File: path_builder.cc

package info (click to toggle)
chromium 138.0.7204.183-1~deb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm-proposed-updates
  • size: 6,080,960 kB
  • sloc: cpp: 34,937,079; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,954; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,811; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (445 lines) | stat: -rw-r--r-- 15,577 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
// Copyright 2025 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "third_party/blink/renderer/platform/geometry/path_builder.h"

#include "third_party/blink/renderer/platform/geometry/contoured_rect.h"
#include "third_party/blink/renderer/platform/geometry/infinite_int_rect.h"
#include "third_party/blink/renderer/platform/geometry/path.h"
#include "third_party/blink/renderer/platform/geometry/path_types.h"
#include "third_party/blink/renderer/platform/geometry/skia_geometry_utils.h"
#include "third_party/blink/renderer/platform/transforms/affine_transform.h"
#include "third_party/skia/include/pathops/SkPathOps.h"
#include "ui/gfx/geometry/point_f.h"
#include "ui/gfx/geometry/rect_f.h"
#include "ui/gfx/geometry/skia_conversions.h"
#include "ui/gfx/geometry/vector2d_f.h"

namespace blink {

namespace {

using Corner = ContouredRect::Corner;

// Given a superellipse with the supplied curvature in the coordinate space
// -1,-1,1,1, returns 3 vectors (2 control points and the end point)
// of a bezier curve, going from t=0 (0, 1) clockwise to t=0.5 (45 degrees),
// and following the path of the superellipse with a small margin of error.
// TODO(fserb) document how this works.
std::array<gfx::Vector2dF, 3> ApproximateSuperellipseHalfCornerAsBezierCurve(
    float curvature) {
  static constexpr std::array<double, 7> p = {
      1.2430920942724248, 2.010479023614843,  0.32922901179443753,
      0.2823023142212073, 1.3473704261055421, 2.9149468637949814,
      0.9106507102917086};

  // This formula only works with convex superellipses. To apply to a concave
  // superellipse, flip the center and the outer point and apply the
  // equivalent convex formula (1/curvature).
  DCHECK_GE(curvature, 1);
  const float s = std::log2(curvature);
  const float slope =
      p[0] + (p[6] - p[0]) * 0.5 * (1 + std::tanh(p[5] * (s - p[1])));
  const float base = 1 / (1 + std::exp(-slope * (0 - p[1])));
  const float logistic = 1 / (1 + std::exp(-slope * (s - p[1])));

  const float a = (logistic - base) / (1 - base);
  const float b = p[2] * std::exp(-p[3] * std::pow(s, p[4]));

  // This is the superellipse formula at t=0.5 (45 degrees),
  // the middle of the corner.
  const float half_corner = Corner::HalfCornerForCurvature(curvature);

  const gfx::Vector2dF P1(a, 1);
  const gfx::Vector2dF P2(half_corner - b, half_corner + b);
  const gfx::Vector2dF P3(half_corner, half_corner);
  return {P1, P2, P3};
}

// Adds a curved corner to a path. The vertex argument is the 4 points
// of the corner rectangle, starting from the beginning of the corner
// and continuing clockwise.
void AddCurvedCorner(SkPath& path, const Corner& corner) {
  if (corner.IsConcave()) {
    AddCurvedCorner(path, corner.Inverse());
    return;
  }

  CHECK_GE(corner.Curvature(), 1);
  // Start the path from the beginning of the curve.
  path.lineTo(gfx::PointFToSkPoint(corner.Start()));

  if (corner.IsStraight()) {
    // Straight or very close to it, draw two lines.
    path.lineTo(gfx::PointFToSkPoint(corner.Outer()));
    path.lineTo(gfx::PointFToSkPoint(corner.End()));
  } else if (corner.IsBevel()) {
    path.lineTo(gfx::PointFToSkPoint(corner.End()));
  } else if (corner.IsRound()) {
    path.conicTo(gfx::PointFToSkPoint(corner.Outer()),
                 gfx::PointFToSkPoint(corner.End()), SK_ScalarRoot2Over2);
  } else {
    // Approximate 1/2 corner (45 degrees) of the superellipse as a
    // cubic bezier curve, and draw it twice, transposed, meeting at the t=0.5
    // (45 degrees) point.
    std::array<gfx::Vector2dF, 3> control_points =
        ApproximateSuperellipseHalfCornerAsBezierCurve(corner.Curvature());

    path.cubicTo(gfx::PointFToSkPoint(corner.MapPoint(control_points.at(0))),
                 gfx::PointFToSkPoint(corner.MapPoint(control_points.at(1))),
                 gfx::PointFToSkPoint(corner.MapPoint(control_points.at(2))));

    path.cubicTo(gfx::PointFToSkPoint(
                     corner.MapPoint(TransposeVector2d(control_points.at(1)))),
                 gfx::PointFToSkPoint(
                     corner.MapPoint(TransposeVector2d(control_points.at(0)))),
                 gfx::PointFToSkPoint(corner.End()));
  }
}

