1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/390223051): Remove C-library calls to fix the errors.
#pragma allow_unsafe_libc_calls
#endif
#include "media/gpu/v4l2/v4l2_video_encode_accelerator.h"
#include <fcntl.h>
#include <linux/videodev2.h>
#include <poll.h>
#include <string.h>
#include <sys/eventfd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <memory>
#include <numeric>
#include <optional>
#include <utility>
#include "base/bits.h"
#include "base/command_line.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/functional/callback_helpers.h"
#include "base/memory/shared_memory_mapping.h"
#include "base/memory/unsafe_shared_memory_region.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/strcat.h"
#include "base/task/sequenced_task_runner.h"
#include "base/task/single_thread_task_runner.h"
#include "base/task/task_traits.h"
#include "base/task/thread_pool.h"
#include "base/trace_event/trace_event.h"
#include "gpu/ipc/service/gpu_channel_shared_image_interface.h"
#include "gpu/ipc/service/shared_image_stub.h"
#include "media/base/bitstream_buffer.h"
#include "media/base/color_plane_layout.h"
#include "media/base/encoder_status.h"
#include "media/base/media_log.h"
#include "media/base/media_switches.h"
#include "media/base/media_util.h"
#include "media/base/video_frame_layout.h"
#include "media/base/video_types.h"
#include "media/gpu/chromeos/fourcc.h"
#include "media/gpu/chromeos/image_processor_factory.h"
#include "media/gpu/chromeos/platform_video_frame_utils.h"
#include "media/gpu/command_buffer_helper.h"
#include "media/gpu/gpu_video_encode_accelerator_helpers.h"
#include "media/gpu/macros.h"
#include "media/gpu/v4l2/v4l2_utils.h"
#include "media/parsers/h264_level_limits.h"
#include "media/parsers/h264_parser.h"
#ifndef V4L2_CID_MPEG_VIDEO_H264_HIER_CODING_L0_BR
#define V4L2_CID_MPEG_VIDEO_H264_HIER_CODING_L0_BR (V4L2_CID_CODEC_BASE + 391)
#endif
#ifndef V4L2_CID_MPEG_VIDEO_H264_HIER_CODING_L1_BR
#define V4L2_CID_MPEG_VIDEO_H264_HIER_CODING_L1_BR (V4L2_CID_CODEC_BASE + 392)
#endif
namespace {
const uint8_t kH264StartCode[] = {0, 0, 0, 1};
const size_t kH264StartCodeSize = sizeof(kH264StartCode);
// Copy a H.264 NALU of size |src_size| (without start code), located at |src|,
// into a buffer starting at |dst| of size |dst_size|, prepending it with
// a H.264 start code (as long as both fit). After copying, update |dst| to
// point to the address immediately after the copied data, and update |dst_size|
// to contain remaining destination buffer size.
static void CopyNALUPrependingStartCode(const uint8_t* src,
size_t src_size,
uint8_t** dst,
size_t* dst_size) {
size_t size_to_copy = kH264StartCodeSize + src_size;
if (size_to_copy > *dst_size) {
VLOGF(1) << "Could not copy a NALU, not enough space in destination buffer";
return;
}
memcpy(*dst, kH264StartCode, kH264StartCodeSize);
memcpy(*dst + kH264StartCodeSize, src, src_size);
*dst += size_to_copy;
*dst_size -= size_to_copy;
}
} // namespace
namespace media {
namespace {
// Convert VideoFrameLayout to ImageProcessor::PortConfig.
std::optional<ImageProcessor::PortConfig> VideoFrameLayoutToPortConfig(
const VideoFrameLayout& layout,
const gfx::Rect& visible_rect,
VideoFrame::StorageType storage_type) {
auto fourcc =
Fourcc::FromVideoPixelFormat(layout.format(), !layout.is_multi_planar());
if (!fourcc) {
DVLOGF(1) << "Failed to create Fourcc from video pixel format "
<< VideoPixelFormatToString(layout.format());
return std::nullopt;
}
return ImageProcessor::PortConfig(*fourcc, layout.coded_size(),
layout.planes(), visible_rect,
storage_type);
}
// Create Layout from |layout| with is_multi_planar = true.
std::optional<VideoFrameLayout> AsMultiPlanarLayout(
const VideoFrameLayout& layout) {
if (layout.is_multi_planar())
return std::make_optional<VideoFrameLayout>(layout);
return VideoFrameLayout::CreateMultiPlanar(
layout.format(), layout.coded_size(), layout.planes());
}
scoped_refptr<base::SequencedTaskRunner> CreateEncoderTaskRunner() {
if (base::FeatureList::IsEnabled(kUSeSequencedTaskRunnerForVEA)) {
return base::ThreadPool::CreateSequencedTaskRunner(
{base::WithBaseSyncPrimitives(), base::TaskPriority::USER_VISIBLE,
base::MayBlock()});
} else {
return base::ThreadPool::CreateSingleThreadTaskRunner(
{base::WithBaseSyncPrimitives(), base::MayBlock(),
base::TaskPriority::USER_VISIBLE},
base::SingleThreadTaskRunnerThreadMode::DEDICATED);
}
}
} // namespace
struct V4L2VideoEncodeAccelerator::BitstreamBufferRef {
BitstreamBufferRef(int32_t id, base::WritableSharedMemoryMapping shm_mapping)
: id(id), shm_mapping(std::move(shm_mapping)) {}
const int32_t id;
base::WritableSharedMemoryMapping shm_mapping;
};
V4L2VideoEncodeAccelerator::InputRecord::InputRecord() = default;
V4L2VideoEncodeAccelerator::InputRecord::InputRecord(const InputRecord&) =
default;
V4L2VideoEncodeAccelerator::InputRecord::~InputRecord() = default;
V4L2VideoEncodeAccelerator::InputFrameInfo::InputFrameInfo()
: InputFrameInfo(nullptr, false) {}
V4L2VideoEncodeAccelerator::InputFrameInfo::InputFrameInfo(
scoped_refptr<VideoFrame> frame,
bool force_keyframe)
: frame(frame), force_keyframe(force_keyframe) {}
V4L2VideoEncodeAccelerator::InputFrameInfo::InputFrameInfo(
scoped_refptr<VideoFrame> frame,
bool force_keyframe,
size_t index)
: frame(std::move(frame)),
force_keyframe(force_keyframe),
ip_output_buffer_index(index) {}
V4L2VideoEncodeAccelerator::InputFrameInfo::InputFrameInfo(
const InputFrameInfo&) = default;
V4L2VideoEncodeAccelerator::InputFrameInfo::~InputFrameInfo() = default;
// static
base::AtomicRefCount V4L2VideoEncodeAccelerator::num_instances_(0);
V4L2VideoEncodeAccelerator::V4L2VideoEncodeAccelerator(
scoped_refptr<V4L2Device> device)
: can_use_encoder_(num_instances_.Increment() < kMaxNumOfInstances),
child_task_runner_(base::SequencedTaskRunner::GetCurrentDefault()),
native_input_mode_(false),
output_buffer_byte_size_(0),
output_format_fourcc_(0),
current_framerate_(0),
encoder_state_(kUninitialized),
device_(std::move(device)),
input_memory_type_(V4L2_MEMORY_USERPTR),
is_flush_supported_(false),
// TODO(akahuang): Remove WithBaseSyncPrimitives() after replacing poll
// thread by V4L2DevicePoller.
encoder_task_runner_(CreateEncoderTaskRunner()),
device_poll_thread_("V4L2EncoderDevicePollThread") {
DCHECK_CALLED_ON_VALID_SEQUENCE(child_sequence_checker_);
DETACH_FROM_SEQUENCE(encoder_sequence_checker_);
weak_this_ = weak_this_factory_.GetWeakPtr();
}
V4L2VideoEncodeAccelerator::~V4L2VideoEncodeAccelerator() {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(!device_poll_thread_.IsRunning());
VLOGF(2);
num_instances_.Decrement();
}
EncoderStatus V4L2VideoEncodeAccelerator::Initialize(
const Config& config,
Client* client,
std::unique_ptr<MediaLog> media_log) {
DCHECK_CALLED_ON_VALID_SEQUENCE(child_sequence_checker_);
DCHECK_EQ(encoder_state_, kUninitialized);
TRACE_EVENT0("media,gpu", "V4L2VEA::Initialize");
VLOGF(2) << ": " << config.AsHumanReadableString();
if (!can_use_encoder_) {
MEDIA_LOG(ERROR, media_log.get()) << "Too many encoders are allocated";
return {EncoderStatus::Codes::kEncoderInitializationError};
}
if (config.HasSpatialLayer()) {
MEDIA_LOG(ERROR, media_log.get())
<< "Spatial layer encoding is not yet supported";
return {EncoderStatus::Codes::kEncoderInitializationError};
}
// Currently only Qualcomm (SC7180) supports temporal layers, MTK drivers
// do not. There is no check here to determine if the driver supports temporal
// layering. It is expected that clients will first call
// GetSupportedScalabilityModesForV4L2Codec() to get the capabilities.
if (config.HasTemporalLayer()) {
if (VideoCodecProfileToVideoCodec(config.output_profile) ==
VideoCodec::kH264) {
constexpr uint8_t kNumSupportedH264TemporalLayers = 2;
const uint8_t num_temporal_layers =
config.spatial_layers[0].num_of_temporal_layers;
if (num_temporal_layers == kNumSupportedH264TemporalLayers) {
h264_l1t2_enabled_ = true;
} else {
MEDIA_LOG(ERROR, media_log.get())
<< "Unsupported number of temporal layers: "
<< base::strict_cast<size_t>(num_temporal_layers);
return {EncoderStatus::Codes::kEncoderInitializationError};
}
} else {
MEDIA_LOG(WARNING, media_log.get())
<< GetProfileName(config.output_profile)
<< " does not support temporal scalability. L1T1 will be produced.";
}
}
encoder_input_visible_rect_ = gfx::Rect(config.input_visible_size);
client_ptr_factory_ = std::make_unique<base::WeakPtrFactory<Client>>(client);
client_ = client_ptr_factory_->GetWeakPtr();
output_format_fourcc_ =
VideoCodecProfileToV4L2PixFmt(config.output_profile, false);
if (output_format_fourcc_ == V4L2_PIX_FMT_INVALID) {
MEDIA_LOG(ERROR, media_log.get())
<< "invalid output_profile=" << GetProfileName(config.output_profile);
return {EncoderStatus::Codes::kEncoderInitializationError};
}
if (!device_->Open(V4L2Device::Type::kEncoder, output_format_fourcc_)) {
MEDIA_LOG(ERROR, media_log.get())
<< "Failed to open device for profile="
<< GetProfileName(config.output_profile)
<< ", fourcc=" << FourccToString(output_format_fourcc_);
return {EncoderStatus::Codes::kEncoderInitializationError};
}
gfx::Size min_resolution;
gfx::Size max_resolution;
GetSupportedResolution(base::BindRepeating(&V4L2Device::Ioctl, device_),
output_format_fourcc_, &min_resolution,
&max_resolution);
if (config.input_visible_size.width() < min_resolution.width() ||
config.input_visible_size.height() < min_resolution.height() ||
config.input_visible_size.width() > max_resolution.width() ||
config.input_visible_size.height() > max_resolution.height()) {
MEDIA_LOG(ERROR, media_log.get())
<< "Unsupported resolution: " << config.input_visible_size.ToString()
<< ", min=" << min_resolution.ToString()
<< ", max=" << max_resolution.ToString();
return {EncoderStatus::Codes::kEncoderInitializationError};
}
// Ask if V4L2_ENC_CMD_STOP (Flush) is supported.
