1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ash/display/root_window_transformers.h"
#include <cmath>
#include "ash/accessibility/magnifier/fullscreen_magnifier_controller.h"
#include "ash/display/display_util.h"
#include "ash/host/root_window_transformer.h"
#include "ash/shell.h"
#include "ash/utility/transformer_util.h"
#include "base/command_line.h"
#include "base/memory/ptr_util.h"
#include "base/system/sys_info.h"
#include "ui/display/display.h"
#include "ui/display/manager/display_manager.h"
#include "ui/display/screen.h"
#include "ui/gfx/geometry/insets.h"
#include "ui/gfx/geometry/size_conversions.h"
#include "ui/gfx/geometry/transform.h"
namespace ash {
namespace {
// TODO(oshima): Transformers should be able to adjust itself
// when the device scale factor is changed, instead of
// precalculating the transform using fixed value.
// Creates rotation transform for |root_window| to |new_rotation|. This will
// call |CreateRotationTransform()|, the |old_rotation| will implicitly be
// |display::Display::ROTATE_0|.
gfx::Transform CreateRootWindowRotationTransform(
const display::Display& display) {
gfx::SizeF size(display.GetSizeInPixel());
// Use SizeF so that the origin of translated layer will be
// aligned when scaled back at pixels.
size.Scale(1.f / display.device_scale_factor());
return CreateRotationTransform(display::Display::ROTATE_0,
display.panel_rotation(), size);
}
gfx::Transform CreateInsetsTransform(const gfx::Insets& insets,
float device_scale_factor) {
gfx::Transform transform;
if (insets.top() != 0 || insets.left() != 0) {
float x_offset = insets.left() / device_scale_factor;
float y_offset = insets.top() / device_scale_factor;
transform.Translate(x_offset, y_offset);
}
return transform;
}
// Returns a transform with rotation adjusted |insets_in_pixel|. The transform
// is applied to the root window so that |insets_in_pixel| looks correct after
// the rotation applied at the output.
gfx::Transform CreateReverseRotatedInsetsTransform(
display::Display::Rotation rotation,
const gfx::Insets& insets_in_pixel,
float device_scale_factor) {
float x_offset = 0;
float y_offset = 0;
switch (rotation) {
case display::Display::ROTATE_0:
x_offset = insets_in_pixel.left();
y_offset = insets_in_pixel.top();
break;
case display::Display::ROTATE_90:
x_offset = insets_in_pixel.top();
y_offset = insets_in_pixel.right();
break;
case display::Display::ROTATE_180:
x_offset = insets_in_pixel.right();
y_offset = insets_in_pixel.bottom();
break;
case display::Display::ROTATE_270:
x_offset = insets_in_pixel.bottom();
y_offset = insets_in_pixel.left();
break;
}
gfx::Transform transform;
if (x_offset != 0 || y_offset != 0) {
x_offset /= device_scale_factor;
y_offset /= device_scale_factor;
transform.Translate(x_offset, y_offset);
}
return transform;
}
// RootWindowTransformer for ash environment.
class AshRootWindowTransformer : public RootWindowTransformer {
public:
AshRootWindowTransformer(const display::Display& display) {
initial_root_bounds_ = gfx::Rect(display.size());
display::DisplayManager* display_manager = Shell::Get()->display_manager();
display::ManagedDisplayInfo info =
display_manager->GetDisplayInfo(display.id());
host_insets_ = info.GetOverscanInsetsInPixel();
gfx::Transform insets_and_rotation_transform =
CreateInsetsTransform(host_insets_, display.device_scale_factor()) *
CreateRootWindowRotationTransform(display);
transform_ = insets_and_rotation_transform;
insets_and_scale_transform_ = CreateReverseRotatedInsetsTransform(
display.panel_rotation(), host_insets_, display.device_scale_factor());
FullscreenMagnifierController* magnifier =
Shell::Get()->fullscreen_magnifier_controller();
if (magnifier) {
gfx::Transform magnifier_scale = magnifier->GetMagnifierTransform();
transform_ *= magnifier_scale;
insets_and_scale_transform_ *= magnifier_scale;
}
CHECK(transform_.GetInverse(&invert_transform_));
CHECK(insets_and_rotation_transform.GetInverse(
&root_window_bounds_transform_));
root_window_bounds_transform_.Scale(1.f / display.device_scale_factor(),
1.f / display.device_scale_factor());
initial_host_size_ = info.bounds_in_native().size();
}
AshRootWindowTransformer(const AshRootWindowTransformer&) = delete;
AshRootWindowTransformer& operator=(const AshRootWindowTransformer&) = delete;
// aura::RootWindowTransformer overrides:
gfx::Transform GetTransform() const override { return transform_; }
gfx::Transform GetInverseTransform() const override {
return invert_transform_;
}
gfx::Rect GetRootWindowBounds(const gfx::Size& host_size) const override {
if (base::SysInfo::IsRunningOnChromeOS())
return initial_root_bounds_;
// If we're running on linux desktop for dev purpose, the host window
// may be updated to new size. Recompute the root window bounds based
// on the host size if the host size changed.
if (initial_host_size_ == host_size)
return initial_root_bounds_;
gfx::RectF new_bounds = gfx::RectF(gfx::SizeF(host_size));
new_bounds.Inset(gfx::InsetsF(host_insets_));
new_bounds = root_window_bounds_transform_.MapRect(new_bounds);
// Root window origin will be (0,0) except during bounds changes.