}  // anonymous namespace

PathBuilder::PathBuilder() = default;
PathBuilder::~PathBuilder() = default;

PathBuilder::PathBuilder(const Path& path) : builder_(path.GetSkPath()) {}

void PathBuilder::Reset() {
  builder_.reset();
  current_path_.reset();
}

Path PathBuilder::Finalize() {
  Path path(std::move(builder_));

  Reset();

  return path;
}

gfx::RectF PathBuilder::BoundingRect() const {
  return gfx::SkRectToRectF(builder_.getBounds());
}

const Path& PathBuilder::CurrentPath() const {
  if (!current_path_) {
    current_path_.emplace(builder_);
  }

  return current_path_.value();
}

std::optional<gfx::PointF> PathBuilder::CurrentPoint() const {
  SkPoint point;
  if (builder_.getLastPt(&point)) {
    return gfx::SkPointToPointF(point);
  }
  return std::nullopt;
}

PathBuilder& PathBuilder::Close() {
  builder_.close();

  current_path_.reset();
  return *this;
}

PathBuilder& PathBuilder::MoveTo(const gfx::PointF& pt) {
  builder_.moveTo(gfx::PointFToSkPoint(pt));

  current_path_.reset();
  return *this;
}

PathBuilder& PathBuilder::LineTo(const gfx::PointF& pt) {
  builder_.lineTo(gfx::PointFToSkPoint(pt));

  current_path_.reset();
  return *this;
}

PathBuilder& PathBuilder::QuadTo(const gfx::PointF& ctrl,
                                 const gfx::PointF& pt) {
  builder_.quadTo(gfx::PointFToSkPoint(ctrl), gfx::PointFToSkPoint(pt));

  current_path_.reset();
  return *this;
}

PathBuilder& PathBuilder::CubicTo(const gfx::PointF& ctrl1,
                                  const gfx::PointF& ctrl2,
                                  const gfx::PointF& pt) {
  builder_.cubicTo(gfx::PointFToSkPoint(ctrl1), gfx::PointFToSkPoint(ctrl2),
                   gfx::PointFToSkPoint(pt));

  current_path_.reset();
  return *this;
}

PathBuilder& PathBuilder::ArcTo(const gfx::PointF& p,
                                float radius_x,
                                float radius_y,
                                float x_rotate,
                                bool large_arc,
                                bool sweep) {
  builder_.arcTo(radius_x, radius_y, x_rotate,
                 large_arc ? SkPath::kLarge_ArcSize : SkPath::kSmall_ArcSize,
                 sweep ? SkPathDirection::kCW : SkPathDirection::kCCW, p.x(),
                 p.y());

  current_path_.reset();
  return *this;
}

PathBuilder& PathBuilder::ArcTo(const gfx::PointF& p1,
                                const gfx::PointF& p2,
                                float radius) {
  builder_.arcTo(gfx::PointFToSkPoint(p1), gfx::PointFToSkPoint(p2), radius);

  current_path_.reset();
  return *this;
}

PathBuilder& PathBuilder::AddRect(const gfx::PointF& origin,
                                  const gfx::PointF& opposite_point) {
  builder_.addRect(SkRect::MakeLTRB(origin.x(), origin.y(), opposite_point.x(),
                                    opposite_point.y()),
                   SkPathDirection::kCW, 0);

  current_path_.reset();
  return *this;
}

PathBuilder& PathBuilder::AddPath(const Path& src,
                                  const AffineTransform& transform) {
  builder_.addPath(src.GetSkPath(), transform.ToSkMatrix());

  current_path_.reset();
  return *this;
}

PathBuilder& PathBuilder::AddRoundedRect(const FloatRoundedRect& rect,
                                         bool clockwise) {
  if (rect.IsEmpty()) {
    return *this;
  }

  builder_.addRRect(SkRRect(rect),
                    clockwise ? SkPathDirection::kCW : SkPathDirection::kCCW,
                    /* start at upper-left after corner radius */ 0);

  current_path_.reset();
  return *this;
}

PathBuilder& PathBuilder::AddCorner(const ContouredRect::Corner& corner) {
  AddCurvedCorner(builder_, corner);
  current_path_.reset();
  return *this;
}