struct v4l2_encoder_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd = V4L2_ENC_CMD_STOP;
is_flush_supported_ = (device_->Ioctl(VIDIOC_TRY_ENCODER_CMD, &cmd) == 0);
if (!is_flush_supported_)
VLOGF(2) << "V4L2_ENC_CMD_STOP is not supported.";
struct v4l2_capability caps;
memset(&caps, 0, sizeof(caps));
const __u32 kCapsRequired = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
if (device_->Ioctl(VIDIOC_QUERYCAP, &caps) != 0) {
MEDIA_LOG(ERROR, media_log.get())
<< "ioctl() failed: VIDIOC_QUERYCAP, errno=" << errno;
return {EncoderStatus::Codes::kEncoderInitializationError};
}
if ((caps.capabilities & kCapsRequired) != kCapsRequired) {
MEDIA_LOG(ERROR, media_log.get())
<< "caps check failed: 0x" << std::hex << caps.capabilities;
return {EncoderStatus::Codes::kEncoderInitializationError};
}
driver_name_ = device_->GetDriverName();
encoder_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::InitializeTask,
weak_this_, config));
return {EncoderStatus::Codes::kOk};
}
void V4L2VideoEncodeAccelerator::InitializeTask(const Config& config) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
TRACE_EVENT0("media,gpu", "V4L2VEA::InitializeTask");
// Set kInitialized here so that NotifyErrorStatus() is invoked from here.
encoder_state_ = kInitialized;
native_input_mode_ =
config.storage_type == Config::StorageType::kGpuMemoryBuffer;
input_queue_ = device_->GetQueue(V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
output_queue_ = device_->GetQueue(V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
if (!input_queue_ || !output_queue_) {
SetErrorState({EncoderStatus::Codes::kEncoderInitializationError,
"Failed to get V4L2Queue"});
return;
}
if (!SetFormats(config.input_format, config.output_profile)) {
return;
}
if (config.input_format != device_input_layout_->format()) {
VLOGF(2) << "Input format: " << config.input_format << " is not supported "
<< "by the HW. Will try to convert to "
<< device_input_layout_->format();
auto input_layout = VideoFrameLayout::CreateMultiPlanar(
config.input_format, encoder_input_visible_rect_.size(),
std::vector<ColorPlaneLayout>(
VideoFrame::NumPlanes(config.input_format)));
if (!input_layout) {
SetErrorState({EncoderStatus::Codes::kUnsupportedFrameFormat,
"Invalid image processor input layout"});
return;
}
// ImageProcessor for a pixel format conversion.
if (!CreateImageProcessor(*input_layout, device_input_layout_->format(),
device_input_layout_->coded_size(),
encoder_input_visible_rect_,
encoder_input_visible_rect_)) {
SetErrorState(
{EncoderStatus::Codes::kEncoderInitializationError,
base::StrCat(
{"Failed to create image processor ", "for format conversion",
VideoPixelFormatToString(input_layout->format()), " -> ",
VideoPixelFormatToString(device_input_layout_->format())})});
return;
}
const gfx::Size ip_output_buffer_size(
static_cast<int>(image_processor_->output_config().planes[0].stride),
image_processor_->output_config().size.height());
if (!NegotiateInputFormat(device_input_layout_->format(),
ip_output_buffer_size)) {
SetErrorState(
{EncoderStatus::Codes::kUnsupportedFrameFormat,
base::StrCat({"Failed to reconfigure v4l2 encoder driver with the ",
"ImageProcessor output buffer: ",
ip_output_buffer_size.ToString()})});
return;
}
}
if (!InitInputMemoryType(config) || !InitControls(config) ||
!CreateOutputBuffers()) {
SetErrorState(EncoderStatus::Codes::kEncoderInitializationError);
return;
}
if (config.bitrate.mode() != Bitrate::Mode::kConstant &&
config.bitrate.mode() != Bitrate::Mode::kVariable) {
SetErrorState({EncoderStatus::Codes::kEncoderUnsupportedConfig,
base::StrCat({"Invalid bitrate mode: ",
base::NumberToString(base::strict_cast<int>(
config.bitrate.mode()))})});
return;
}
if (config.bitrate.mode() == Bitrate::Mode::kVariable &&
!base::FeatureList::IsEnabled(kChromeOSHWVBREncoding)) {
SetErrorState({EncoderStatus::Codes::kEncoderUnsupportedConfig,
"VBR encoding is disabled"});
return;
}
const uint32_t bitrate_mode =
config.bitrate.mode() == Bitrate::Mode::kConstant
? V4L2_MPEG_VIDEO_BITRATE_MODE_CBR
: V4L2_MPEG_VIDEO_BITRATE_MODE_VBR;
const VideoBitrateAllocation bitrate_allocation =
AllocateBitrateForDefaultEncoding(config);
if (!device_->SetExtCtrls(
V4L2_CID_MPEG_CLASS,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_BITRATE_MODE, bitrate_mode)})) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
base::StrCat({"Failed to configure bitrate mode: ",
base::NumberToString(base::strict_cast<int>(
bitrate_allocation.GetMode()))})});
return;
}
current_bitrate_allocation_ = VideoBitrateAllocation(config.bitrate.mode());
RequestEncodingParametersChangeTask(bitrate_allocation, config.framerate,
std::nullopt);
// input_frame_size_ is the size of input_config of |image_processor_|.
// On native_input_mode_, since the passed size in RequireBitstreamBuffers()
// is ignored by the client, we don't update the expected frame size.
if (!native_input_mode_ && image_processor_.get())
input_frame_size_ = image_processor_->input_config().size;
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&Client::RequireBitstreamBuffers, client_,
kInputBufferCount, input_frame_size_,
output_buffer_byte_size_));
// Notify VideoEncoderInfo after initialization.
VideoEncoderInfo encoder_info;
encoder_info.implementation_name = "V4L2VideoEncodeAccelerator";
DCHECK(!encoder_info.has_trusted_rate_controller);
DCHECK(encoder_info.is_hardware_accelerated);
DCHECK(encoder_info.supports_native_handle);
DCHECK(!encoder_info.supports_simulcast);
// V4L2VideoEncodeAccelerator only supports temporal-SVC.
if (config.HasTemporalLayer()) {
CHECK(!config.spatial_layers.empty());
for (size_t i = 0; i < config.spatial_layers.size(); ++i) {
encoder_info.fps_allocation[i] =
GetFpsAllocation(config.spatial_layers[i].num_of_temporal_layers);
}
} else {
constexpr uint8_t kFullFramerate = 255;
encoder_info.fps_allocation[0] = {kFullFramerate};
}
child_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&Client::NotifyEncoderInfoChange, client_, encoder_info));
}
bool V4L2VideoEncodeAccelerator::CreateImageProcessor(
const VideoFrameLayout& input_layout,
const VideoPixelFormat output_format,
const gfx::Size& output_size,
const gfx::Rect& input_visible_rect,
const gfx::Rect& output_visible_rect) {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
auto ip_input_layout = AsMultiPlanarLayout(input_layout);
if (!ip_input_layout) {
LOG(ERROR) << "Failed to get multi-planar input layout, input_layout="
<< input_layout;
return false;
}
VideoFrame::StorageType input_storage_type =
native_input_mode_ ? VideoFrame::STORAGE_GPU_MEMORY_BUFFER
: VideoFrame::STORAGE_SHMEM;
auto input_config = VideoFrameLayoutToPortConfig(
*ip_input_layout, input_visible_rect, input_storage_type);
if (!input_config) {
LOG(ERROR) << "Failed to create ImageProcessor input config";
return false;
}
auto platform_layout = GetPlatformVideoFrameLayout(
output_format, output_size,
gfx::BufferUsage::VEA_READ_CAMERA_AND_CPU_READ_WRITE);
if (!platform_layout) {
LOG(ERROR) << "Failed to get Platform VideoFrameLayout";
return false;
}
auto output_layout = AsMultiPlanarLayout(platform_layout.value());
if (!output_layout) {
LOG(ERROR) << "Failed to get multi-planar platform layout, platform_layout="
<< *platform_layout;
return false;
}
auto output_config =
VideoFrameLayoutToPortConfig(*output_layout, output_visible_rect,
VideoFrame::STORAGE_GPU_MEMORY_BUFFER);
if (!output_config) {
LOG(ERROR) << "Failed to create ImageProcessor output config";
return false;
}
image_processor_ = ImageProcessorFactory::Create(
*input_config, *output_config, kImageProcBufferCount,
base::BindRepeating(&V4L2VideoEncodeAccelerator::ImageProcessorError,
weak_this_),
encoder_task_runner_);
if (!image_processor_) {
LOG(ERROR) << "Failed initializing image processor";
return false;
}
VLOGF(2) << "ImageProcessor is created: " << image_processor_->backend_type();
num_frames_in_image_processor_ = 0;
// The output of image processor is the input of encoder. Output coded
// width of processor must be the same as input coded width of encoder.