// Set to exactly zero to avoid rounding issues.
// Floor the size because the bounds is no longer aligned to
// backing pixel when |root_window_scale_| is specified
// (850 height at 1.25 scale becomes 1062.5 for example.)
return gfx::Rect(gfx::ToFlooredSize(new_bounds.size()));
}
gfx::Insets GetHostInsets() const override { return host_insets_; }
gfx::Transform GetInsetsAndScaleTransform() const override {
return insets_and_scale_transform_;
}
private:
~AshRootWindowTransformer() override = default;
gfx::Transform transform_;
// The accurate representation of the inverse of the |transform_|.
// This is used to avoid computation error caused by
// |gfx::Transform::GetInverse|.
gfx::Transform invert_transform_;
// The transform of the root window bounds. This is used to calculate the size
// of the root window. It is the composition of the following transforms
// - inverse of insets. Insets position the content area within the display.
// - inverse of rotation. Rotation changes orientation of the content area.
// - inverse of device scale. Scaling up content shrinks the content area.
//
// Insets also shrink the content area but this happens prior to applying the
// transformation in GetRootWindowBounds().
//
// Magnification does not affect the window size. Content is clipped in this
// case, but the magnifier allows panning to reach clipped areas.
//
// The transforms are inverted because GetTransform() is the transform from
// root window coordinates to host coordinates, but this transform is used in
// the reverse direction (derives root window bounds from display bounds).
gfx::Transform root_window_bounds_transform_;
gfx::Insets host_insets_;
gfx::Transform insets_and_scale_transform_;
gfx::Rect initial_root_bounds_;
gfx::Size initial_host_size_;
};
// RootWindowTransformer for mirror root window. We simply copy the
// texture (bitmap) of the source display into the mirror window, so
// the root window bounds is the same as the source display's
// pixel size (excluding overscan insets).
class MirrorRootWindowTransformer : public RootWindowTransformer {
public:
MirrorRootWindowTransformer(
const display::ManagedDisplayInfo& source_display_info,
const display::ManagedDisplayInfo& mirror_display_info) {
root_bounds_ =
gfx::Rect(source_display_info.GetSizeInPixelWithPanelOrientation());
display::Display::Rotation active_root_rotation =
source_display_info.GetActiveRotation();
display::Display::Rotation active_mirror_rotation =
mirror_display_info.GetActiveRotation();
const bool should_undo_rotation = ShouldUndoRotationForMirror();
gfx::Transform rotation_transform;
if (should_undo_rotation) {
// Calculate the transform to undo the rotation and apply it to the
// source display. Use GetActiveRotation() because |source_bounds_|
// includes panel rotation and we only need to revert active rotation.
rotation_transform = CreateRotationTransform(
source_display_info.GetActiveRotation(), display::Display::ROTATE_0,
gfx::SizeF(root_bounds_.size()));
root_bounds_ = gfx::ToNearestRect(
rotation_transform.MapRect(gfx::RectF(root_bounds_)));
active_root_rotation = display::Display::ROTATE_0;
}
gfx::Rect mirror_display_rect =
gfx::Rect(mirror_display_info.bounds_in_native().size());
// When logical rotation is 90 or 270 degree, transpose is needed to apply
// reverse rotation to `root_bounds_` and `mirror_display_rect` to exclude
// the rotation. This is because the rotation happens at viz output and
// `transform_` needs to be calculated without the rotation.
// E.g. host native size 1600x1200. Rotation 90 degree. `transform_` needs
// to fit 1200x1600 rather than 1600x1200.