PathBuilder& PathBuilder::AddContouredRect(
    const ContouredRect& contoured_rect) {
  const FloatRoundedRect& target_rect = contoured_rect.AsRoundedRect();

  if (contoured_rect.HasRoundCurvature()) {
    AddRoundedRect(target_rect);
    return *this;
  }
  const FloatRoundedRect& origin_rect = contoured_rect.GetOriginRect();

  // This would include the outer border of the rect, as well as shadow and
  // margin.
  if (origin_rect == target_rect ||
      target_rect.Rect().Contains(origin_rect.Rect())) {
    // A rect with no insets/outsets, we can draw all the corners and not worry
    // about intersections.
    const Corner top_right_corner = contoured_rect.TopRightCorner();
    MoveTo(top_right_corner.Start());
    AddCurvedCorner(builder_, top_right_corner);
    AddCurvedCorner(builder_, contoured_rect.BottomRightCorner());
    AddCurvedCorner(builder_, contoured_rect.BottomLeftCorner());
    AddCurvedCorner(builder_, contoured_rect.TopLeftCorner());
    current_path_.reset();
    return *this;
  }

  // To generate curves that have constant thickness, we compute the
  // superellipse based on the same center and an increased radius. Since the
  // resulting path segments don't start/end at the target rect, we use
  // path-intersection logic, and intersect 3 paths: (1) the target rect (2) the
  // top-left & bottom-right corners together with the bottom-left and top-right
  // of the infinite rect (3) the top-right & bottom-left corners together with
  // the top-left and bottom-right corners of the infinite rect.
  // This generates a path that corresponds to the inset/outset rect but has the
  // corners carved out.
  SkOpBuilder op_builder;

  const SkRect infinite_rect =
      gfx::RectFToSkRect(gfx::RectF(InfiniteIntRect()));

  // Start with the target rect
  op_builder.add(SkPath::Rect(gfx::RectFToSkRect(target_rect.Rect())),
                 kUnion_SkPathOp);

  ContouredRect origin_contoured_rect(origin_rect,
                                      contoured_rect.GetCornerCurvature());

  if (!contoured_rect.GetRadii().TopRight().IsZero()) {
    SkPath path;
    path.moveTo(infinite_rect.left(), infinite_rect.top());
    AddCurvedCorner(path, contoured_rect.TopRightCorner());
    path.lineTo(infinite_rect.right(), infinite_rect.bottom());
    path.lineTo(infinite_rect.left(), infinite_rect.bottom());
    path.close();
    op_builder.add(path, kIntersect_SkPathOp);
  }

  if (!contoured_rect.GetRadii().BottomRight().IsZero()) {
    SkPath path;
    path.moveTo(infinite_rect.right(), infinite_rect.top());
    AddCurvedCorner(path, contoured_rect.BottomRightCorner());
    path.lineTo(infinite_rect.left(), infinite_rect.bottom());
    path.lineTo(infinite_rect.left(), infinite_rect.top());
    path.close();
    op_builder.add(path, kIntersect_SkPathOp);
  }

  if (!contoured_rect.GetRadii().BottomLeft().IsZero()) {
    SkPath path;
    path.moveTo(infinite_rect.right(), infinite_rect.bottom());
    AddCurvedCorner(path, contoured_rect.BottomLeftCorner());
    path.lineTo(infinite_rect.left(), infinite_rect.top());
    path.lineTo(infinite_rect.right(), infinite_rect.top());
    path.close();
    op_builder.add(path, kIntersect_SkPathOp);
  }

  if (!contoured_rect.GetRadii().TopLeft().IsZero()) {
    SkPath path;
    path.moveTo(infinite_rect.left(), infinite_rect.bottom());
    AddCurvedCorner(path, contoured_rect.TopLeftCorner());
    path.lineTo(infinite_rect.right(), infinite_rect.top());
    path.lineTo(infinite_rect.right(), infinite_rect.bottom());
    path.close();
    op_builder.add(path, kIntersect_SkPathOp);
  }