// Output coded height of processor can be larger but not smaller than the
// input coded height of encoder. For example, suppose input size of encoder
// is 320x193. It is OK if the output of processor is 320x208.
const auto& ip_output_size = image_processor_->output_config().size;
if (ip_output_size.width() != output_layout->coded_size().width() ||
ip_output_size.height() < output_layout->coded_size().height()) {
LOG(ERROR) << "Invalid image processor output coded size "
<< ip_output_size.ToString()
<< ", expected output coded size is "
<< output_layout->coded_size().ToString();
return false;
}
// Initialize |free_image_processor_output_buffer_indices_|.
free_image_processor_output_buffer_indices_.resize(kImageProcBufferCount);
std::iota(free_image_processor_output_buffer_indices_.begin(),
free_image_processor_output_buffer_indices_.end(), 0);
return AllocateImageProcessorOutputBuffers(kImageProcBufferCount);
}
bool V4L2VideoEncodeAccelerator::AllocateImageProcessorOutputBuffers(
size_t count) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(image_processor_);
DCHECK_EQ(image_processor_->output_mode(),
ImageProcessor::OutputMode::IMPORT);
// The existing buffers in |image_processor_output_buffers_| may be alive
// until they are actually consumed by the encoder driver, after they are
// destroyed here.
image_processor_output_buffers_.clear();
image_processor_output_buffers_.resize(count);
const ImageProcessor::PortConfig& output_config =
image_processor_->output_config();
for (size_t i = 0; i < count; i++) {
switch (output_config.storage_type) {
case VideoFrame::STORAGE_GPU_MEMORY_BUFFER:
CHECK(sii_);
image_processor_output_buffers_[i] = CreateMappableVideoFrame(
output_config.fourcc.ToVideoPixelFormat(), output_config.size,
output_config.visible_rect, output_config.visible_rect.size(),
base::TimeDelta(),
gfx::BufferUsage::VEA_READ_CAMERA_AND_CPU_READ_WRITE, sii_.get());
break;
default:
LOG(ERROR) << "Unsupported output storage type of image processor: "
<< output_config.storage_type;
return false;
}
if (!image_processor_output_buffers_[i]) {
LOG(ERROR) << "Failed to create VideoFrame";
return false;
}
}
return true;
}
bool V4L2VideoEncodeAccelerator::InitInputMemoryType(const Config& config) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
if (image_processor_) {
const auto storage_type = image_processor_->output_config().storage_type;
if (storage_type == VideoFrame::STORAGE_GPU_MEMORY_BUFFER) {
input_memory_type_ = V4L2_MEMORY_DMABUF;
} else if (VideoFrame::IsStorageTypeMappable(storage_type)) {
input_memory_type_ = V4L2_MEMORY_USERPTR;
} else {
LOG(ERROR) << "Unsupported image processor's output StorageType: "
<< storage_type;
return false;
}
} else {
switch (config.storage_type) {
case Config::StorageType::kShmem:
input_memory_type_ = V4L2_MEMORY_USERPTR;
break;
case Config::StorageType::kGpuMemoryBuffer:
input_memory_type_ = V4L2_MEMORY_DMABUF;
break;
}
}
return true;
}
void V4L2VideoEncodeAccelerator::ImageProcessorError() {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
LOG(ERROR) << "Image processor error";
// TODO(b/276005687): Let image processor return a minute error status and
// convert it to EncoderStatus.
SetErrorState(EncoderStatus::Codes::kFormatConversionError);
}
void V4L2VideoEncodeAccelerator::Encode(scoped_refptr<VideoFrame> frame,
bool force_keyframe) {
DVLOGF(4) << "force_keyframe=" << force_keyframe;
DCHECK_CALLED_ON_VALID_SEQUENCE(child_sequence_checker_);
encoder_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::EncodeTask,
weak_this_, std::move(frame), force_keyframe));
}
void V4L2VideoEncodeAccelerator::UseOutputBitstreamBuffer(
BitstreamBuffer buffer) {
DVLOGF(4) << "id=" << buffer.id();
DCHECK_CALLED_ON_VALID_SEQUENCE(child_sequence_checker_);
encoder_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2VideoEncodeAccelerator::UseOutputBitstreamBufferTask,
weak_this_, std::move(buffer)));
}
void V4L2VideoEncodeAccelerator::RequestEncodingParametersChange(
const Bitrate& bitrate,
uint32_t framerate,
const std::optional<gfx::Size>& size) {
DCHECK_CALLED_ON_VALID_SEQUENCE(child_sequence_checker_);
VideoBitrateAllocation allocation(bitrate.mode());
allocation.SetBitrate(0u, 0u, bitrate.target_bps());
allocation.SetPeakBps(bitrate.peak_bps());
RequestEncodingParametersChange(allocation, framerate, size);
}
void V4L2VideoEncodeAccelerator::RequestEncodingParametersChange(
const VideoBitrateAllocation& bitrate_allocation,
uint32_t framerate,
const std::optional<gfx::Size>& size) {
DCHECK_CALLED_ON_VALID_SEQUENCE(child_sequence_checker_);
encoder_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(
&V4L2VideoEncodeAccelerator::RequestEncodingParametersChangeTask,
weak_this_, bitrate_allocation, framerate, size));
}
void V4L2VideoEncodeAccelerator::Destroy() {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(child_sequence_checker_);
// We're destroying; cancel all callbacks.
client_ptr_factory_.reset();
encoder_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2VideoEncodeAccelerator::DestroyTask, weak_this_));
}
void V4L2VideoEncodeAccelerator::Flush(FlushCallback flush_callback) {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(child_sequence_checker_);
encoder_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::FlushTask,
weak_this_, std::move(flush_callback)));
}
void V4L2VideoEncodeAccelerator::FlushTask(FlushCallback flush_callback) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
if (encoder_state_ == kInitialized) {
// Flush() is called before either Encode() or UseOutputBitstreamBuffer() is
// called. Just return as successful.
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(std::move(flush_callback), true));
return;
}
if (flush_callback_ || encoder_state_ != kEncoding) {
SetErrorState({EncoderStatus::Codes::kEncoderIllegalState,
"Flush failed: there is a pending flush, or "
"VideoEncodeAccelerator is not in kEncoding state"});
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(std::move(flush_callback), false));
return;
}
flush_callback_ = std::move(flush_callback);
// Push a null frame to indicate Flush.
EncodeTask(nullptr, false);
}
bool V4L2VideoEncodeAccelerator::IsFlushSupported() {
return is_flush_supported_;
}
void V4L2VideoEncodeAccelerator::OnSharedImageInterfaceAvailable(
scoped_refptr<gpu::SharedImageInterface> sii) {
sii_ = std::move(sii);
}
void V4L2VideoEncodeAccelerator::SetCommandBufferHelperCB(
base::RepeatingCallback<scoped_refptr<CommandBufferHelper>()>
get_command_buffer_helper_cb,
scoped_refptr<base::SingleThreadTaskRunner> gpu_task_runner) {
gpu_task_runner->PostTaskAndReplyWithResult(
FROM_HERE,
base::BindOnce(
[](base::RepeatingCallback<scoped_refptr<CommandBufferHelper>()>
get_command_buffer_helper_cb)
-> scoped_refptr<gpu::SharedImageInterface> {
auto helper = get_command_buffer_helper_cb.Run();
if (helper && helper->GetSharedImageStub()) {
return helper->GetSharedImageStub()->shared_image_interface();
}
return nullptr;
},
get_command_buffer_helper_cb),
base::BindOnce(
&V4L2VideoEncodeAccelerator::OnSharedImageInterfaceAvailable,
weak_this_));
}
void V4L2VideoEncodeAccelerator::SetSharedImageInterfaceForTesting(
scoped_refptr<gpu::SharedImageInterface> sii) {
CHECK(!sii_) << "SharedImageInterface is already set.";
sii_ = std::move(sii);
}
VideoEncodeAccelerator::SupportedProfiles
V4L2VideoEncodeAccelerator::GetSupportedProfiles() {
auto device = base::MakeRefCounted<V4L2Device>();
return device->GetSupportedEncodeProfiles();
}
void V4L2VideoEncodeAccelerator::FrameProcessed(
bool force_keyframe,
base::TimeDelta timestamp,
size_t output_buffer_index,
scoped_refptr<VideoFrame> frame) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DVLOGF(4) << "force_keyframe=" << force_keyframe
<< ", output_buffer_index=" << output_buffer_index;
DCHECK_GE(output_buffer_index, 0u);
TRACE_EVENT_NESTABLE_ASYNC_END2(
"media,gpu", "V4L2VEA::ImageProcessor::Process",
timestamp.InMicroseconds(), "timestamp", timestamp.InMicroseconds(),
"output_size", image_processor_->output_config().size.ToString());
encoder_input_queue_.emplace(std::move(frame), force_keyframe,
output_buffer_index);
CHECK_GT(num_frames_in_image_processor_, 0u);
num_frames_in_image_processor_--;
MaybeFlushImageProcessor();
encoder_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2VideoEncodeAccelerator::Enqueue, weak_this_));
}
void V4L2VideoEncodeAccelerator::ReuseImageProcessorOutputBuffer(
size_t output_buffer_index) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DVLOGF(4) << "output_buffer_index=" << output_buffer_index;
free_image_processor_output_buffer_indices_.push_back(output_buffer_index);
InputImageProcessorTask();
}
BitstreamBufferMetadata V4L2VideoEncodeAccelerator::GetMetadata(
const uint8_t* data,
size_t data_size_bytes,
bool key_frame,
base::TimeDelta timestamp) {
auto buffer_metadata =
BitstreamBufferMetadata(data_size_bytes, key_frame, timestamp);
if (h264_l1t2_enabled_) {
H264Metadata h264_metadata;
h264_metadata.temporal_idx = 0;
h264_metadata.layer_sync = false;
H264Parser parser;
parser.SetStream(data, data_size_bytes);
H264NALU nalu;
while (parser.AdvanceToNextNALU(&nalu) == H264Parser::kOk) {
// L1T2 describes a bitstream where every other frame is not used as a
// reference frame. This allows those non reference frames to be discarded
// and never decoded. The V4L2 api does not provide a way to request that
// frames are not used as reference frames. It does provide a set of
// controls (V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING_*) that allows
// specifying that.