if (active_root_rotation == display::Display::ROTATE_90 ||
active_root_rotation == display::Display::ROTATE_270) {
root_bounds_.Transpose();
}
if (active_mirror_rotation == display::Display::ROTATE_90 ||
active_mirror_rotation == display::Display::ROTATE_270) {
mirror_display_rect.Transpose();
}
bool letterbox = root_bounds_.width() * mirror_display_rect.height() >
root_bounds_.height() * mirror_display_rect.width();
if (letterbox) {
float mirror_scale_ratio =
(static_cast<float>(root_bounds_.width()) /
static_cast<float>(mirror_display_rect.width()));
float inverted_scale = 1.0f / mirror_scale_ratio;
int margin = static_cast<int>((mirror_display_rect.height() -
root_bounds_.height() * inverted_scale) /
2);
insets_ = gfx::Insets::TLBR(margin, 0, margin, 0);
transform_.Translate(0, margin);
transform_.Scale(inverted_scale, inverted_scale);
} else {
float mirror_scale_ratio =
(static_cast<float>(root_bounds_.height()) /
static_cast<float>(mirror_display_rect.height()));
float inverted_scale = 1.0f / mirror_scale_ratio;
int margin = static_cast<int>((mirror_display_rect.width() -
root_bounds_.width() * inverted_scale) /
2);
insets_ = gfx::Insets::TLBR(0, margin, 0, margin);
transform_.Translate(margin, 0);
transform_.Scale(inverted_scale, inverted_scale);
}
}
MirrorRootWindowTransformer(const MirrorRootWindowTransformer&) = delete;
MirrorRootWindowTransformer& operator=(const MirrorRootWindowTransformer&) =
delete;
// aura::RootWindowTransformer overrides:
gfx::Transform GetTransform() const override { return transform_; }
gfx::Transform GetInverseTransform() const override {
gfx::Transform invert;
CHECK(transform_.GetInverse(&invert));
return invert;
}
gfx::Rect GetRootWindowBounds(const gfx::Size& host_size) const override {
return root_bounds_;
}
gfx::Insets GetHostInsets() const override { return insets_; }
gfx::Transform GetInsetsAndScaleTransform() const override {
return transform_;
}
private:
~MirrorRootWindowTransformer() override = default;
gfx::Transform transform_;
gfx::Rect root_bounds_;
gfx::Insets insets_;
};
class PartialBoundsRootWindowTransformer : public RootWindowTransformer {
public:
PartialBoundsRootWindowTransformer(const gfx::Rect& screen_bounds,
const display::Display& display) {
const display::DisplayManager* display_manager =
Shell::Get()->display_manager();
display::ManagedDisplayInfo display_info =
display_manager->GetDisplayInfo(display.id());
// Physical root bounds.
root_bounds_ = gfx::Rect(display_info.bounds_in_native().size());
display::Display::Rotation active_root_rotation =
display_info.GetActiveRotation();
const bool need_transpose =
active_root_rotation == display::Display::ROTATE_90 ||
active_root_rotation == display::Display::ROTATE_270;
if (need_transpose)
root_bounds_.Transpose();
// |screen_bounds| is the unified desktop logical bounds.
// Calculate the unified height scale value, and apply the same scale on the
// row physical height to get the row logical height.
display::Display unified_display =
display::Screen::GetScreen()->GetPrimaryDisplay();
const int unified_physical_height =
unified_display.GetSizeInPixel().height();
const int unified_logical_height = screen_bounds.height();
const float unified_height_scale =
static_cast<float>(unified_logical_height) / unified_physical_height;
const int row_index =
display_manager->GetMirroringDisplayRowIndexInUnifiedMatrix(
display.id());
const int row_physical_height =
display_manager->GetUnifiedDesktopRowMaxHeight(row_index);
const int row_logical_height = row_physical_height * unified_height_scale;
const float dsf = unified_display.device_scale_factor();
const float scale = root_bounds_.height() / (dsf * row_logical_height);
transform_.Scale(scale, scale);
transform_.Translate(-SkIntToScalar(display.bounds().x()),
-SkIntToScalar(display.bounds().y()));
// Scaling using physical root bounds here, because rotation is applied
// before device_scale_factor is applied.
gfx::Transform rotation = CreateRotationTransform(
display::Display::ROTATE_0, display.panel_rotation(),
gfx::SizeF(root_bounds_.size()));
CHECK((rotation * transform_).GetInverse(&invert_transform_));
}
PartialBoundsRootWindowTransformer(
const PartialBoundsRootWindowTransformer&) = delete;
PartialBoundsRootWindowTransformer& operator=(
const PartialBoundsRootWindowTransformer&) = delete;
// RootWindowTransformer:
gfx::Transform GetTransform() const override { return transform_; }
gfx::Transform GetInverseTransform() const override {
return invert_transform_;
}
gfx::Rect GetRootWindowBounds(const gfx::Size& host_size) const override {
return root_bounds_;
}
gfx::Insets GetHostInsets() const override { return gfx::Insets(); }
gfx::Transform GetInsetsAndScaleTransform() const override {
return transform_;
}
private:
~PartialBoundsRootWindowTransformer() override = default;
gfx::Transform transform_;
gfx::Transform invert_transform_;
gfx::Rect root_bounds_;
};
} // namespace
std::unique_ptr<RootWindowTransformer> CreateRootWindowTransformerForDisplay(
const display::Display& display) {
return base::WrapUnique<RootWindowTransformer>(
new AshRootWindowTransformer(display));
}
std::unique_ptr<RootWindowTransformer>
CreateRootWindowTransformerForMirroredDisplay(
const display::ManagedDisplayInfo& source_display_info,
const display::ManagedDisplayInfo& mirror_display_info) {
return base::WrapUnique<RootWindowTransformer>(
new MirrorRootWindowTransformer(source_display_info,
mirror_display_info));
}
std::unique_ptr<RootWindowTransformer>
CreateRootWindowTransformerForUnifiedDesktop(const gfx::Rect& screen_bounds,
const display::Display& display) {
return base::WrapUnique<RootWindowTransformer>(
new PartialBoundsRootWindowTransformer(screen_bounds, display));
}
} // namespace ash
|