v4l2_frame_params.ref_frame_idx){}) ==
libgav1::kNumInterReferenceFrameTypes,
"Invalid size of |ref_frame_idx| array");
for (size_t i = 0; i < libgav1::kNumInterReferenceFrameTypes; i++) {
LOG_IF(ERROR, (frame_header.frame_type == libgav1::kFrameKey) &&
(frame_header.reference_frame_index[i] != 0))
<< "|reference_frame_index| from the frame header is not 0 for the "
"intra frame";
static_assert(std::is_same<decltype(v4l2_frame_params.ref_frame_idx[0]),
int8_t&>::value,
"|v4l2_ctrl_av1_frame::ref_frame_idx|'s data type must be "
"int8_t starting from AV1 uAPI v4");
v4l2_frame_params.ref_frame_idx[i] = frame_header.reference_frame_index[i];
}
v4l2_frame_params.skip_mode_frame[0] =
base::checked_cast<__u8>(frame_header.skip_mode_frame[0]);
v4l2_frame_params.skip_mode_frame[1] =
base::checked_cast<__u8>(frame_header.skip_mode_frame[1]);
return v4l2_frame_params;
}
// Section 5.11. Tile Group OBU syntax
std::vector<struct v4l2_ctrl_av1_tile_group_entry> FillTileGroupParams(
const base::span<const uint8_t> frame_obu_data,
const size_t tile_columns,
const libgav1::Vector<libgav1::TileBuffer>& tile_buffers) {
// This could happen in rare cases (for example, if there is a Metadata OBU
// after the TileGroup OBU). We currently do not have a reason to handle those
// cases. This is also the case in libgav1 at the moment.
CHECK(!tile_buffers.empty());
CHECK_GT(tile_columns, 0u);
const uint32_t num_tiles = tile_buffers.size();
std::vector<struct v4l2_ctrl_av1_tile_group_entry> tile_group_entry_vector(
num_tiles);
for (uint32_t tile_index = 0; tile_index < num_tiles; ++tile_index) {
auto& tile_group_entry_params = tile_group_entry_vector[tile_index];
CHECK(tile_buffers[tile_index].data >= frame_obu_data.data());
tile_group_entry_params.tile_offset = base::checked_cast<uint32_t>(
tile_buffers[tile_index].data - frame_obu_data.data());
tile_group_entry_params.tile_size =
base::checked_cast<uint32_t>(tile_buffers[tile_index].size);
// The tiles are row-major. We use the number of columns |tile_columns|
// to compute computation of the row and column for a given tile.
tile_group_entry_params.tile_row =
tile_index / base::checked_cast<uint32_t>(tile_columns);
tile_group_entry_params.tile_col =
tile_index % base::checked_cast<uint32_t>(tile_columns);
base::CheckedNumeric<uint32_t> safe_tile_data_end(
tile_group_entry_params.tile_offset);
safe_tile_data_end += tile_group_entry_params.tile_size;
size_t tile_data_end;
if (!safe_tile_data_end.AssignIfValid(&tile_data_end) ||
tile_data_end > frame_obu_data.size()) {
DLOG(ERROR) << "Invalid tile offset and size"
<< ", offset=" << tile_group_entry_params.tile_offset
<< ", size=" << tile_group_entry_params.tile_size
<< ", entire data size=" << frame_obu_data.size();
return {};
}
}
return tile_group_entry_vector;
}
} // namespace
V4L2VideoDecoderDelegateAV1::V4L2VideoDecoderDelegateAV1(
V4L2DecodeSurfaceHandler* surface_handler,
V4L2Device* device)
: surface_handler_(surface_handler), device_(device) {
VLOGF(1);
DCHECK(surface_handler_);
DCHECK(device_);
}
V4L2VideoDecoderDelegateAV1::~V4L2VideoDecoderDelegateAV1() = default;
scoped_refptr<AV1Picture> V4L2VideoDecoderDelegateAV1::CreateAV1Picture(
bool apply_grain) {
scoped_refptr<V4L2DecodeSurface> dec_surface =