// In order to determine if a frame can be dropped the frames can be
// queried to see if they are marked as reference frames
// (i.e. nal_ref_idc == 0).
if (nalu.nal_unit_type == H264NALU::kNonIDRSlice &&
nalu.nal_ref_idc == 0) {
h264_metadata.temporal_idx = 1;
h264_metadata.layer_sync = true;
break;
}
}
buffer_metadata.h264 = h264_metadata;
}
return buffer_metadata;
}
size_t V4L2VideoEncodeAccelerator::CopyIntoOutputBuffer(
const uint8_t* bitstream_data,
size_t bitstream_size,
std::unique_ptr<BitstreamBufferRef> buffer_ref) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
uint8_t* dst_ptr = buffer_ref->shm_mapping.GetMemoryAs<uint8_t>();
size_t remaining_dst_size = buffer_ref->shm_mapping.size();
if (!inject_sps_and_pps_) {
if (bitstream_size <= remaining_dst_size) {
memcpy(dst_ptr, bitstream_data, bitstream_size);
return bitstream_size;
} else {
SetErrorState({EncoderStatus::Codes::kEncoderFailedEncode,
"Output data did not fit in the BitstreamBuffer"});
return 0;
}
}
// Cache the newest SPS and PPS found in the stream, and inject them before
// each IDR found.
H264Parser parser;
parser.SetStream(bitstream_data, bitstream_size);
H264NALU nalu;
bool inserted_sps = false;
bool inserted_pps = false;
while (parser.AdvanceToNextNALU(&nalu) == H264Parser::kOk) {
// nalu.size is always without the start code, regardless of the NALU type.
if (nalu.size + kH264StartCodeSize > remaining_dst_size) {
VLOGF(1) << "Output data did not fit in the BitstreamBuffer";
break;
}
switch (nalu.nal_unit_type) {
case H264NALU::kSPS:
cached_sps_.resize(nalu.size);
memcpy(cached_sps_.data(), nalu.data, nalu.size);
cached_h264_header_size_ =
cached_sps_.size() + cached_pps_.size() + 2 * kH264StartCodeSize;
inserted_sps = true;
break;
case H264NALU::kPPS:
cached_pps_.resize(nalu.size);
memcpy(cached_pps_.data(), nalu.data, nalu.size);
cached_h264_header_size_ =
cached_sps_.size() + cached_pps_.size() + 2 * kH264StartCodeSize;
inserted_pps = true;
break;
case H264NALU::kIDRSlice:
if (inserted_sps && inserted_pps) {
// Already inserted SPS and PPS. No need to inject.
break;
}
// Only inject if we have both headers cached, and enough space for both
// the headers and the NALU itself.
if (cached_sps_.empty() || cached_pps_.empty()) {
VLOGF(1) << "Cannot inject IDR slice without SPS and PPS";
break;
}
if (cached_h264_header_size_ + nalu.size + kH264StartCodeSize >
remaining_dst_size) {
VLOGF(1) << "Not enough space to inject a stream header before IDR";
break;
}
if (!inserted_sps) {
CopyNALUPrependingStartCode(cached_sps_.data(), cached_sps_.size(),
&dst_ptr, &remaining_dst_size);
}
if (!inserted_pps) {
CopyNALUPrependingStartCode(cached_pps_.data(), cached_pps_.size(),
&dst_ptr, &remaining_dst_size);
}
VLOGF(2) << "Stream header injected before IDR";
break;
}
CopyNALUPrependingStartCode(nalu.data, nalu.size, &dst_ptr,
&remaining_dst_size);
}
return buffer_ref->shm_mapping.size() - remaining_dst_size;
}
void V4L2VideoEncodeAccelerator::EncodeTask(scoped_refptr<VideoFrame> frame,
bool force_keyframe) {
DVLOGF(4) << "force_keyframe=" << force_keyframe;
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK_NE(encoder_state_, kUninitialized);
if (encoder_state_ == kError) {
DVLOGF(1) << "early out: kError state";
return;
}
if (frame) {
TRACE_EVENT1("media,gpu", "V4L2VEA::EncodeTask", "timestamp",
frame->timestamp().InMicroseconds());
// |frame| can be nullptr to indicate a flush.
const bool is_expected_storage_type =
native_input_mode_
? frame->storage_type() == VideoFrame::STORAGE_GPU_MEMORY_BUFFER
: frame->IsMappable();
if (!is_expected_storage_type) {
SetErrorState({EncoderStatus::Codes::kInvalidInputFrame,
base::StrCat({"Unexpected storage: ",
VideoFrame::StorageTypeToString(
frame->storage_type())})});
return;
}
if (!ReconfigureFormatIfNeeded(*frame)) {
SetErrorState({EncoderStatus::Codes::kUnsupportedFrameFormat,
base::StrCat({"Unsupported frame: ",
frame->AsHumanReadableString()})});
return;
}
// If a video frame to be encoded is fed, then call VIDIOC_REQBUFS if it has
// not been called yet.
if (input_buffer_map_.empty() && !CreateInputBuffers()) {
CHECK_EQ(encoder_state_, kError);
return;
}
if (encoder_state_ == kInitialized) {
if (!StartDevicePoll())
return;
encoder_state_ = kEncoding;
}
}
if (image_processor_) {
image_processor_input_queue_.emplace(std::move(frame), force_keyframe);
InputImageProcessorTask();
} else {
encoder_input_queue_.emplace(std::move(frame), force_keyframe);
Enqueue();
}
}
bool V4L2VideoEncodeAccelerator::ReconfigureFormatIfNeeded(
const VideoFrame& frame) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
if (input_buffer_map_.empty()) {
// Updates |input_natural_size_| on the first VideoFrame.
// |input_natural_size_| is a dimension to be encoded (i.e.
// |encoder_input_visible_rect_.size()|), but can be different from it
// in simulcast case.
input_natural_size_ = frame.natural_size();
}
if (!native_input_mode_) {
// frame.coded_size() must be the size specified in
// RequireBitstreamBuffers() in non native-input mode.
return frame.coded_size() == input_frame_size_;
}
if (!input_buffer_map_.empty()) {
// ReconfigureFormatIfNeeded() has been called with the first VideoFrame.
// We checks here we need to (re)create ImageProcessor because the visible
// rectangle of |frame| differs from the first VideoFrame.
// |frame.natural_size()| must be unchanged during encoding in the same
// VideoEncodeAccelerator instance. When it is changed, a client has to
// recreate VideoEncodeAccelerator.
if (frame.natural_size() != input_natural_size_) {
LOG(ERROR) << "Encoder resolution is changed during encoding"
<< ", frame.natural_size()=" << frame.natural_size().ToString()
<< ", input_natural_size_=" << input_natural_size_.ToString();
return false;
}
if (frame.coded_size() == input_frame_size_) {
return true;
}
// If a dimension of the underlying VideoFrame varies during video encoding
// (i.e. frame.coded_size() != input_frame_size_), we (re)create
// ImageProcessor to crop the VideoFrame, |frame.visible_rect()| ->
// |encoder_input_visible_rect_|.
// TODO(hiroh): if |frame.coded_size()| is the same as VideoFrame::
// DetermineAlignedSize(input_format, encoder_input_visible_rect_.size())
// and don't need a pixel format conversion, image processor is not
// necessary but we should rather NegotiateInputFormat().
} else if (frame.coded_size() == input_frame_size_) {
// This path is for the first frame on Encode().
// Height and width that V4L2VEA needs to configure.
const gfx::Size buffer_size(static_cast<int>(frame.stride(0)),
frame.coded_size().height());
// A buffer given by client is allocated with the same dimension using
// minigbm. However, it is possible that stride and height are different
// from ones adjusted by a driver.
if (!image_processor_) {
if (device_input_layout_->coded_size().width() == buffer_size.width() &&
device_input_layout_->coded_size().height() == buffer_size.height()) {
return true;
}
return NegotiateInputFormat(device_input_layout_->format(), buffer_size)
.has_value();
}
if (image_processor_->input_config().size.height() ==
buffer_size.height() &&
image_processor_->input_config().planes[0].stride ==
static_cast<size_t>(buffer_size.width())) {
return true;
}
}
// The |frame| dimension is different from the resolution configured to
// V4L2VEA. This is the case that V4L2VEA needs to create ImageProcessor for
// cropping and scaling. Update |input_frame_size_| to check if succeeding
// frames' dimensions are not different from the current one.
input_frame_size_ = frame.coded_size();
if (!CreateImageProcessor(frame.layout(), device_input_layout_->format(),
device_input_layout_->coded_size(),
frame.visible_rect(),
encoder_input_visible_rect_)) {
LOG(ERROR) << "Failed to create image processor";
return false;
}
gfx::Size output_size(
static_cast<int>(image_processor_->output_config().planes[0].stride),
image_processor_->output_config().size.height());
if (output_size != device_input_layout_->coded_size()) {
LOG(ERROR) << "Image Processor's output buffer's size is different from "
<< "input buffer size configure to the encoder driver. "
<< "ip's output buffer size: " << output_size.ToString()
<< ", encoder's input buffer size: "
<< device_input_layout_->coded_size().ToString();
return false;
}
return true;
}
void V4L2VideoEncodeAccelerator::MaybeFlushImageProcessor() {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(image_processor_);
if (image_processor_input_queue_.size() == 1 &&
!image_processor_input_queue_.front().frame &&
num_frames_in_image_processor_ == 0) {
// Flush the encoder once the image processor is done with its own flush.
DVLOGF(3) << "All frames to be flush have been processed by "
<< "|image_processor_|. Move the flush request to the encoder";
image_processor_input_queue_.pop();
encoder_input_queue_.emplace(nullptr, false);
Enqueue();
}
}
void V4L2VideoEncodeAccelerator::InputImageProcessorTask() {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
MaybeFlushImageProcessor();
if (free_image_processor_output_buffer_indices_.empty())
return;
if (image_processor_input_queue_.empty())
return;
// The flush request is at the top. Waiting until all frames are processed by
// the image processor.
if (!image_processor_input_queue_.front().frame)
return;
const size_t output_buffer_index =
free_image_processor_output_buffer_indices_.back();
free_image_processor_output_buffer_indices_.pop_back();
InputFrameInfo frame_info = std::move(image_processor_input_queue_.front());
image_processor_input_queue_.pop();
auto frame = std::move(frame_info.frame);
const bool force_keyframe = frame_info.force_keyframe;
auto timestamp = frame->timestamp();
TRACE_EVENT_NESTABLE_ASYNC_BEGIN1(
"media,gpu", "V4L2VEA::ImageProcessor::Process",
timestamp.InMicroseconds(), "timestamp", timestamp.InMicroseconds());
auto output_frame = image_processor_output_buffers_[output_buffer_index];
if (!image_processor_->Process(
std::move(frame), std::move(output_frame),
base::BindOnce(&V4L2VideoEncodeAccelerator::FrameProcessed,
weak_this_, force_keyframe, timestamp,
output_buffer_index))) {
SetErrorState({EncoderStatus::Codes::kFormatConversionError,
"Failed in ImageProcessor::Process"});
return;
}
num_frames_in_image_processor_++;
}
void V4L2VideoEncodeAccelerator::UseOutputBitstreamBufferTask(
BitstreamBuffer buffer) {
DVLOGF(4) << "id=" << buffer.id();
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
if (buffer.size() < output_buffer_byte_size_) {
SetErrorState({EncoderStatus::Codes::kInvalidOutputBuffer,
"Provided bitstream buffer too small"});
return;
}
base::UnsafeSharedMemoryRegion shm_region = buffer.TakeRegion();
base::WritableSharedMemoryMapping shm_mapping =
shm_region.MapAt(buffer.offset(), buffer.size());
if (!shm_mapping.IsValid()) {
SetErrorState({EncoderStatus::Codes::kSystemAPICallError,
"Failed to map a shared memory buffer"});
return;
}
bitstream_buffer_pool_.push_back(std::make_unique<BitstreamBufferRef>(
buffer.id(), std::move(shm_mapping)));
PumpBitstreamBuffers();
if (encoder_state_ == kInitialized) {
if (!StartDevicePoll())
return;
encoder_state_ = kEncoding;
}
}
void V4L2VideoEncodeAccelerator::DestroyTask() {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
weak_this_factory_.InvalidateWeakPtrs();
// If a flush is pending, notify client that it did not finish.
if (flush_callback_) {
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(std::move(flush_callback_), false));
}
// Stop streaming and the device_poll_thread_.