  SkPath result;
  CHECK(op_builder.resolve(&result));
  builder_.addPath(result);
  current_path_.reset();
  return *this;
}

PathBuilder& PathBuilder::AddEllipse(const gfx::PointF& p,
                                     float radius_x,
                                     float radius_y,
                                     float start_angle,
                                     float end_angle) {
  DCHECK(EllipseIsRenderable(start_angle, end_angle));
  DCHECK_GE(start_angle, 0);
  DCHECK_LT(start_angle, kTwoPiFloat);

  const SkRect oval = SkRect::MakeLTRB(p.x() - radius_x, p.y() - radius_y,
                                       p.x() + radius_x, p.y() + radius_y);

  const float start_degrees = Rad2deg(start_angle);
  const float sweep_degrees = Rad2deg(end_angle - start_angle);

  // We can't use SkPath::addOval(), because addOval() makes a new sub-path.
  // addOval() calls moveTo() and close() internally.

  // Use 180, not 360, because SkPath::arcTo(oval, angle, 360, false) draws
  // nothing.
  // TODO(fmalita): we should fix that in Skia.
  if (WebCoreFloatNearlyEqual(std::abs(sweep_degrees), 360)) {
    // incReserve() results in a single allocation instead of multiple as is
    // done by multiple calls to arcTo().
    builder_.incReserve(10, 5, 4);
    // // SkPath::arcTo can't handle the sweepAngle that is equal to or greater
    // // than 2Pi.
    const float sweep180 = std::copysign(180, sweep_degrees);
    builder_.arcTo(oval, start_degrees, sweep180, false);
    builder_.arcTo(oval, start_degrees + sweep180, sweep180, false);
  } else {
    builder_.arcTo(oval, start_degrees, sweep_degrees, false);
  }
  current_path_.reset();
  return *this;
}

PathBuilder& PathBuilder::AddEllipse(const gfx::PointF& p,
                                     float radius_x,
                                     float radius_y,
                                     float rotation,
                                     float start_angle,
                                     float end_angle) {
  DCHECK(EllipseIsRenderable(start_angle, end_angle));
  DCHECK_GE(start_angle, 0);
  DCHECK_LT(start_angle, kTwoPiFloat);

  if (!rotation) {
    return AddEllipse(p, radius_x, radius_y, start_angle, end_angle);
  }

  // Add an arc after the relevant transform.
  AffineTransform ellipse_transform =
      AffineTransform::Translation(p.x(), p.y()).RotateRadians(rotation);
  DCHECK(ellipse_transform.IsInvertible());
  AffineTransform inverse_ellipse_transform = ellipse_transform.Inverse();
  Transform(inverse_ellipse_transform);
  AddEllipse(gfx::PointF(), radius_x, radius_y, start_angle, end_angle);
  return Transform(ellipse_transform);
}

PathBuilder& PathBuilder::AddRect(const gfx::RectF& rect) {
  // Start at upper-left, add clock-wise.
  builder_.addRect(gfx::RectFToSkRect(rect), SkPathDirection::kCW, 0);

  current_path_.reset();
  return *this;
}

PathBuilder& PathBuilder::AddEllipse(const gfx::PointF& center,
                                     float radius_x,
                                     float radius_y) {
  // Start at 3 o'clock, add clock-wise.
  builder_.addOval(
      SkRect::MakeLTRB(center.x() - radius_x, center.y() - radius_y,
                       center.x() + radius_x, center.y() + radius_y),
      SkPathDirection::kCW, 1);

  current_path_.reset();
  return *this;
}

PathBuilder& PathBuilder::SetWindRule(WindRule rule) {
  const SkPathFillType fill_type = WebCoreWindRuleToSkFillType(rule);

  if (fill_type == builder_.getFillType()) {
    return *this;
  }

  builder_.setFillType(fill_type);

  current_path_.reset();
  return *this;
}

PathBuilder& PathBuilder::Translate(const gfx::Vector2dF& offset) {
  builder_.offset(offset.x(), offset.y());

  current_path_.reset();
  return *this;
}

PathBuilder& PathBuilder::Transform(const AffineTransform& xform) {
  builder_.transform(xform.ToSkMatrix());

  current_path_.reset();
  return *this;
}

}  // namespace blink