surface_handler_->CreateSurface();
if (!dec_surface)
return nullptr;
return base::MakeRefCounted<V4L2AV1Picture>(std::move(dec_surface));
}
scoped_refptr<AV1Picture> V4L2VideoDecoderDelegateAV1::CreateAV1PictureSecure(
bool apply_grain,
uint64_t secure_handle) {
scoped_refptr<V4L2DecodeSurface> dec_surface =
surface_handler_->CreateSecureSurface(secure_handle);
if (!dec_surface) {
return nullptr;
}
return base::MakeRefCounted<V4L2AV1Picture>(std::move(dec_surface));
}
DecodeStatus V4L2VideoDecoderDelegateAV1::SubmitDecode(
const AV1Picture& pic,
const libgav1::ObuSequenceHeader& sequence_header,
const AV1ReferenceFrameVector& ref_frames,
const libgav1::Vector<libgav1::TileBuffer>& tile_buffers,
base::span<const uint8_t> stream) {
struct v4l2_ctrl_av1_sequence v4l2_seq_params =
FillSequenceParams(sequence_header);
struct v4l2_ctrl_av1_frame v4l2_frame_params =
SetupFrameParams(sequence_header, pic.frame_header, ref_frames);
std::vector<struct v4l2_ctrl_av1_tile_group_entry> tile_group_entry_vectors =
FillTileGroupParams(stream, pic.frame_header.tile_info.tile_columns,
tile_buffers);
if (tile_group_entry_vectors.empty()) {
VLOGF(1) << "Tile group entry setup failed";
return DecodeStatus::kFail;
}
struct v4l2_ext_control ext_ctrl_array[] = {
{.id = V4L2_CID_STATELESS_AV1_SEQUENCE,
.size = sizeof(v4l2_seq_params),
.ptr = &v4l2_seq_params},
{.id = V4L2_CID_STATELESS_AV1_FRAME,
.size = sizeof(v4l2_frame_params),
.ptr = &v4l2_frame_params},
{.id = V4L2_CID_STATELESS_AV1_TILE_GROUP_ENTRY,
.size =
base::checked_cast<__u32>(tile_group_entry_vectors.size() *
sizeof(v4l2_ctrl_av1_tile_group_entry)),
.ptr = tile_group_entry_vectors.data()}};
struct v4l2_ext_controls ext_ctrls = {
.count = base::checked_cast<__u32>(std::size(ext_ctrl_array)),
.controls = ext_ctrl_array};
const auto* v4l2_pic = static_cast<const V4L2AV1Picture*>(&pic);
auto dec_surface = v4l2_pic->dec_surface();
dec_surface->PrepareSetCtrls(&ext_ctrls);
if (device_->Ioctl(VIDIOC_S_EXT_CTRLS, &ext_ctrls) != 0) {
RecordVidiocIoctlErrorUMA(VidiocIoctlRequests::kVidiocSExtCtrls);
VPLOGF(1) << "ioctl() failed: VIDIOC_S_EXT_CTRLS";
return DecodeStatus::kFail;
}
std::vector<scoped_refptr<V4L2DecodeSurface>> ref_surfaces;
for (size_t i = 0; i < libgav1::kNumReferenceFrameTypes; i++) {
if (ref_frames[i]) {
const auto* v4l2_ref_pic =
static_cast<const V4L2AV1Picture*>(ref_frames[i].get());
ref_surfaces.emplace_back(std::move(v4l2_ref_pic->dec_surface()));
}
}
dec_surface->SetReferenceSurfaces(std::move(ref_surfaces));
// Copies the frame data into the V4L2 buffer.
if (!surface_handler_->SubmitSlice(
dec_surface.get(),
dec_surface->secure_handle() ? nullptr : stream.data(),
stream.size())) {
return DecodeStatus::kFail;
}
// Queues the buffers to the kernel driver.
DVLOGF(4) << "Submitting decode for surface: "
<< v4l2_pic->dec_surface()->ToString();
surface_handler_->DecodeSurface(v4l2_pic->dec_surface());
return DecodeStatus::kOk;
}
bool V4L2VideoDecoderDelegateAV1::OutputPicture(const AV1Picture& pic) {
VLOGF(3);
const auto* v4l2_pic = static_cast<const V4L2AV1Picture*>(&pic);
surface_handler_->SurfaceReady(
v4l2_pic->dec_surface(), v4l2_pic->bitstream_id(),
v4l2_pic->visible_rect(), v4l2_pic->get_colorspace());
return true;
}
} // namespace media
|