LOG_IF(ERROR, !StopDevicePoll()) << "Failure in termination";
DestroyInputBuffers();
DestroyOutputBuffers();
delete this;
}
void V4L2VideoEncodeAccelerator::ServiceDeviceTask() {
DVLOGF(3);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK_NE(encoder_state_, kUninitialized);
DCHECK_NE(encoder_state_, kInitialized);
if (encoder_state_ == kError) {
DVLOGF(1) << "early out: kError state";
return;
}
Dequeue();
Enqueue();
// Clear the interrupt fd.
if (!device_->ClearDevicePollInterrupt())
return;
// Device can be polled as soon as either input or output buffers are queued.
bool poll_device = (input_queue_->QueuedBuffersCount() +
output_queue_->QueuedBuffersCount() >
0);
// ServiceDeviceTask() should only ever be scheduled from DevicePollTask(),
// so either:
// * device_poll_thread_ is running normally
// * device_poll_thread_ scheduled us, but then a DestroyTask() shut it down,
// in which case we're in kError state, and we should have early-outed
// already.
DCHECK(device_poll_thread_.task_runner());
// Queue the DevicePollTask() now.
// base::Unretained(this) is safe, because device_poll_thread_ is owned by
// *this and stops before *this destruction.
device_poll_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::DevicePollTask,
base::Unretained(this), poll_device));
DVLOGF(3) << encoder_input_queue_.size() << "] => DEVICE["
<< input_queue_->FreeBuffersCount() << "+"
<< input_queue_->QueuedBuffersCount() << "/"
<< input_buffer_map_.size() << "->"
<< output_queue_->FreeBuffersCount() << "+"
<< output_queue_->QueuedBuffersCount() << "/"
<< output_queue_->AllocatedBuffersCount() << "] => OUT["
<< bitstream_buffer_pool_.size() << "]";
}
void V4L2VideoEncodeAccelerator::Enqueue() {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(input_queue_ && output_queue_);
TRACE_EVENT0("media,gpu", "V4L2VEA::Enqueue");
DVLOGF(4) << "free_input_buffers: " << input_queue_->FreeBuffersCount()
<< ", input_queue: " << encoder_input_queue_.size();
bool do_streamon = false;
// Enqueue all the inputs we can.
const size_t old_inputs_queued = input_queue_->QueuedBuffersCount();
while (!encoder_input_queue_.empty() &&
input_queue_->FreeBuffersCount() > 0) {
// A null frame indicates a flush.
if (encoder_input_queue_.front().frame == nullptr) {
DVLOGF(3) << "All input frames needed to be flushed are enqueued.";
encoder_input_queue_.pop();
// If we are not streaming, the device is not running and there is no need
// to call V4L2_ENC_CMD_STOP to request a flush. This also means there is
// nothing left to process, so we can return flush success back to the
// client.
if (!input_queue_->IsStreaming()) {
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(std::move(flush_callback_), true));
return;
}
struct v4l2_encoder_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd = V4L2_ENC_CMD_STOP;
if (device_->Ioctl(VIDIOC_ENCODER_CMD, &cmd) != 0) {
SetErrorState(
{EncoderStatus::Codes::kEncoderFailedFlush,
base::StrCat({"ioctl() failed: VIDIOC_ENCODER_CMD, errno=",
base::NumberToString(errno)})});
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(std::move(flush_callback_), false));
return;
}
encoder_state_ = kFlushing;
break;
}
std::optional<V4L2WritableBufferRef> input_buffer;
switch (input_memory_type_) {
case V4L2_MEMORY_DMABUF:
if (encoder_input_queue_.front()
.frame->metadata()
.tracking_token.has_value()) {
input_buffer = input_queue_->GetFreeBufferForFrame(
*encoder_input_queue_.front().frame->metadata().tracking_token);
}
// We may have failed to preserve buffer affinity, fallback to any
// buffer in that case.
if (!input_buffer)
input_buffer = input_queue_->GetFreeBuffer();
break;
default:
input_buffer = input_queue_->GetFreeBuffer();
break;
}
// input_buffer cannot be std::nullopt since we checked for
// input_queue_->FreeBuffersCount() > 0 before entering the loop.
DCHECK(input_buffer);
if (!EnqueueInputRecord(std::move(*input_buffer)))
return;
}
if (old_inputs_queued == 0 && input_queue_->QueuedBuffersCount() != 0) {
// We just started up a previously empty queue.
// Queue state changed; signal interrupt.
if (!device_->SetDevicePollInterrupt())
return;
// Shall call VIDIOC_STREAMON if we haven't yet.
do_streamon = !input_queue_->IsStreaming();
}
if (!input_queue_->IsStreaming() && !do_streamon) {
// We don't have to enqueue any buffers in the output queue until we enqueue
// buffers in the input queue. This enables to call S_FMT in Encode() on
// the first frame.
return;
}
// Enqueue all the outputs we can.
const size_t old_outputs_queued = output_queue_->QueuedBuffersCount();
while (auto output_buffer = output_queue_->GetFreeBuffer()) {
if (!EnqueueOutputRecord(std::move(*output_buffer)))
return;
}
if (old_outputs_queued == 0 && output_queue_->QueuedBuffersCount() != 0) {
// We just started up a previously empty queue.
// Queue state changed; signal interrupt.
if (!device_->SetDevicePollInterrupt())
return;
}
// STREAMON in CAPTURE queue first and then OUTPUT queue.
// This is a workaround of a tegra driver bug that STREAMON in CAPTURE queue
// will never return (i.e. blocks |encoder_thread_| forever) if the STREAMON
// in CAPTURE queue is called after STREAMON in OUTPUT queue.
// Once nyan_kitty, which uses tegra driver, reaches EOL, crrev.com/c/1753982
// should be reverted.
if (do_streamon) {
DCHECK(!output_queue_->IsStreaming() && !input_queue_->IsStreaming());
// When VIDIOC_STREAMON can be executed in OUTPUT queue, it is fine to call
// STREAMON in CAPTURE queue.
if (!output_queue_->Streamon()) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
"Failed to turn on streaming for CAPTURE queue"});
return;
}
if (!input_queue_->Streamon()) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
"Failed to turn on streaming for OUTPUT queue"});
return;
}
}
}
void V4L2VideoEncodeAccelerator::Dequeue() {
DVLOGF(4);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
TRACE_EVENT0("media,gpu", "V4L2VEA::Dequeue");
// Dequeue completed input (VIDEO_OUTPUT) buffers, and recycle to the free
// list.
while (input_queue_->QueuedBuffersCount() > 0) {
DVLOGF(4) << "inputs queued: " << input_queue_->QueuedBuffersCount();
DCHECK(input_queue_->IsStreaming());
auto ret = input_queue_->DequeueBuffer();
if (!ret.first) {
SetErrorState(
{EncoderStatus::Codes::kEncoderHardwareDriverError,
base::StrCat({"Failed to dequeue buffer in OUTPUT queue, errno=",
base::NumberToString(errno)})});
return;
}
if (!ret.second) {
// We're just out of buffers to dequeue.
break;
}
InputRecord& input_record = input_buffer_map_[ret.second->BufferId()];
input_record.frame = nullptr;
if (input_record.ip_output_buffer_index)
ReuseImageProcessorOutputBuffer(*input_record.ip_output_buffer_index);
}
// Dequeue completed output (VIDEO_CAPTURE) buffers, and recycle to the
// free list. Notify the client that an output buffer is complete.
bool buffer_dequeued = false;
while (output_queue_->QueuedBuffersCount() > 0) {
DCHECK(output_queue_->IsStreaming());
auto ret = output_queue_->DequeueBuffer();
if (!ret.first) {
SetErrorState(
{EncoderStatus::Codes::kEncoderHardwareDriverError,
base::StrCat({"Failed to dequeue buffer in CAPTURE queue, errno=",
base::NumberToString(errno)})});
return;
}
if (!ret.second) {
// We're just out of buffers to dequeue.
break;
}
const uint64_t timestamp_us =
ret.second->GetTimeStamp().tv_usec +
ret.second->GetTimeStamp().tv_sec * base::Time::kMicrosecondsPerSecond;
TRACE_EVENT_NESTABLE_ASYNC_END2(
"media,gpu", "PlatformEncoding.Encode", timestamp_us, "timestamp",
timestamp_us, "size", encoder_input_visible_rect_.size().ToString());
output_buffer_queue_.push_back(std::move(ret.second));
buffer_dequeued = true;
}
if (buffer_dequeued)
PumpBitstreamBuffers();
}
void V4L2VideoEncodeAccelerator::PumpBitstreamBuffers() {
DVLOGF(4);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
while (!output_buffer_queue_.empty()) {
auto output_buf = std::move(output_buffer_queue_.front());
output_buffer_queue_.pop_front();
size_t bitstream_size = base::checked_cast<size_t>(
output_buf->GetPlaneBytesUsed(0) - output_buf->GetPlaneDataOffset(0));
if (bitstream_size > 0) {
if (bitstream_buffer_pool_.empty()) {
DVLOGF(4) << "No free bitstream buffer, skip.";
output_buffer_queue_.push_front(std::move(output_buf));
break;
}
auto buffer_ref = std::move(bitstream_buffer_pool_.back());
auto buffer_id = buffer_ref->id;
bitstream_buffer_pool_.pop_back();
const uint8_t* output_buffer =
static_cast<const uint8_t*>(output_buf->GetPlaneMapping(0)) +
output_buf->GetPlaneDataOffset(0);
size_t output_data_size = CopyIntoOutputBuffer(
output_buffer, bitstream_size, std::move(buffer_ref));
DVLOGF(4) << "returning buffer_id=" << buffer_id
<< ", size=" << output_data_size
<< ", key_frame=" << output_buf->IsKeyframe();
const int64_t timestamp_us = output_buf->GetTimeStamp().tv_usec +
output_buf->GetTimeStamp().tv_sec *
base::Time::kMicrosecondsPerSecond;
TRACE_EVENT2("media,gpu", "V4L2VEA::BitstreamBufferReady", "timestamp",
timestamp_us, "bitstream_buffer_id", buffer_id);
child_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&Client::BitstreamBufferReady, client_, buffer_id,
GetMetadata(output_buffer, output_data_size,
output_buf->IsKeyframe(),
base::Microseconds(timestamp_us))));
}
if ((encoder_state_ == kFlushing) && output_buf->IsLast()) {
// Notify client that flush has finished successfully. The flush callback
// should be called after notifying the last buffer is ready.
DVLOGF(3) << "Flush completed. Start the encoder again.";
encoder_state_ = kEncoding;
child_task_runner_->PostTask(
FROM_HERE, base::BindOnce(std::move(flush_callback_), true));
// Start the encoder again.
struct v4l2_encoder_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd = V4L2_ENC_CMD_START;
if (device_->Ioctl(VIDIOC_ENCODER_CMD, &cmd) != 0) {
SetErrorState(
{EncoderStatus::Codes::kEncoderFailedFlush,
base::StrCat({"ioctl() failed: VIDIOC_ENCODER_CMD, errno=",
base::NumberToString(errno)})});
return;
}
}
}
// We may free some V4L2 output buffers above. Enqueue them if needed.
if (output_queue_->FreeBuffersCount() > 0) {
encoder_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&V4L2VideoEncodeAccelerator::Enqueue, weak_this_));
}
}
bool V4L2VideoEncodeAccelerator::EnqueueInputRecord(
V4L2WritableBufferRef input_buf) {
DVLOGF(4);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(!encoder_input_queue_.empty());
TRACE_EVENT0("media,gpu", "V4L2VEA::EnqueueInputRecord");
// Enqueue an input (VIDEO_OUTPUT) buffer.
InputFrameInfo frame_info = encoder_input_queue_.front();
if (frame_info.force_keyframe) {
if (!device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_FORCE_KEY_FRAME)})) {
SetErrorState({EncoderStatus::Codes::kEncoderFailedEncode,
"Failed requesting keyframe"});
return false;
}
}
scoped_refptr<VideoFrame> frame = frame_info.frame;
size_t buffer_id = input_buf.BufferId();
struct timeval timestamp;
timestamp.tv_sec = static_cast<time_t>(frame->timestamp().InSeconds());
timestamp.tv_usec =
frame->timestamp().InMicroseconds() -
frame->timestamp().InSeconds() * base::Time::kMicrosecondsPerSecond;
input_buf.SetTimeStamp(timestamp);
DCHECK_EQ(device_input_layout_->format(), frame->format());
size_t num_planes = GetNumPlanesOfV4L2PixFmt(
Fourcc::FromVideoPixelFormat(device_input_layout_->format(),
!device_input_layout_->is_multi_planar())
->ToV4L2PixFmt());
// Create GpuMemoryBufferHandle for native_input_mode.
gfx::GpuMemoryBufferHandle gmb_handle;
if (input_buf.Memory() == V4L2_MEMORY_DMABUF) {
gmb_handle = CreateGpuMemoryBufferHandle(frame.get());
if (gmb_handle.is_null() || gmb_handle.type != gfx::NATIVE_PIXMAP) {
SetErrorState({EncoderStatus::Codes::kSystemAPICallError,
"Failed to create native GpuMemoryBufferHandle"});
return false;
}
}
for (size_t i = 0; i < num_planes; ++i) {
// Single-buffer input format may have multiple color planes, so bytesused
// of the single buffer should be sum of each color planes' size.
size_t bytesused = 0;
if (num_planes == 1) {
bytesused = VideoFrame::AllocationSize(
frame->format(), device_input_layout_->coded_size());
} else {
bytesused = base::checked_cast<size_t>(
VideoFrame::PlaneSize(frame->format(), i,
device_input_layout_->coded_size())
.GetArea());
}
switch (input_buf.Memory()) {
case V4L2_MEMORY_USERPTR:
// Use buffer_size VideoEncodeAccelerator HW requested by S_FMT.
input_buf.SetPlaneSize(i, device_input_layout_->planes()[i].size);
break;
case V4L2_MEMORY_DMABUF: {
const std::vector<gfx::NativePixmapPlane>& planes =
gmb_handle.native_pixmap_handle().planes;
// TODO(crbug.com/901264): The way to pass an offset within a DMA-buf is
// not defined in V4L2 specification, so we abuse data_offset for now.
// Fix it when we have the right interface, including any necessary
// validation and potential alignment
input_buf.SetPlaneDataOffset(i, planes[i].offset);
bytesused += planes[i].offset;
// Workaround: filling length should not be needed. This is a bug of
// videobuf2 library.
input_buf.SetPlaneSize(
i, device_input_layout_->planes()[i].size + planes[i].offset);
break;
}
default:
NOTREACHED();
}
input_buf.SetPlaneBytesUsed(i, bytesused);
}
TRACE_EVENT_NESTABLE_ASYNC_BEGIN1("media,gpu", "PlatformEncoding.Encode",
frame->timestamp().InMicroseconds(),
"timestamp",
frame->timestamp().InMicroseconds());
switch (input_buf.Memory()) {
case V4L2_MEMORY_USERPTR: {
if (frame->storage_type() != VideoFrame::STORAGE_SHMEM) {
SetErrorState({EncoderStatus::Codes::kInvalidInputFrame,
"VideoFrame doesn't have shared memory"});
return false;
}
// The frame data is readable only and the driver doesn't actually write
// the buffer. But USRPTR buffer needs void*. So const_cast<> is required.
std::vector<void*> user_ptrs(num_planes);
for (size_t i = 0; i < num_planes; ++i) {
user_ptrs[i] = const_cast<uint8_t*>(frame->data(i));
}
if (!std::move(input_buf).QueueUserPtr(std::move(user_ptrs))) {
SetErrorState(
{EncoderStatus::Codes::kEncoderHardwareDriverError,
base::StrCat(
{"Failed queue a USRPTR buffer to input queue, errno=",
base::NumberToString(errno)})});
return false;
}
break;
}
case V4L2_MEMORY_DMABUF: {
if (!std::move(input_buf).QueueDMABuf(
gmb_handle.native_pixmap_handle().planes)) {
SetErrorState(
{EncoderStatus::Codes::kEncoderHardwareDriverError,
base::StrCat(
{"Failed queue a DMABUF buffer to input queue, errno=",
base::NumberToString(errno)})});
return false;
}
// TODO(b/266443239): Remove this workaround once RK3399 boards reaches
// EOL. v4lplugin holds v4l2_buffer in QBUF without duplicating the passed
// fds and resumes the QBUF request later after VIDIOC_QBUF returns. It is
// required to keep the passed fds valid until DQBUF is complete.
if (driver_name_ == "hantro-vpu") {
frame->AddDestructionObserver(base::BindOnce(
[](gfx::GpuMemoryBufferHandle) {}, std::move(gmb_handle)));
}
break;
}
default:
NOTREACHED();
}
// Keep |frame| in |input_record| so that a client doesn't use |frame| until
// a driver finishes using it, that is, VIDIOC_DQBUF is called.
InputRecord& input_record = input_buffer_map_[buffer_id];
input_record.frame = frame;
input_record.ip_output_buffer_index = frame_info.ip_output_buffer_index;
encoder_input_queue_.pop();
return true;
}
bool V4L2VideoEncodeAccelerator::EnqueueOutputRecord(
V4L2WritableBufferRef output_buf) {
DVLOGF(4);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
TRACE_EVENT0("media,gpu", "V4L2VEA::EnqueueOutputRecord");
// Enqueue an output (VIDEO_CAPTURE) buffer.
if (!std::move(output_buf).QueueMMap()) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
base::StrCat({"Failed to QueueMMap, errno=",
base::NumberToString(errno)})});
return false;
}
return true;
}
bool V4L2VideoEncodeAccelerator::StartDevicePoll() {
DVLOGF(3);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(!device_poll_thread_.IsRunning());
// Start up the device poll thread and schedule its first DevicePollTask().
if (!device_poll_thread_.Start()) {
SetErrorState({EncoderStatus::Codes::kSystemAPICallError,
"StartDevicePoll(): Device thread failed to start"});
return false;
}
// Enqueue a poll task with no devices to poll on -- it will wait only on the
// interrupt fd.
// base::Unretained(this) is safe, because device_poll_thread_ is owned by
// *this and stops before *this destruction.
device_poll_thread_.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::DevicePollTask,
base::Unretained(this), false));
return true;
}
bool V4L2VideoEncodeAccelerator::StopDevicePoll() {
DVLOGF(3);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
if (device_->IsValid()) {
// Signal the DevicePollTask() to stop, and stop the device poll thread.
if (!device_->SetDevicePollInterrupt()) {
return false;
}
device_poll_thread_.Stop();
// Clear the interrupt now, to be sure.
if (!device_->ClearDevicePollInterrupt()) {
return false;
}
}
// Tegra driver cannot call Streamoff() when the stream is off, so we check
// IsStreaming() first.
if (input_queue_ && input_queue_->IsStreaming() && !input_queue_->Streamoff())
return false;
if (output_queue_ && output_queue_->IsStreaming() &&
!output_queue_->Streamoff())
return false;
// Reset all our accounting info.
while (!encoder_input_queue_.empty())
encoder_input_queue_.pop();
for (auto& [frame, ip_output_buffer_index] : input_buffer_map_) {
frame = nullptr;
}
bitstream_buffer_pool_.clear();
DVLOGF(3) << "device poll stopped";
return true;
}
void V4L2VideoEncodeAccelerator::DevicePollTask(bool poll_device) {
DVLOGF(4);
DCHECK(device_poll_thread_.task_runner()->BelongsToCurrentThread());
bool event_pending;
if (!device_->Poll(poll_device, &event_pending)) {
SetErrorState({EncoderStatus::Codes::kSystemAPICallError,
"Failed to start device polloing"});
return;
}
// All processing should happen on ServiceDeviceTask(), since we shouldn't
// touch encoder state from this thread.
encoder_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::ServiceDeviceTask,
weak_this_));
}
void V4L2VideoEncodeAccelerator::SetErrorState(EncoderStatus status) {
// We can touch encoder_state_ only if this is the encoder thread or the
// encoder thread isn't running.
if (!encoder_task_runner_->RunsTasksInCurrentSequence()) {
encoder_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&V4L2VideoEncodeAccelerator::SetErrorState,
weak_this_, status));
return;
}
CHECK(!status.is_ok());
LOG(ERROR) << "SetErrorState: code=" << static_cast<int>(status.code())
<< ", message=" << status.message();
// Post NotifyErrorStatus() only if we are already initialized, as the API
// does not allow doing so before that.
if (encoder_state_ != kError && encoder_state_ != kUninitialized) {
LOG(ERROR) << "Call NotifyErrorStatus(): code="
<< static_cast<int>(status.code())
<< ", message=" << status.message();
CHECK(child_task_runner_);
child_task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&Client::NotifyErrorStatus, client_, std::move(status)));
}
encoder_state_ = kError;
}
void V4L2VideoEncodeAccelerator::RequestEncodingParametersChangeTask(
const VideoBitrateAllocation& bitrate_allocation,
uint32_t framerate,
const std::optional<gfx::Size>& size) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
if (size.has_value()) {
SetErrorState({EncoderStatus::Codes::kEncoderUnsupportedConfig,
"Update output frame size is not supported"});
return;
}
if (current_bitrate_allocation_ == bitrate_allocation &&
current_framerate_ == framerate) {
return;
}
DVLOGF(2) << "bitrate=" << bitrate_allocation.ToString()
<< ", framerate=" << framerate;
if (bitrate_allocation.GetMode() != current_bitrate_allocation_.GetMode()) {
SetErrorState({EncoderStatus::Codes::kEncoderUnsupportedConfig,
"Bitrate mode changed during encoding"});
return;
}
TRACE_EVENT2("media,gpu", "V4L2VEA::RequestEncodingParametersChangeTask",
"bitrate", current_bitrate_allocation_.ToString(), "framerate",
framerate);
if (current_bitrate_allocation_ != bitrate_allocation) {
switch (bitrate_allocation.GetMode()) {
case Bitrate::Mode::kVariable:
device_->SetExtCtrls(V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_BITRATE_PEAK,
bitrate_allocation.GetPeakBps())});
// Both the average and peak bitrate are to be set in VBR.
// Only the average bitrate are to be set in CBR.
[[fallthrough]];
case Bitrate::Mode::kConstant:
if (h264_l1t2_enabled_) {
if (!device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_HIER_CODING_L0_BR,
bitrate_allocation.GetBitrateBps(0u, 0u)),
V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_HIER_CODING_L1_BR,
bitrate_allocation.GetBitrateBps(0u, 1u))})) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
"Failed to change average bitrate"});
return;
}
} else if (!device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(
V4L2_CID_MPEG_VIDEO_BITRATE,
bitrate_allocation.GetBitrateBps(0u, 0u))})) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
"Failed to change average bitrate"});
return;
}
break;
case Bitrate::Mode::kExternal:
SetErrorState({EncoderStatus::Codes::kEncoderUnsupportedConfig,
"Unsupported rate control mode."});
return;
}
}
if (current_framerate_ != framerate) {
struct v4l2_streamparm parms;
memset(&parms, 0, sizeof(parms));
parms.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
// Note that we are provided "frames per second" but V4L2 expects "time per
// frame"; hence we provide the reciprocal of the framerate here.
parms.parm.output.timeperframe.numerator = 1;
parms.parm.output.timeperframe.denominator = framerate;
if (device_->Ioctl(VIDIOC_S_PARM, &parms) != 0) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
base::StrCat({"ioctl() failed: VIDIOC_S_PARM, errno=",
base::NumberToString(errno)})});
return;
}
}
current_bitrate_allocation_ = bitrate_allocation;
current_framerate_ = framerate;
}
bool V4L2VideoEncodeAccelerator::SetOutputFormat(
VideoCodecProfile output_profile) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(!input_queue_->IsStreaming());
DCHECK(!output_queue_->IsStreaming());
DCHECK(!encoder_input_visible_rect_.IsEmpty());
output_buffer_byte_size_ =
GetEncodeBitstreamBufferSize(encoder_input_visible_rect_.size());
// Sets 0 to width and height in CAPTURE queue, which should be ignored by the
// driver.
std::optional<struct v4l2_format> format = output_queue_->SetFormat(
output_format_fourcc_, gfx::Size(), output_buffer_byte_size_);
if (!format) {
return false;
}
// Device might have adjusted the required output size.
size_t adjusted_output_buffer_size =
base::checked_cast<size_t>(format->fmt.pix_mp.plane_fmt[0].sizeimage);
output_buffer_byte_size_ = adjusted_output_buffer_size;
return true;
}
std::optional<struct v4l2_format>
V4L2VideoEncodeAccelerator::NegotiateInputFormat(VideoPixelFormat input_format,
const gfx::Size& size) {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(!input_queue_->IsStreaming());
DCHECK(!output_queue_->IsStreaming());
// First see if the device can use the provided format directly.
std::vector<uint32_t> pix_fmt_candidates;
auto input_fourcc = Fourcc::FromVideoPixelFormat(input_format, false);
if (!input_fourcc) {
LOG(ERROR) << "Invalid input format "
<< VideoPixelFormatToString(input_format);
return std::nullopt;
}
pix_fmt_candidates.push_back(input_fourcc->ToV4L2PixFmt());
// Second try preferred input formats for both single-planar and
// multi-planar.
for (auto preferred_format :
device_->PreferredInputFormat(V4L2Device::Type::kEncoder)) {
pix_fmt_candidates.push_back(preferred_format);
}
for (const auto pix_fmt : pix_fmt_candidates) {
DVLOGF(3) << "Trying S_FMT with " << FourccToString(pix_fmt);
std::optional<struct v4l2_format> format =
input_queue_->SetFormat(pix_fmt, size, 0);
if (!format)
continue;
DVLOGF(3) << "Success: S_FMT with " << FourccToString(pix_fmt);
device_input_layout_ = V4L2FormatToVideoFrameLayout(*format);
if (!device_input_layout_) {
LOG(ERROR) << "Invalid device_input_layout_";
return std::nullopt;
}
DVLOG(3) << "Negotiated device_input_layout_: " << *device_input_layout_;
if (!gfx::Rect(device_input_layout_->coded_size())
.Contains(gfx::Rect(size))) {
LOG(ERROR) << "Input size " << size.ToString()
<< " exceeds encoder capability. Size encoder can handle: "
<< device_input_layout_->coded_size().ToString();
return std::nullopt;
}
// Make sure that the crop is preserved as we have changed the input
// resolution.
if (!ApplyCrop()) {
return std::nullopt;
}
return format;
}
return std::nullopt;
}
bool V4L2VideoEncodeAccelerator::ApplyCrop() {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
struct v4l2_rect visible_rect;
visible_rect.left = encoder_input_visible_rect_.x();
visible_rect.top = encoder_input_visible_rect_.y();
visible_rect.width = encoder_input_visible_rect_.width();
visible_rect.height = encoder_input_visible_rect_.height();
struct v4l2_selection selection_arg;
memset(&selection_arg, 0, sizeof(selection_arg));
selection_arg.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
selection_arg.target = V4L2_SEL_TGT_CROP;
selection_arg.r = visible_rect;
// The width and height might be adjusted by driver.
// Need to read it back and set to |encoder_input_visible_rect_|.
if (device_->Ioctl(VIDIOC_S_SELECTION, &selection_arg) == 0) {
DVLOGF(3) << "VIDIOC_S_SELECTION is supported";
visible_rect = selection_arg.r;
} else {
DVLOGF(3) << "Fallback to VIDIOC_S/G_CROP";
struct v4l2_crop crop;
memset(&crop, 0, sizeof(crop));
crop.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
crop.c = visible_rect;
if (device_->Ioctl(VIDIOC_S_CROP, &crop) != 0) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
base::StrCat({"ioctl() failed: VIDIOC_S_CROP, errno=",
base::NumberToString(errno)})});
return false;
}
if (device_->Ioctl(VIDIOC_G_CROP, &crop) != 0) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
base::StrCat({"ioctl() failed: VIDIOC_G_CROP",
base::NumberToString(errno)})});
return false;
}
visible_rect = crop.c;
}
const gfx::Rect adjusted_visible_rect(visible_rect.left, visible_rect.top,
visible_rect.width,
visible_rect.height);
if (encoder_input_visible_rect_ != adjusted_visible_rect) {
LOG(ERROR) << "Unsupported visible rectangle: "
<< encoder_input_visible_rect_.ToString()
<< ", the rectangle adjusted by the driver: "
<< adjusted_visible_rect.ToString();
return false;
}
return true;
}
bool V4L2VideoEncodeAccelerator::SetFormats(VideoPixelFormat input_format,
VideoCodecProfile output_profile) {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(!input_queue_->IsStreaming());
DCHECK(!output_queue_->IsStreaming());
if (!SetOutputFormat(output_profile)) {
SetErrorState({EncoderStatus::Codes::kEncoderUnsupportedProfile,
base::StrCat({"Unsupported codec profile: ",
GetProfileName(output_profile)})});
return false;
}
gfx::Size input_size = encoder_input_visible_rect_.size();
if (native_input_mode_) {
auto input_layout = GetPlatformVideoFrameLayout(
input_format, encoder_input_visible_rect_.size(),
gfx::BufferUsage::VEA_READ_CAMERA_AND_CPU_READ_WRITE);
if (!input_layout)
return false;
input_size = gfx::Size(static_cast<int>(input_layout->planes()[0].stride),
input_layout->coded_size().height());
}
DCHECK(input_frame_size_.IsEmpty());
auto v4l2_format = NegotiateInputFormat(input_format, input_size);
if (!v4l2_format) {
SetErrorState({EncoderStatus::Codes::kUnsupportedFrameFormat,
base::StrCat({"Unsupported input format: ",
VideoPixelFormatToString(input_format)})});
return false;
}
if (native_input_mode_) {
input_frame_size_ = VideoFrame::DetermineAlignedSize(
input_format, encoder_input_visible_rect_.size());
} else {
input_frame_size_ = V4L2Device::AllocatedSizeFromV4L2Format(*v4l2_format);
}
return true;
}
bool V4L2VideoEncodeAccelerator::InitControls(const Config& config) {
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
// Don't expect other output formats.
CHECK(output_format_fourcc_ == V4L2_PIX_FMT_H264 ||
output_format_fourcc_ == V4L2_PIX_FMT_VP8);
// Enable frame-level bitrate control. This is the only mandatory control.
if (!device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_FRAME_RC_ENABLE, 1)})) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
"Failed enabling bitrate control"});
return false;
}
switch (output_format_fourcc_) {
case V4L2_PIX_FMT_H264:
if (!InitControlsH264(config)) {
return false;
}
break;
case V4L2_PIX_FMT_VP8:
InitControlsVP8(config);
break;
default:
NOTREACHED() << "Unsupported codec "
<< FourccToString(output_format_fourcc_);
}
// Optional controls:
// - Enable macroblock-level bitrate control.
device_->SetExtCtrls(V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE, 1)});
// - Set GOP length, or default 0 to disable periodic key frames.
device_->SetGOPLength(config.gop_length.value_or(0));
return true;
}
bool V4L2VideoEncodeAccelerator::InitControlsH264(const Config& config) {
#ifndef V4L2_CID_MPEG_VIDEO_PREPEND_SPSPPS_TO_IDR
#define V4L2_CID_MPEG_VIDEO_PREPEND_SPSPPS_TO_IDR (V4L2_CID_MPEG_BASE + 644)
#endif
// Request to inject SPS and PPS before each IDR, if the device supports
// that feature. Otherwise we'll have to cache and inject ourselves.
if (device_->IsCtrlExposed(V4L2_CID_MPEG_VIDEO_PREPEND_SPSPPS_TO_IDR)) {
if (!device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_PREPEND_SPSPPS_TO_IDR, 1)})) {
SetErrorState(
{EncoderStatus::Codes::kEncoderHardwareDriverError,
"Failed to set V4L2_CID_MPEG_VIDEO_PREPEND_SPSPPS_TO_IDR to 1"});
return false;
}
inject_sps_and_pps_ = false;
DVLOGF(2) << "Device supports injecting SPS+PPS before each IDR";
} else {
inject_sps_and_pps_ = true;
DVLOGF(2) << "Will inject SPS+PPS before each IDR, unsupported by device";
}
// No B-frames, for lowest decoding latency.
device_->SetExtCtrls(V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_B_FRAMES, 0)});
// Set H.264 profile.
int32_t profile_value =
V4L2Device::VideoCodecProfileToV4L2H264Profile(config.output_profile);
if (profile_value < 0) {
SetErrorState({EncoderStatus::Codes::kEncoderUnsupportedProfile,
base::StrCat({"Unexpected h264 profile: ",
GetProfileName(config.output_profile)})});
return false;
}
if (!device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_PROFILE, profile_value)})) {
SetErrorState({EncoderStatus::Codes::kEncoderUnsupportedProfile,
base::StrCat({"Unsupported h264 profile: ",
GetProfileName(config.output_profile)})});
return false;
}
// Set H.264 output level from config. Use Level 4.0 as fallback default.
uint8_t h264_level = config.h264_output_level.value_or(H264SPS::kLevelIDC4p0);
constexpr int kH264MacroblockSizeInPixels = 16;
const uint32_t framerate = config.framerate;
const uint32_t mb_width =
base::bits::AlignUpDeprecatedDoNotUse(config.input_visible_size.width(),
kH264MacroblockSizeInPixels) /
kH264MacroblockSizeInPixels;
const uint32_t mb_height =
base::bits::AlignUpDeprecatedDoNotUse(config.input_visible_size.height(),
kH264MacroblockSizeInPixels) /
kH264MacroblockSizeInPixels;
const uint32_t framesize_in_mbs = mb_width * mb_height;
// Check whether the h264 level is valid.
if (!CheckH264LevelLimits(config.output_profile, h264_level,
config.bitrate.target_bps(), framerate,
framesize_in_mbs)) {
std::optional<uint8_t> valid_level =
FindValidH264Level(config.output_profile, config.bitrate.target_bps(),
framerate, framesize_in_mbs);
if (!valid_level) {
SetErrorState(
{EncoderStatus::Codes::kEncoderInitializationError,
base::StrCat({"Could not find a valid h264 level for"
" profile=",
GetProfileName(config.output_profile), " bitrate=",
base::NumberToString(config.bitrate.target_bps()),
" framerate=", base::NumberToString(framerate),
" size=", config.input_visible_size.ToString()})});
return false;
}
h264_level = *valid_level;
}
int32_t level_value = V4L2Device::H264LevelIdcToV4L2H264Level(h264_level);
device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_LEVEL, level_value)});
// Ask not to put SPS and PPS into separate bitstream buffers.
device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_HEADER_MODE,
V4L2_MPEG_VIDEO_HEADER_MODE_JOINED_WITH_1ST_FRAME)});
// H264 coding tools parameter. Since a driver may not support some of them,
// EXT_S_CTRLS is called to each of them to enable as many coding tools as
// possible.
// Don't produce Intra-only frame.
device_->SetExtCtrls(V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_I_PERIOD, 0)});
// Enable deblocking filter.
device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_LOOP_FILTER_MODE,
V4L2_MPEG_VIDEO_H264_LOOP_FILTER_MODE_ENABLED)});
// Use CABAC in Main and High profiles.
if (config.output_profile == H264PROFILE_MAIN ||
config.output_profile == H264PROFILE_HIGH) {
device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_ENTROPY_MODE,
V4L2_MPEG_VIDEO_H264_ENTROPY_MODE_CABAC)});
}
// Use 8x8 transform in High profile.
if (config.output_profile == H264PROFILE_HIGH) {
device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_8X8_TRANSFORM, true)});
}
// Quantization parameter. The h264 qp range is 0-51.
// Note: Webrtc default values are 24 and 37 respectively, see
// h264_encoder_impl.cc.
// These values were previously copied from the VA-API encoder.
// The MAX_QP parameter needed modification to 51 due to
// b/274867782 and b/241549978.
// Ignore return values as these controls are optional.
device_->SetExtCtrls(V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_MAX_QP, 51)});
// Don't set MIN_QP with other controls since it is not supported by
// some devices and may prevent other controls from being set.
// The MIN_QP needed modification due to b/280853786
// The value 18 was tuned experimentally to let the test pass but
// to be close to the original one
device_->SetExtCtrls(V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_MIN_QP, 18)});
if (h264_l1t2_enabled_) {
if (!device_->SetExtCtrls(
V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING, 1),
V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING_TYPE,
V4L2_MPEG_VIDEO_H264_HIERARCHICAL_CODING_P),
V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING_LAYER,
2u)})) {
SetErrorState(
{EncoderStatus::Codes::kEncoderInitializationError,
base::StrCat(
{"h264 hierachical coding was requested, but configuration of "
"the V4L2_CID_MPEG_VIDEO_H264_HIERARCHICAL_CODING* controls "
"failed."})});
return false;
}
}
return true;
}
void V4L2VideoEncodeAccelerator::InitControlsVP8(const Config& config) {
// Quantization parameter. They are vp8 ac/dc indices and their ranges are
// 0-127. These values were copied from the VA-API encoder.
// Ignore return values as these controls are optional.
device_->SetExtCtrls(V4L2_CTRL_CLASS_MPEG,
{V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_VPX_MIN_QP, 4),
V4L2ExtCtrl(V4L2_CID_MPEG_VIDEO_VPX_MAX_QP, 117)});
}
bool V4L2VideoEncodeAccelerator::CreateInputBuffers() {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(!input_queue_->IsStreaming());
// If using DMABUF input, we want to reuse the same V4L2 buffer index
// for the same input buffer as much as possible. But we don't know in advance
// how many different input buffers we will get. Therefore we allocate as
// many V4L2 buffers as possible (VIDEO_MAX_FRAME == 32). Unused indexes
// won't have a tangible cost since they don't have backing memory.
size_t num_buffers;
switch (input_memory_type_) {
case V4L2_MEMORY_DMABUF:
num_buffers = VIDEO_MAX_FRAME;
break;
default:
num_buffers = kInputBufferCount;
break;
}
if (input_queue_->AllocateBuffers(num_buffers, input_memory_type_,
/*incoherent=*/false) < kInputBufferCount) {
SetErrorState({EncoderStatus::Codes::kEncoderHardwareDriverError,
"Failed to allocate V4L2 input buffers."});
return false;
}
DCHECK(input_buffer_map_.empty());
input_buffer_map_.resize(input_queue_->AllocatedBuffersCount());
return true;
}
bool V4L2VideoEncodeAccelerator::CreateOutputBuffers() {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
DCHECK(!output_queue_->IsStreaming());
if (output_queue_->AllocateBuffers(kOutputBufferCount, V4L2_MEMORY_MMAP,
/*incoherent=*/false) <
kOutputBufferCount) {
SetErrorState(
{EncoderStatus::Codes::kEncoderInitializationError,
base::StrCat({"Failed to allocate V4L2 output buffers, errno=",
base::NumberToString(errno)})});
return false;
}
return true;
}
void V4L2VideoEncodeAccelerator::DestroyInputBuffers() {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
if (!input_queue_ || input_queue_->AllocatedBuffersCount() == 0)
return;
DCHECK(!input_queue_->IsStreaming());
if (!input_queue_->DeallocateBuffers())
VLOGF(1) << "Failed to deallocate V4L2 input buffers";
input_buffer_map_.clear();
}
void V4L2VideoEncodeAccelerator::DestroyOutputBuffers() {
VLOGF(2);
DCHECK_CALLED_ON_VALID_SEQUENCE(encoder_sequence_checker_);
if (!output_queue_ || output_queue_->AllocatedBuffersCount() == 0)
return;
DCHECK(!output_queue_->IsStreaming());
if (!output_queue_->DeallocateBuffers())
VLOGF(1) << "Failed to deallocate V4L2 output buffers";
}
} // namespace media
|